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Abstract This article examines the impact of the distribution of preferences on equi-
librium behavior in conflicts modeled as all-pay auctions with identity-dependent ex-
ternalities. Centrists and radicals are defined using a willingness-to-pay criterion that
admits preferences more general than a simple ordering on the line. Extremism, char-
acterized by a higher per capita expenditure by radicals than centrists, may persist
and generate higher aggregate expenditure by radicals, even when they are relatively
small in number. Our results demonstrate the importance of the institutions of con-
flict in determining the role of extremism and moderation in economic, political, and
social environments.

Keywords Conflict · All-pay Auction · Identity-dependent Externalities · Radical-
ism · Extremism · Contest Success Function
JEL D72 · D74 · C72 · D44

1 Introduction

It is axiomatic that the nature of conflict depends on the institutions of conflict. In
this paper we examine conflicts in which economic agents expend scarce resources
in order to achieve their preferred outcome among a set of alternatives. If an agent
secures his preferred alternative we say that the agent "wins." Otherwise, the agent
"loses." In this respect the conflicts that we examine are contests as defined, say, in
Konrad (2009). Our approach differs from much of the literature on contests in that
agents are not indifferent to the identity of the winning agent in the event that they
themselves lose.

This article investigates the impact of the distribution of preferences on equilib-
rium behavior in conflicts that are modeled as all-pay auctions with identity-dependent
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externalities. In this context, we define centrists and radicals using a willingness-to-
pay criterion that admits preferences more general than a simple ordering on the line.
Extremism, characterized by a higher per capita expenditure by radicals than cen-
trists, may persist and lead to a higher aggregate expenditure by radicals, even when
they are relatively small in number. Moreover, we show that centrists may in the ag-
gregate expend zero, even if they vastly outnumber radicals. Our results demonstrate
the importance of the choice of the institutions of conflict, as modeled by the contest
success function, in determining the role of extremism and moderation in economic,
political, and social environments.

In much of the theoretical work on conflict to date the institutions of conflict have
been black-boxed by the application of a contest success function - a function that
maps the vector of agents’ resource expenditures in the conflict into their respective
probabilities of winning their preferred outcome. Two prominent types of contest
success functions (henceforth, CSFs) employed in the literature are the "lottery" CSF
(Tullock, 1980), in which the probability that an agent wins his preferred outcome
equals the ratio of the agent’s expenditure to the sum of all agents’ expenditures,
and the "auction" CSF, in which the agent with the greatest expenditure wins his
preferred outcome with certainty. The lottery CSF is a popular method of modeling
conflicts in which the outcome is determined not just by the respective expenditures of
resources, but also a substantial random component. An auction CSF may be viewed
as approximating environments in which random exogenous factors play little role in
influencing the outcome of the conflict. Because of the discontinuity in the auction
CSF when agents are tied for the highest expenditure, small differences in (positive)
expenditure may lead to large differences in the probability of winning. That is, in
contests, the auction CSF represents cutthroat competition in sunk expenditure, much
the way that classical Bertrand competition is cutthroat competition in price. With the
lottery CSF competition is softened by randomness in the outcome, conditional on the
profile of expenditures.

Contests with identity-dependent externalities utilizing a lottery CSF have been
examined by Linster (1993) and Esteban and Ray (1999). Linster (1993) demon-
strates that with a constant unit cost of expenditure, pure strategy Nash equilibrium
profiles of expenditures may be obtained as the solution to a nonlinear system of
equations.1 He analyzes two three-player environments in more detail, including a
comparative statics analysis that links total conflict and social surplus to the extent of
the externalities. Esteban and Ray (1999) extend Linster’s (1993) model by consider-
ing groups of agents, with heterogeneous preferences across groups but homogeneous
preferences within each group. Each agent has an identical strictly convex cost of ex-
penditure function, and free-rider problems are assumed away by requiring that each
group of agents acts as a single agent with the group’s aggregate cost of expenditure
function (and dividing the resulting expenditure equally). Hence, larger groups have
lower costs. The current contribution reexamines several of the issues addressed in
these papers applying the auction CSF. That is, we examine all-pay auctions with
identity-dependent externalities.

1 Linster (1993) argues that such a solution exists unless the contest is degenerate in the sense that
players are indifferent to the outcome.
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To the best of our knowledge, we are the first to study equilibria of the all-pay
auction with identity-dependent externalities.2 In this sense we provide a bridge be-
tween models of conflict such as Linster (1993) and Esteban and Ray (1999) that
utilize a lottery CSF and the growing literature on winner-pay auctions with identity-
dependent externalities in which agents place bids, an auction CSF is employed, but
generally all bids except for the winner’s are refunded. Jehiel and Moldovanu(2006)
review this literature and note that the endogeneity of valuations in winner-pay auc-
tions is the main driving force behind many new, and interesting phenomena that arise
even in complete information settings.3 A comprehensive treatment of the (first-price)
winner-pay auction with identity-dependent externalities and complete information
appears in Funk (1996).

As noted by Esteban and Ray, identity-dependent externalities can, under cer-
tain conditions, impart a natural "metric" measuring the distance between players.4

If, for every i ∈ I = {1,2, . . . ,n}, vi = (vi1,vi2, . . . ,vin) is the vector of payoffs re-
ceived by player i when players 1,2, . . . ,n, respectively, win their preferred option,
it is natural to extend the definition of "reach" due to Siegel (2009) to account for
identity-dependent externalities. More precisely, let ri j = vii− vi j be player i’s reach
with respect to player j. That is, ri j is the maximum amount that player i would
be willing to expend in order to win with certainty rather than have player j win
with certainty. Under the assumption of symmetry, ri j = r ji, players’ reaches may be
viewed as a distance between the preferred outcomes of players based upon the play-
ers’ willingness to outbid each other to achieve their most favored outcome. Players
have similar preferences over their preferred outcomes if they value the success of
the other in terms similar to their own; that is, if ri j = r ji is small. This notion of the
distance between players’ preferred outcomes allows the quantification of the terms
radical and centrist in terms of the set of reaches over all player pairs. Player i is a
radical if he is an outlier in the sense that he is a player that attains the highest reach,
max{ri j|i, j ∈ I}, among all player pairs, with the additional qualification that any
player pair k, l attaining the same reach must include player i. A player who is not a
radical is a centrist.

In the sections that follow we incorporate the distributions of players’ prefer-
ences, as summarized by their reaches, in all-pay auctions with identity-dependent
externalities to examine the behavior of centrists and radicals in Nash equilibrium.
As in Esteban and Ray (1999) extremism refers to environments in which equilib-
rium expected per capita expenditures are higher for radical players than for centrists.

2 Konrad(2006) examines the effect of silent shareholdings in an all-pay auction framework with com-
plete information and finds that the social value may increase or decrease depending on the identity of the
firm that holds a share in its competitor. However, Konrad does not further analyze settings in which three
firms are active in equilibrium and allows only one player’s valuation to be endogenous.

3 For instance, in first-price winner-pay auctions, Funk (1996) and Jehiel and Moldovanu (1996) show
that multiple payoff nonequivalent equilibria may arise. Jehiel and Moldovanu (1996) show that if players
can commit in a pre-auction stage not to participate, both potential winners and losers may choose non-
participation, despite the inability to avoid the negative externality. Janssen and Moldovanu (2004) show
that revenue and efficiency may be unrelated to each other.

4 Esteban and Ray (1999) do not show formally that the distance measure induced by preferences over
outcomes is a metric. See section 2 for our assumptions under which there exists a semi-metric induced by
players’ willingness to outbid each other.
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Moderation refers to environments in which this ranking is reversed. We analyze sim-
ple scenarios similar to those in Esteban and Ray (1999) and find that expected per
capita expenditures are higher for radicals than for centrists. This advantage may lead
to a higher aggregate expected expenditure by radicals, even when they are relatively
small in number. In fact, centrists may in the aggregate expend zero with certainty,
even when they vastly outnumber radicals. Thus, extremism drives out moderation if
an auction rather than a lottery CSF is employed.

Our findings are in the spirit of Osborne et al. (2000), who show that players rep-
resenting central positions will not participate in meetings when there is an identical
fixed cost of participation and the outcome is a compromise between the participants.
We similarly find the non-participation of centrists in environments that are different
from those in Osborne et al. (2000) in two fundamental ways. First, in our model,
players’ expenditures are variable and influence the outcome of the conflict. Second,
the outcome of the conflict is the position of the player with the highest expenditure.

In the next section we provide a model of the all-pay auction with identity-
dependent externalities and define players’ proximity based on their preferences. We
then analyze equilibrium behavior in different three-player environments. In Section
3 we conclude with a brief discussion of welfare, contests between groups, and more
general assumptions on the cost of bidding.

2 The Model

We examine all-pay auctions with identity-dependent externalities under complete
information. In an all-pay auction all players place their bids simultaneously, the
player with the highest bid wins the prize, and all players pay their bid. In order to
capture the idea that a player is not indifferent to who wins the prize if he does not, we
represent a player’s valuation of the outcome as an n-dimensional vector rather than a
scalar. Each player’s valuation of the outcome is a vector vi = (vi1,vi2, . . . ,vin), i∈ I =
{1, . . . ,n}, where vi j is the value to player i if player j wins the prize. Externalities are
not restricted to being positive or negative only, but we assume that players strictly
prefer to win the prize.

Assumption 1 ∀i ∈ I : vii > vi j∀ j ∈ I, j 6= i.

Given a profile of bids, b = (b1, . . . ,bn), player i’s payoff is

ui(b) = ∑
j∈I

p j(b)vi j−C(bi),

where p j :Rn
+→ [0,1] is player j’s probability of winning given the profile of bids,

and C : R+→ R+ is the player’s cost, which only depends on his own bid. With an
auction CSF

p j(b) =


0 if ∃k ∈ I : bk > b j
1 if b j > bk∀k 6= j
1
m if j ties with m−1 other players for the high bid

.
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For simplicity we assume in the following analysis that C(bi) = bi, i.e. players have
constant unit marginal cost. However, our results hold generally if players have iden-
tical, continuous, strictly increasing, and unbounded cost functions with C(0) = 0.5

We expand a player’s expected utility, ui(·), and probabilty of winning, pi(·), to the
domain of mixed strategies. A mixed strategy Fi : R+ → [0,1] of player i ∈ I is a
cumulative probability distribution function over his bids. If a player bids zero with
probability one, we refer to this strategy as staying out of the conflict. When a player
submits a positive bid with strictly positive probability we say that he actively partic-
ipates in the conflict.

We aim to analyze the effects that the distribution of preferences has on strategic
behavior in all-pay auctions and for this purpose focus on three-player environments
(I = {1,2,3}). For these environments we define radicalism and centrism based on
the profile of players’ valuations. More precisely, let ri j := vii−vi j, i, j ∈ I, be player
i’s reach6 with respect to player j, meaning that ri j is the maximum player i would
be willing to bid in order to outbid player j, if players i and j were the only actively
competing players. To ensure an unambiguous measure of preference proximity we
assume the following.

Assumption 2 Inter-agent antagonism is symmetric, i.e. ri j = r ji ∀i, j ∈ I.

Under assumptions 1 and 2, d(i, j) := ri j can be interpreted as a distance between
players that reflects preferences over outcomes in the sense that player i (weakly)
prefers the outcome where j wins over the outcome where k wins if and only if
d(i, j)≤ d(i,k), i, j,k ∈ I. In fact, d(i, j) := ri j has the properties of a semi-metric:

1. Non-Negativity: d(i, j) := ri j = vii− vi j ≥ 0 by assumption 1,
2. Identity of Indiscernibles: d(i, j) := ri j = 0 if and only if i = j also by assumption

1,
3. Symmetry: d(i, j) := ri j = r ji = d( j, i) by assumption 2.

Note, however, that we do not restrict our analysis to environments in which the
triangle inequality holds, as there is no intuitive motivation for this property in the
context. Therefore, d(i, j) := ri j need not be a metric.

For example, d(i, j) = ri j could be generated by a spatial preference model in
which players engage in an all-pay auction to implement their distinct ideal points in
a finite dimensional real issue space. Suppose players possess identical, additively
separable utility functions in which the player’s bid is subtracted from a subutil-
ity function decreasing in the Euclidean distance between the player’s ideal point
and the implemented ideal point. Whether or not the triangle inequality may be vio-
lated rests on the curvature of the identical subutility functions. If these functions are
strictly concave in the Euclidean distance (reflecting increasing marginal disutility
in Euclidean distance), then the triangle inequality may be violated. If the subutility
functions are linear or convex in the Euclidean distance between ideal points, then
the triangle inequality holds.

5 In this case we can employ our analysis to a transformed bid , β = C(b). We elaborate on other
potential assumptions on cost in section 3.

6 This definition is based on Siegel(2009) but accounts for the identity-dependent externalities.
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Given this framework, we define the players’ distribution of preferences based
on their willingness to outbid others as well as other players’ reciprocal antagonism
towards them. Intuitively, a player who favors a radical outcome will generally face
stronger opposition from his rivals, and in turn be willing to expend high effort to
support it.
Definition 1 A player i ∈ I is called radical,7 if

i ∈
⋂

rst=max{ri j |i, j∈I}
{s, t}

Definition 2 A player i ∈ I is called centrist, if i is not radical.

According to Definition 1 we call a player i radical if he is willing to bid up to
the maximum of all reaches when competing with some other player, and addition-
ally other players would not be willing to bid that high unless possibly if they were
competing with i.

Following Esteban and Ray(1999), we refer to extremism as a situation where
all radical players expend in expectation more effort per capita than do centrists in
order to reach their preferred outcome. Alternatively, a situation in which centrists
expend more effort would be referred to as moderation. In the following paragraphs
we separately consider the cases of (A) two radical players and one centrist, (B) one
radical player and two centrists, and (C) the all-pay auction without radical players.

2.1 Two Radicals

Let players 1 and 3 be radical and player 2 be the centrist. We consider the symmetric
case where d(2,1) = d(2,3). Figure 1 illustrates the ranking of the ri j’s in this case.
We refer to this all-pay auction as Γ21, where 2 refers to the number of radicals and 1
to the lone centrist.

• • •
0 r21 = r12

r23 = r32

r13 = r31

//

Fig. 1: The case of two radical players and one centrist.

We find that in any Nash equilibrium of Γ21 both radicals will actively participate.
Moreover, the Nash equilibrium of Γ21 is unique and symmetric. It has the property
that the centrist player stays out of the conflict. This stands in contrast to a first-price
winner-pay auction in this environment. Funk(1996) shows that there exists a pure-
strategy equilibrium in the environment described above, in which player 2 wins the
prize with a bid of r2 j, j ∈ {1,3}.

7 To our knowledge no formal definition of a radical in a general n-player environment exists in the
literature. Intuitively, Definition 1 captures the notion that if a radical player is removed from the contest,
the maximal reach across all remaining pairs of players should strictly decrease. That is, the maximal
willingness to pay to win decreases.
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Proposition 1 (Extremism drives out moderation) There exists an unique equilib-
rium of Γ21. In the equilibrium of Γ21 the centrist stays out and the radical players
randomize continuously up to their common reach, r13 = r31. The two radical players
apply identical strategies in equilibrium.

The proof of Proposition 1, which is provided in A, is more complicated than
the corresponding proofs for all-pay auctions without identity-dependent externali-
ties. In the all-pay auction without identity-dependent externalities a given player i’s
expected utility from placing a bid bi depends on the probability that bi is the highest
bid. In the case of an all-pay auction with k identical prizes this is replaced by the
probability that bi is among the k highest bids; in the case of k non-identical prizes
this is replaced by the respective probability of being each of the j-th highest order
statistics ( j = 1,2, . . . ,k). With identity-dependent externalities the expected utility
from placing a bid bi depends not only on the probability that bi is the highest bid,
but also on the probability that each of the other players wins conditional on player i
bidding bi. Hence, in contrast to even multiple-prize all-pay auctions, it is not enough
to know the probability that player i’s bid attains a certain rank-order among bids;
one needs to know the probability of each of the other players placing the highest bid
conditional on player i placing the bid bi.

One implication of Proposition 1 is that an equilibrium in which only two radicals
actively participate and all centrists stay out of the conflict exists even if the popula-
tion share of the radical players is much smaller than that of the centrist players. This
observation is formally stated in Proposition 2.

Proposition 2 (Extremism drives out moderation with many centrists) Suppose
Γ21 is altered by adding more players who are centrists, while maintaining the iden-
tical radical positions of players 1 and 3. Then the equilibrium described in Proposi-
tion 1 part (i) persists: all centrists stay out and the radical players 1 and 3 actively
participate by randomizing continuously up to the common reach r13 = r31.

Proof Let player m be an additional player, who is centrist in comparison with players
1 and 3. Then rm j ≤ r jk for all j,k∈{1,3}, j 6= k, and there exists a j∈{1,3} such that
the inequality is strict. Note that in order for players 1 and 3 to remain radical, rml <
r13 ∀m, l ∈ I\{1,3}. If player m bids zero and all other players follow the equilibrium
strategies described in Proposition 2, then m’s expected payoff is 1

2 (vm1 + vm3). If
player m places a strictly positive bid, b ≤ r jk, while all other players follow the
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strategies described in Proposition 2, m’s expected payoff would be

um(b) = F(b)2vmm +(1−F(b)2)

[
vm1 + vm3

2

]
−b

=
vm1 + vm3

2
+F(b)2

[
rm1 + rm3

2

]
−b

=
vm1 + vm3

2
+

(
b

r jk

)2 [ rm1 + rm3

2

]
−b

=
vm1 + vm3

2
+b

[
b

r jk︸︷︷︸
≤1

(
1
2 (rm1 + rm3)

r jk

)
︸ ︷︷ ︸

<1

−1

]

︸ ︷︷ ︸
<0

<
vm1 + vm3

2
.

If player m bids more than r jk, then his payoff is

um(b) = vmm−b < vmm− r jk < vmm−
1
2
(rm1 + rm3) =

vm1 + vm3

2
.

Consequently, player m optimally bids zero and all centrists stay out.

Before proceeding to the next case, we provide an example which illustrates the re-
sults above and allows us to compare the all-pay auction with a different form of
all-pay contest, namely a Tullock-type model with a lottery contest success function.
For the purpose of comparison we consider an example given by Linster(1993) which
applies to this setting.

Example 1 Consider three players and normalize the value of the prize to one. Play-
ers’ valuations are v1 = (1,γ,γ2),v2 = (γ,1,γ),v3 = (γ2,γ,1) where γ ∈ [0,1). The
order of players’ reaches is illustrated in the following diagram (Figure 2), which
shows that player 2 is a centrist player and players 1 and 3 are radical. By Proposition

• • • •
r21 = r12
r23 = r32

r13 = r31

1− γ20 1− γ 1

Fig. 2: Illustration of players’ preferences in Example 1.

1 in the unique equilibrium player 2 stays out of the conflict, i.e. F2(x) = 1 for all
x≥ 0, and players 1 and 3 randomize symmetrically over [0,r13] using the cdf

F1(x) = F3(x) =


0 x < 0

x
1−γ2 0≤ x≤ 1− γ2

1 x > 1− γ2
.
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In this environment the outcome that the centrist, player 2, wins is socially optimal
in the sense that it maximizes the sum of all players’ valuations8. In the unique equi-
librium of the all-pay auction described above, this socially optimal outcome will be
achieved with probability zero as compared to a probability equal to (1− γ)/(3− γ)
in the Tullock game with lottery contest success function as considered by Lin-
ster(1993). Moreover, the expected sum of bids is strictly greater in the all-pay auc-
tion

(
1− γ2 > 2

3−γ
· (1− γ)

)
, although the centrist submits a strictly positive bid(

2 (1−γ)2

(3−γ)2 > 0
)

in the lottery contest.

2.2 One Radical

Now consider a three player setup with only one radical player. Assume player 2 is
the radical player and that the two centrist players, 1 and 3, are symmetric. We refer to
this game as Γ12. Figure 3 illustrates players’ preferences over outcomes. We find that

• • •
0 r21 = r12

r23 = r32

r13 = r31

//

Fig. 3: The case of one radical player and two centrists.

there exists an equilibrium in Γ12 in which one of the centrist players stays out of the
contest, while the radical player always actively participates in equilibrium. More-
over, even in a symmetric equilibrium (in which all players participate) extremism
persists.9

Proposition 3 (Moderation does not drive out extremism) In Γ12, the radical al-
ways actively participates in the conflict.

Proof Assume that player 2 stays out of the contest. Then his expected payoff would
be v2 j, j ∈ {1,3}, and players 1 and 3 would randomize uniformly over [0,r jk], j,k ∈
{1,3}, j 6= k. Thus, if player 2 would bid x = r jk, he would win with certainty and
receive expected payoff v22− r jk > v22− r2 j = v2 j.

8 Generally the concept of social welfare additionally takes expenditure into account. We follow Jehiel
and Moldovanu (2006) and Linster (1993) by using the sum of valuations to measure social welfare in
a context of contests with identity-dependent exernalities. This interpretation implies that the players’
expenditures are considered transfers. In some conflicts which are covered by our model, e.g. political
lobbying, expenditures are often more accurately viewed as a social waste of resources. Therefore, we
additionally discuss the effects of the auction CSF on expected total expenditure. We further elaborate on
this issue in the conclusion.

9 Even if the valuation vectors were slightly perturbed in a way such that players 1 and 3 were no longer
symmetric the main conclusions of Propositions 3 and 4 continue to hold in the sense that the player who
was previously the radical will always continue to actively participate in the conflict and for each player
who was previously a centrist there exists an equilibrium in which he stays out of the conflict. This is
true even though one of the players previously a centrist is a radical in the perturbed game (see Klose and
Kovenock, 2013).
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Proposition 4 (Extremism drives out moderation) In Γ12, for each centrist player
i ∈ {1,3} there exists an equilibrium in which player i stays out of the conflict, i.e.
Fi(x) = 1 for all x≥ 0.

Proof Without loss of generality assume that F1(x) = 1 for all x≥ 0. From the stan-
dard arguments for all-pay auctions (Baye et al., 1996) players 2 and 3 randomize
uniformly over [0,r23]. Both players must earn their equilibrium payoff at the upper
bound of the support of their equilibrium strategies. Thus, player 3’s expected payoff
from a bid x∈ [0,r23] must be v32 and player 2’s expected payoff from a bid x∈ [0,r23]
must be v23. Consequently, players 2’s and 3’s equilibrium strategies are

F2(x) = F3(x) =


0 x < 0

x
r23

0≤ x≤ r23

1 x > r23

.

Given these strategies it is optimal for player 1 to bid zero and receive expected payoff
1
2 (v12 + v13), because any bid x ∈ (0,r13) would yield an expected payoff of

u1(x,F−1) =− x+ v11F2(x)F3(x)+ v13F2(x)(1−F3(x))+ v12F3(x)(1−F2(x))

+ v13

∫ r13

x
(1−F3(s)) f2(s)ds+ v12

∫ r13

x
(1−F2(s)) f3(s)ds

=
v12 + v13

2
− x
[

1− x
r2

31

(
v11−

v12 + v13

2

)]
<

v12 + v13

2
.

In the environment with one radical player, it is not necessary that a centrist player
completely stays out of the contest. However, even in the symmetric equilibrium in
which both centrists actively participate, extremism is present.

Proposition 5 (Extremism) In Γ12, there exists a symmetric equilibrium (in the sense
that identical players use identical strategies). This equilibrium exhibits extremism,
and the radical player expends more effort than any centrist player in the sense of
first order stochastic dominance.

Proof of Proposition 5 is provided in B.
Linster’s (1993) second example takes on exactly this configuration of prefer-

ences assuming the lottery CSF. In Example 2 we compare his results to those ob-
tained when applying the auction CSF.

Example 2 Consider three players and normalize the value of the prize to one. Play-
ers’ valuations are v1 = (1,0,γ),v2 = (0,1,0), and v3 = (γ,0,1), where γ ∈ [0,1). The
order of players’ reaches is illustrated in Figure 4, showing that player 2 is a radical
player and players 1 and 3 are centrists. For the lottery CSF, Linster(1993) computes
for this example that the centrists bid 2

(3+γ)2 each and the radical bids (1+ γ) 2
(3+γ)2 .

The expected sum of bids is 2/(3+ γ) ∈
( 1

2 ,
2
3

]
, and player 2 wins with probability

1+γ

3+γ
∈
[ 1

3 ,
1
2

)
, which is increasing in γ .

On the other hand, in the asymmetric equilibrium of the all-pay auction (described
in Proposition 4) players expend on average higher effort (the expected sum of bids
is 1) and the least socially desirable outcome, i.e. player 2 wins, is more likely to
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• • •
r13 = r31

r32 = r23

r12 = r21

0 1− γ 1

Fig. 4: Illustration of players’ preferences in Example 2.

occur (2 wins with probability 1
2 ). The symmetric equilibrium yields higher pay-

offs to the players who participate in the asymmetric equilibrium in which one cen-

trist stays out. In this example all players have equal expected payoff,
(

γ

2

) 2
2−γ , in

the symmetric equilibrium, while both active players in the asymmetric equilibrium
have an expected payoff of zero. The centrist who stays out receives in expectation
γ

2 >
(

γ

2

) 2
2−γ in the asymmetric equilibrium. However, the sum of expected payoffs is

strictly greater in the symmetric equilibrium.

2.3 No Radicals

Under the assumption of symmetric antagonism, there is only one three-player envi-
ronment without any radical players. All reaches must coincide, ri j = rkl , ∀i, j,k, l ∈ I,
i 6= j, k 6= l. This case is illustrated in Figure 5.

• •
0

r21 = r12
r23 = r32

r13 = r31

//

Fig. 5: The case of symmetric antagonism and no radical players.

This case is equivalent to a three player all-pay auction without identity-dependent
externalities in which players are symmetric and value the prize at ri j, i, j ∈ I, i 6= j.
Baye, Kovenock and De Vries (1996) show that there exists a unique symmetric equi-
librium as well as a continuum of asymmetric equilibria. All equilibria however yield
the same expected payoffs (vi j, i 6= j after rescaling) for each player and the same
expected total expenditures.

3 Conclusion

In this paper, we demonstrated that the distribution of player preferences substantially
influences players’ behavior in all-pay auctions with identity-dependent externalities.
Specifically, we showed that in these contests extremism, characterized by a higher
per capita expenditure by radicals than centrists, may prevail to such an extent that
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radicals may expend more in the aggregate than centrists, even if they are relatively
small in number. In fact, centrists may in the aggregate expend zero, even if they
vastly outnumber radicals.

One consequence of this behavior is that, radical outcomes may occur with greater
frequency than centrist outcomes, even in environments with a small ratio of radicals
to centrists. In fact, as demonstrated in Proposition 2, centrists may vastly outnumber
radicals and expend zero in the aggregate, yielding a radical outcome with certainty.

In these conflicts there is no uniform benchmark for the analysis of welfare. The
discussion of welfare in the literature to date has focused on the likelihood that the
final outcome maximizes the sum of the players’ valuations (see for instance Linster,
1993, and Jehiel and Moldovanu, 2001). This measure appears to extend in a nat-
ural way the definition of efficiency from the auction literature (e.g. Maskin, 2000)
to contests with identity-dependent externalities. Since a moderate outcome in our
examples maximizes the sum of the valuations among all potential outcomes (i.e., in-
dividual player positions), social optimality is unlikely to result. Konrad (2006) points
out that the sum of the players’ valuations is an appropriate measure of social welfare
in cases in which effort is simply a transfer. Of course, the literature on rent seeking
following Tullock (1967) has viewed at least part of the expenditure in a conflict to
be social waste (see for instance Tullock, 1980, and Fudenberg and Tirole, 1987). In
this case the existence of radicals, by tending to increase expenditure, also increases
whatever waste might arise from those expenditures.

We presented two examples that illustrated similarities (e.g., existence of extrem-
ism) as well as differences (e.g., participation vs. non-participation of centrists) that
resulted from employing an auction contest success function rather than the lottery
contest success function, which is prominent in the literature. Our results illustrate
the importance of the choice of the institutions of conflict, as modeled by the contest
success function, in determining the role of extremism and moderation in economic,
political and social environments.

There are several extensions of our model that follow immediately from our anal-
ysis and address specific assumptions. One assumption made throughout the paper is
that individuals do not form coalitions to promote a group’s position but rather expend
resources to promote an individually preferred outcome. However this is, in fact, also
consistent with standard models of non-cooperative behavior in coalitions. Indeed,
under the common assumption that individuals within a coalition choose their strate-
gies non-cooperatively, our analysis does in fact apply to all-pay auctions between
exogenously determined groups10 for a group-specific public-good prize11. Baik et
al. (2001) show that if two groups compete in an all-pay auction for a public-good
prize, then there exists a Nash equilibrium in which only the player who has the
highest valuation of the prize within his group actively participates in the conflict,

10 The assumption that groups are exogenously determined is common in the literature on contests be-
tween groups. The strategic formation of groups in contests is addressed in e.g. Baik and Lee (2001),
Skaperdas (1998).

11 In this type of contest a group’s probability of winning depends on their total effort and all members
of the winning group receive their valuation of winning (e.g. Baik (1993), Baik et al. (2001), Esteban and
Ray (1999)). Alternatively groups may compete for a private-good prize, whereupon the prize allocated
within the winning group through a second stage contest (e.g. Katz and Tokatlidu (1996), Konrad and
Kovenock (2009)) or a previously determined sharing rule (Baik and Lee, 2001)
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and all remaining group members free ride. This result can be generalized to three
and more groups and to all-pay auctions with identity-dependent externalities. In par-
ticular, in a non-cooperative conflict between three groups of individuals who have
heterogeneous valuations of the outcome promoted by their group and the other two
alternatives, there exists a Nash equilibrium in which (at most) the individual with
the highest willingness to bid within each group will actively participate in equilib-
rium. Therefore, our results for the three player model also apply to conflict between
three groups when players make their decisions non-cooperatively and, thus, may free
ride on other group members’ efforts. By assumption, Esteban and Ray (1999) disal-
low free riding. In their model group members’ preferences are homogenous and all
players within the same group choose identical effort levels. This together with their
assumption of identical convex cost technologies result in cost advantages of larger
groups, which may be significant enough to result in moderation.

Another assumption that we maintain throughout our analysis is that players face
identical cost functions. With heterogeneous costs the notion of player i’s reach with
respect to player j needs to be adjusted in order to accurately reflect the player’s
willingness to bid. Let player i’s cost of bidding be given by a continuous, strictly
increasing, unbounded function ci :R+→R+, with ci(0) = 0. Then player i’s reach
with respect to player j is ri j = c−1

i (vii− vi j).
With heterogeneous costs the reaches ri j generally do not satisfy Assumption 2,

so we omit a formal analysis.12 Moreover, it is clear that such an analysis is some-
what more complicated in the presence of identity-dependent externalities than in the
original analysis of Siegel (2009, 2010). First, we do not have the generic uniqueness
of equilibrium payoffs (Siegel(2009)) to aid in tying down distributions. Second, be-
cause the payoff of a player at any bid b depends not only on the probability that he
is outbid at that bid, but on the conditional probability that each of the other players
is the highest bidder, there is no obvious extension of the Siegel (2010) algorithm to
pin down equilibrium distributions or the set of active bidders.

Nonetheless, we can say something about certain classes of asymmetric cost func-
tions. Suppose, for instance, that players have cost functions of the form employed
by Moldovanu and Sela (2001) and in Siegel’s (2010) analysis of simple contests,
ci(b) = γiC(b), where γi > 0 for all i ∈ I and C(b) is continuous, strictly increasing,
and unbounded with C(0) = 0. Moreover, suppose that in the game Γ21 described
in section 2.1, the two radicals (based on preferences over outcomes in the original
game Γ21 with cost C(b) = b) have a common coefficient of cost, γi = γR, i = 1,3,
which is strictly less than the corresponding coefficient of the single centrist, γ2 = γN .
Then the results of Proposition 4 continues to hold, with proofs modified to account
for the fact that, with the cost asymmetry, r21 = r23 < r32 = r12. Similarly, the result
of Proposition 2 of the game with two radicals and multiple centrists would continue
to hold if any centrist player i (based on the preferences in the original game) has a
coefficient γi ≥ γR. On the other hand, if an original centrist exhibits low enough costs
of effort this may cause him to actively participate in the conflict, and may improve
welfare.

12 See, however, Klose and Kovenock (2013) for an analysis of all-pay auctions with identity-dependent
externalities and more general preference structures.
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In a similar fashion, Propositions 3-5 in section 2.2 continue to hold under the
assumption that the two centrists in the game Γ12 have an identical coefficient of cost
γi = γN , i = 1,3, which is greater than the coefficient of the sole radical, γ2 = γR.
Of course, there are other formulations of cost for which similar results arise. One
example is an appropriate choice of budget constraints. In fact, a general extension to
budget constrained costs along the lines of Che and Gale’s (1998) analysis of standard
all-pay auctions raises new and interesting phenomena. For instance, if a sufficiently
small budget constraint is imposed upon a radical player, the likelihood that a centrist
wins the conflict may increase, thereby increasing the expected sum of valuations
from the resulting outcome. These and other explorations of all-pay auctions with
identity-dependent externalities are left for future research.
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A Proof of Proposition 1

Proof In a first step we show existence by constructing an equilibrium, we then show uniqueness of the
equilibrium described before in a second step involving multiple lemmas.

The strategy profile in which 2 stays out completely (puts mass 1 on zero) and players 1 and 3 ran-
domize uniformly over [0,r jk] ( j,k ∈ {1,3}, j 6= k) is a Nash equilibrium. Assume that 2 uses the strategy

F2(x) =
{

0 for x < 0
1 for x≥ 0 . Then (by Baye et al., 1996) it is optimal for players 1 and 3 to randomize over

[0,r jk] according to

F(x) =


0 for x < 0
x

r jk
for 0≤ x≤ r jk

1 for x > r jk

.

Given that 1 and 3 apply this strategy player 2’s payoff if he submits a strictly positive bid x ∈ (0,r2 j] is:

u∗2(x) = [F(x)]2v22 +(1− [F(x)]2)v2 j− x

= v2 j +F(x)2r2 j− x

= v2 j− x
(

1− x
r jk

r2 j

r jk

)
< v2 j.

It is therefore a best response for player 2 to stay out of the conflict.
Next we prove the uniqueness of the equilibrium described in Proposition 1, by first showing that any

equilibrium of Γ21 is symmetric in the sense that both radicals (players 1 and 3) choose identical strategies.
In a second step we then show that the set of symmetric equilibria of Γ21 is a singleton, given by the
cut-throat competition equilibrium described above.

Let si and s̄i be the lower and upper bound, respectively, of the support of an equilibrium strategy for
player i, i ∈ I, and define s̄ = maxi∈I{s̄i}. In the following, the indices j and k refer to two different radical
players, i.e. j ∈ {1,3},k ∈ {1,3}\{ j}.

Lemma 1 In any equilibrium of Γ21, both radicals actively participate in the conflict.
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Proof By way of contradiction, assume that one of the radical players stays out of the conflict; without
loss of generality let that player be player 1, i.e. F1(0) = 1. Given player 1’s strategy players 2 and 3
would randomize up to r23 = r32 < r31 = r13. Player 1’s payoff if he bids zero will be in the interval
(v13,v12) and he could strictly improve upon this by bidding r23 which would guarantee him a payoff of
v11− r23 = v11− r12 = v12.

Lemma 2 si = 0 for all i ∈ I, and for at least one player l ∈ I, Fl(0) = 0.

Proof Assume si > sl ≥ sm ≥ 0 for some i, l,m ∈ I. Any bid x ∈ [0,si) results in a loss with certainty.
Therefore, players l and m do not put mass anywhere over (0,si). Moreover, no player l or m can place
a mass point at si, because if two or more players had a mass point at si, then one could improve by
moving mass up, and if only one player had a mass point at si, then he would improve by moving the mass
down. Altogether players l and m do not put mass anywhere over (0,si], but then player i would improve
by moving mass down. This contradiction implies that there exist mutually different i, l,m ∈ I such that
si = sl ≥ sm ≥ 0. Assume that si = sl > sm ≥ 0 for some i, l,m ∈ I. It cannot be the case that both players,
i and l, have a mass point at si = sl (otherwise one could improve by moving mass up slightly), but then
at least one of them would win with probability arbitrarily close to zero in some neighborhood above si
and would be better off by moving mass down to zero. It follows that in equilibrium s1 = s2 = s3 = s. It
cannot be the case that all three players have a mass point at s otherwise a player could improve by moving
this mass up slightly. Therefore, at least one player loses with certainty at s. Altogether this shows that
s1 = s2 = s3 = 0.

Lemma 3 There are no mass points at x in any player’s equilibrium distribution ∀x ∈ (0, s̄].

Proof Suppose player i ∈ I has a mass point at x ∈ (0, s̄]. Since, from Lemma 2, Fl(x)> 0 for every l ∈ I,
for sufficiently small ε > 0 no player j 6= i would place mass in (x− ε,x] since that player could improve
his payoff by moving mass from that interval to infinitesimally above x. But then it is not optimal for i to
put mass at x.

Lemma 4 s̄1 = s̄3 > s̄2.

Proof Obviously, it cannot be the case that s̄i > s̄l ≥ s̄m for some i, l,m ∈ I, because player i would strictly
improve his payoff by moving mass from

( 1
2 (s̄l + s̄i), s̄i

]
down to 1

2 (s̄l + s̄i). Suppose, s̄1 = s̄2 = s̄3 = s̄> 0.
Since any bid b2 > r2 j of player 2 is strictly dominated by b2 = 0 it follows that s̄ ≤ r2 j . By Lemma 2,
si = 0 for all i ∈ I and at most two players may have a mass point at zero. Therefore, there exists a radical
player j, who is outbid with certainty when bidding zero and whose payoff from bidding zero is u∗j(0) =
αv j2 +(1−α)v jk for some α ∈ (0,1). By assumption r jk > r j2 which implies by definition that v jk < v j2.
Then, (by Lemma 2) player j’s expected equilibrium payoff would be u∗j < v j2. On the other hand, by
submitting a bid s̄+ε greater than s̄ player j would receive u∗j(s̄+ε) = v j j− s̄−ε ≥ v j j−r j2−ε = v j2−ε .
Therefore, by choosing ε > 0 small enough, he would improve his payoff. Thus, s̄1 = s̄2 = s̄3 cannot hold
true. By the same argument it cannot be the case that s̄ j < s̄2 = s̄k = s̄. Hence, s̄ j = s̄k > s̄2.

Lemma 5 s̄2 < r2 j, j ∈ {1,3}.

Proof By Lemma 4 player 2 loses with strictly positive probability at s̄2. Suppose s̄2 ≥ r2 j , then player 2’s
equilibrium payoff at s̄2 is

u∗2(s̄2,Fj,Fk) = [Fj(s̄2) ·Fk(s̄2)]v22 +
(
1− [Fj(s̄2) ·Fk(s̄2)]

)
v2 j− s̄2

≤ v2 j−
(
1− [Fj(s̄2) ·Fk(s̄2)]

)︸ ︷︷ ︸
>0 by Lemma 4

r2 j < v2 j.

This is a contradiction, because player 2 could guarantee himself a payoff of at least v2 j by bidding zero.

Lemma 6 Players j ∈ {1,3} earn expected equilibrium payoffs v j j− s̄.

Proof From Lemmas 3 and 4 players 1 and 3 must earn their expected equilibrium payoff at the upper
bound of the support of their mixed strategies, s̄, and neither has a mass point at s̄. Therefore, their expected
equilibrium payoff is u∗j = v j j− s̄.



Extremism Drives Out Moderation 17

Lemma 7 F1(x) = F3(x) for all x ∈ [s̄2, s̄].

Proof Notice that F2(x) = 1 for all x ∈ [s̄2, s̄], and F1(s̄) = F3(s̄) = 1. From Lemma 4, for x ∈ (s̄2, s̄]

u j(x,F2,Fk) = Fk(x)v j j +(1−Fk(x))v jk− x = v jk +Fk(x)r jk− x.

By Lemma 6 it follows that

v jk +Fk(x)r jk− x = v j j− s̄

⇔ Fk(x) = 1− s̄− x
r jk

and by Assumption 2 (symmetric inter-agent antagonism) follows that players j and k use identical strate-
gies Fj(x) = Fk(x) = 1− s̄−x

r jk
over the interval (s̄2, s̄]. If s̄2 > 0, then by Lemma 3 this holds over [s̄2, s̄]. If

s̄2 = 0 right-continuity of Fi, i ∈ I, implies F1(0) = F3(0).

Lemma 8 For any nondegenerate interval [t, t̄] ∈ [0, s̄] (t < t̄) there are at least two players, i, j ∈ I, such
that Fl(t̄)−Fl(t)> 0 for l = i, j.

Proof Suppose there is a t > t such that Fi(t)−Fi(t) = 0 for all i ∈ I, and let t̄ be the supremum over all t
with this property, i.e. define t̄ = sup{t > t : Fi(t)−Fi(t) = 0 for all i ∈ l}. Notice that by Lemma 2 t > 0.
Since t̄ > t ≥ 0 no player has a mass point at t̄ by Lemma 3. Let player i ∈ I and m, l ∈ I\{i}, then player
i’s payoff from a bid t̄ + ε is

ui(t̄ + ε,Fl ,Fm) =vii ·Fl(t̄ + ε)Fm(t̄ + ε)+ vil

∫ s̄

t̄+ε

Fm(y) fl(y)dy

+ vim

∫ s̄

t̄+ε

Fl(y) fm(y)dy− t̄− ε.

On the other hand player i’s payoff from bidding t is

ui(t,Fl ,Fm) = vii ·Fl(t)Fm(t)+ vil

∫ s̄

t
Fm(y) fl(y)dy+ vim

∫ s̄

t
Fl(y) fm(y)dy− t

= vii ·Fl(t̄)Fm(t̄)+ vil

∫ s̄

t̄
Fm(y) fl(y)dy+ vim

∫ s̄

t̄
Fl(y) fm(y)dy− t,

which is strictly greater than ui(t̄ + ε,Fl ,Fm) for ε > 0 sufficiently small. Thus, for small enough ε > 0
a player would improve his payoff by moving mass from [t̄, t̄ + ε] to t. Therefore, no t > t such that
Fi(t)−Fi(t) = 0 for all i ∈ I exists.

Suppose that there is only one player i ∈ I with Fi(t̄)−Fi(t)> 0, and denote the other two players by
l,m ∈ I\{i}. Note that for players p ∈ {l,m}, fp(t) = 0 for all t ∈ (t, t̄) and Fp(t) = Fp(t) = Fp(t̄) for all
t ∈ (t, t̄). Player i’s expected payoff from a bid t ∈ (t, t̄) is

ui(t,Fl ,Fm) = vii ·Fl(t)Fm(t)+ vil

∫ s̄

t
Fm(y) fl(y)dy+ vim

∫ s̄

t
Fl(y) fm(y)dy− t

= vii ·Fl(t)Fm(t)+ vil

∫ s̄

t
Fm(y) fl(y)dy+ vim

∫ s̄

t
Fl(y) fm(y)dy− t

< vii ·Fl(t)Fm(t)+ vil

∫ s̄

t
Fm(y) fl(y)dy+ vim

∫ s̄

t
Fl(y) fm(y)dy− t

= ui(t,Fl ,Fm).

Therefore, player i could improve his payoff by moving mass from the interval (t, t̄] to its lower bound t.

Lemma 9 F1(x) = F3(x) for all x ∈ [0, s̄].
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Proof If s̄2 = 0 then F1(x) = F3(x) for all x ∈ [0, s̄] by 7, thus we assume in the following that s̄2 > 0. For
any bid b j > 0 in the support of player j’s equilibrium strategy his expected payoff must be equal to v j j− s̄
(by Lemma 6). That is:13

v j j− s̄ =v j j ·
(
1− p{2 wins |b j}− p{k wins |b j}

)
+ v j2 · p{2 wins |b j}

+ v jk · p{k wins |b j}−b j

=v j j− r j2 · p{2 wins |b j}− r jk · p{k wins |b j}−b j

=v j j− r j2 ·
∫ s̄

b j

Fk(y) f2(y)dy− r jk ·
∫ s̄

b j

F2(y) fk(y)dy−b j

=v j j− r j2 ·
∫ s̄

b j

Fk(y) f2(y)dy

− r jk ·
(
[F2(y)Fk(y)]

s̄
b j
−
∫ s̄

b j

Fk(y) f2(y)dy
)
−b j

=v j j− (r j2− r jk) ·
∫ s̄

b j

Fk(y) f2(y)dy− r jk ·
(
1−F2(b j)Fk(b j)

)
−b j

⇔ s̄−b j =(r j2− r jk) ·
∫ s̄

b j

Fk(y) f2(y)dy+ r jk ·
(
1−F2(b j)Fk(b j)

)
Define α,β ,γ such that α ≡ r12 = r21 = r32 = r23, β ≡ r13 = r31, and γ = α−β . Note that α,β > 0 and
γ < 0. Then for any b j,bk ∈ (0, s̄]:

s̄−b j ≤ γ ·
∫ s̄

b j

Fk(s) f2(s)ds+β ·
(
1−F2(b j)Fk(b j)

)
, (A.1.1)

and

s̄−bk ≤ γ ·
∫ s̄

bk

Fj(s) f2(s)ds+β ·
(
1−F2(bk)Fj(bk)

)
, (A.1.2)

where equality must hold in A.1.1 for bids b j in the support of player j’s equilibrium strategy and in A.1.2
for bk in the support of player k’s equilibrium strategy.

By way of contradiction, assume that there exists some b0 > 0 such that F1(b0) 6= F3(b0). By Lemma
3 F1 and F3 are continuous everywhere on (0, s̄] and by Lemma 7 F1(s̄2) = F3(s̄2). This implies that either
there exists an interval [x,y]⊂ (0, s̄2] such that F1(x) = F3(x), F1(y) = F3(y), and F1(b) 6= F3(b)∀b ∈ (x,y),
or there exists x̄ > b0 such that F1(b) = F3(b) ∀b≥ x̄ and F1(b) 6= F3(b)∀b ∈ [0, x̄).

Suppose that [x,y] is an interval such that F1(x) = F3(x), F1(y) = F3(y), and F1(b) 6= F3(b)∀b ∈ (x,y).
We treat the following four cases separately:

1. x,y ∈ suppj ∩ suppk , where suppi denotes the support of player i’s equilibrium strategy. Without loss
of generality let Fj(b)> Fk(b) for all b ∈ (x,y). In this case by (A.1.1) and (A.1.2) at b = y

γ ·
∫ s̄

y
Fk(s) f2(s)ds+β · (1−F2(y)Fk(y)) = γ ·

∫ s̄

y
Fj(s) f2(s)ds+β ·

(
1−F2(y)Fj(y)

)
if and only if

γ ·
∫ s̄

y
(Fj(s)−Fk(s)) f2(s)ds = βF2(y) ·

(
Fj(y)−Fk(y)

)︸ ︷︷ ︸
=0

= 0

By definition γ < 0, hence ∫ s̄

y
(Fj(s)−Fk(s)) f2(s)ds = 0.

Similarly, at b = x ∫ s̄

x
(Fj(s)−Fk(s)) f2(s)ds = 0.

13 We let p{i wins |b j} denote the probability that player i wins conditional on the event that player j
bids b j .
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Then, by

∫ s̄

x
(Fj(s)−Fk(s)) f2(s)ds =

∫ y

x
(Fj(s)−Fk(s)) f2(s)ds+

∫ s̄

y
(Fj(s)−Fk(s)) f2(s)ds

follows that ∫ y

x
(Fj(s)−Fk(s)) f2(s)ds = 0.

If f2(s)> 0 for any s ∈ (x,y) this contradicts Fj(s)> Fk(s)∀s ∈ (x,y).
If f2(s) = 0 for all s ∈ (x,y), then by Lemma 8 [x,y] ∈ supp j ∩ suppk and F2(x) = F2(y). In this case
(A.1.1) and (A.1.2) simplify to

s̄−b j = γ ·
∫ s̄

y
Fk(s) f2(s)ds+β ·

(
1−F2(y)Fk(b j)

)
, and

s̄−bk = γ ·
∫ s̄

y
Fj(s) f2(s)ds+β ·

(
1−F2(y)Fj(bk)

)
respectively for all b j,bk ∈ (x,y). Notice that in both expressions the integral is constant in the player’s
own bid. Since Fj and Fk coincide at x and y,

∫ s̄
y Fk(s) f2(s)ds =

∫ s̄
y Fj(s) f2(s)ds. This shows that

Fj(b) = Fk(b) ∀b ∈ (x,y), which contradicts our assumption.
2. y ∈ suppj ∩ suppk,x ∈ suppj\suppk.

Then by (A.1.1) and (A.1.2) at b = x

γ ·
∫ s̄

x
Fk(s) f2(s)ds+β · (1−F2(x)Fk(x))≤ γ ·

∫ s̄

x
Fj(s) f2(s)ds+β ·

(
1−F2(x)Fj(x)

)
⇔ γ ·

∫ s̄

x
(Fk(s)−Fj(s)) f2(s)ds≤ βF2(x) ·

(
Fk(x)−Fj(x)

)︸ ︷︷ ︸
=0

= 0

By definition γ < 0, hence ∫ s̄

x
(Fk(s)−Fj(s)) f2(s)ds≥ 0.

If f2(s) > 0 for any s ∈ (x,y) this implies Fj(s) < Fk(s), because by assumption Fj(b) 6= Fk(b)∀b ∈
(x,y) and by Lemma 3 (no mass points) Fj and Fk are continuous. By assumption x 6∈ suppk . So there
exists an ε > 0 such that Fk(x+δ ) = Fk(x) for all δ such that 0 < δ < ε. But then

Fj(x+δ )< Fk(x+δ ) = Fk(x) = Fj(x),

which is a contradiction, because Fj is a cumulative distribution function and as such is non-decreasing.
If f2(s) = 0∀s ∈ (x,y), then from Lemma 8 [x,y]⊆ supp j ∩ suppk , a contradiction to the assumption
x 6∈ suppk .

3. x ∈ suppj ∩ suppk,y ∈ suppj\suppk.
By (A.1.1) and (A.1.2) at b = y

γ ·
∫ s̄

y
Fk(s) f2(s)ds+β · (1−F2(y)Fk(y))≤ γ ·

∫ s̄

y
Fj(s) f2(s)ds+β ·

(
1−F2(y)Fj(y)

)
⇔ γ ·

∫ s̄

y
(Fk(s)−Fj(s)) f2(s)ds≤ βF2(y) ·

(
Fk(y)−Fj(y)

)︸ ︷︷ ︸
=0

= 0

By definition γ < 0, hence ∫ s̄

y
(Fk(s)−Fj(s)) f2(s)ds≥ 0.
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By (A.1.1) and (A.1.2) at b = x

γ ·
∫ s̄

x
Fk(s) f2(s)ds+β · (1−F2(x)Fk(x))

= γ ·
∫ s̄

x
Fj(s) f2(s)ds+β ·

(
1−F2(x)Fj(x)

)
⇔ γ ·

∫ s̄

x
(Fj(s)−Fk(s)) f2(s)ds = βF2(x) ·

(
Fj(x)−Fk(x)

)︸ ︷︷ ︸
=0

= 0.

γ < 0, hence ∫ y

x
(Fj(s)−Fk(s)) f2(s)ds+

∫ s̄

y
(Fj(s)−Fk(s)) f2(s)ds︸ ︷︷ ︸

≤0

= 0

⇒
∫ y

x
(Fj(s)−Fk(s)) f2(s)ds≥ 0

If f2(s)> 0 for any s∈ (x,y), then this implies Fj(s)≥Fk(s). By assumption, Fj(b) 6=Fk(b)∀b∈ (x,y),
thus Fj(b) > Fk(b)∀b ∈ (x,y). By assumption y 6∈ suppk . Hence, there exists an ε > 0 such that
Fk(y−δ ) = Fk(y)∀0 < δ < ε. But then

Fj(y−δ )> Fk(y−δ ) = Fk(y) = Fj(y),

a contradiction to the fact that Fj is a cumulative distribution function and as such is non-decreasing.
If f2(s) = 0∀s ∈ (x,y), then from Lemma 8 [x,y]⊆ supp j ∩ suppk , a contradiction to the assumption
y 6∈ suppk .

4. x ∈ suppj\suppk,y ∈ suppk\suppj.
By (A.1.1) and (A.1.2) at b = x

γ ·
∫ s̄

x
Fk(s) f2(s)ds+β · (1−F2(x)Fk(x))≤ γ ·

∫ s̄

x
Fj(s) f2(s)ds+β ·

(
1−F2(x)Fj(x)

)
⇔ γ ·

∫ s̄

x
(Fk(s)−Fj(s)) f2(s)ds≤ βF2(x) ·

(
Fk(x)−Fj(x)

)︸ ︷︷ ︸
=0

= 0

By definition γ < 0, hence ∫ s̄

x
(Fk(s)−Fj(s)) f2(s)ds≥ 0.

A similar argument shows that at b = y∫ s̄

y
(Fk(s)−Fj(s)) f2(s)ds≤ 0.

Consequently,

0≤
∫ s̄

x
(Fk(s)−Fj(s)) f2(s)ds

=
∫ y

x
(Fk(s)−Fj(s)) f2(s)ds+

∫ s̄

y
(Fk(s)−Fj(s)) f2(s)ds︸ ︷︷ ︸

≤0

⇒
∫ y

x
(Fk(s)−Fj(s)) f2(s)ds≥ 0.

If f2(s)> 0 for any s∈ (x,y), then this implies Fk(s)≥Fj(s). By assumption Fj(b) 6=Fk(b)∀b∈ (x,y),
thus Fk(b) > Fj(b)∀b ∈ (x,y). By assumption x 6∈ suppk . Hence, there exists an ε > 0 such that
Fk(x+δ ) = Fk(x)∀0 < δ < ε. But then

Fj(x+δ )< Fk(x+δ ) = Fk(x) = Fj(x),
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a contradiction to the fact that Fj is a cumulative distribution function and as such is non-decreasing.
If f2(s) = 0∀s ∈ (x,y), then from Lemma 8 [x,y]⊆ supp j ∩ suppk , a contradiction to the assumption
x 6∈ suppk,y 6∈ supp j .

Taking these four possible cases together, there cannot exist any interval [x,y] with F1(x) = F3(x), F1(y) =
F3(y), and F1(b) 6= F3(b)∀b ∈ (x,y).

Assume now that there exists an x̄ > b0 such that Fj(b) = Fk(b)∀b≥ x̄ and Fj(b)> Fk(b),∀b ∈ [0, x̄).
Players 1 and 3 must earn their equilibrium payoff at (or arbitrarily close to) zero, so by (A.1.1) and (A.1.2)

γ ·
∫ s̄

0
Fk(s) f2(s)ds+β · (1−F2(0)Fk(0)) = γ ·

∫ s̄

0
Fj(s) f2(s)ds+β ·

(
1−F2(0)Fj(0)

)
⇔ γ ·

∫ s̄

0
(Fj(s)−Fk(s)) f2(s)ds−βF2(0)

[
Fj(0)−Fk(0)

]
= 0

⇔ γ ·
∫ x̄

0
(Fj(s)−Fk(s))︸ ︷︷ ︸

>0

f2(s)ds+ γ ·
∫ s̄

x̄
(Fj(s)−Fk(s))︸ ︷︷ ︸

=0

f2(s)ds−βF2(0)
[
Fj(0)−Fk(0)

]︸ ︷︷ ︸
>0

= 0 (A.1.3)

If f2(s) = 0 for all s ∈ (0, x̄), then (A.1.3) simplifies to

−βF2(0)
[
Fj(0)−Fk(0)

]︸ ︷︷ ︸
>0

= 0.

This implies F2(0) = 0, which is a contradiction, because Lemma 2 and f2(s) = 0 for all s ∈ (0, x̄) imply
F2(0)> 0.

If f2(s)> 0 for some s ∈ (0, x̄), then β > 0 and γ < 0 imply that

γ ·
∫ x̄

0
(Fj(s)−Fk(s)) f2(s)ds︸ ︷︷ ︸

<0

−βF2(0)
[
Fj(0)−Fk(0)

]︸ ︷︷ ︸
≥0

< 0,

a contradiction to (A.1.3). Consequently, there can exists no b0 > 0 such that F1(b0) 6= F3(b0).

Lemma 10 F ≡ F1 = F3 first order stochastically dominates F2.

Proof If s̄2 = 0, then F2(x) = 1∀x≥ 0. Hence, F first order stochastically dominates F2.
Therefore, assume in the following that s̄2 > 0. By way of contradiction assume that there exists some

b0 ∈ [0, s̄2) such that F2(b0)< F(b0). Note that by Lemmas 8 and 9 supp j = [0, s̄], j ∈ {1,3}. Furthermore,
by Lemma 4 F2(s̄2) > F(s̄2) and by Lemma 3 no player’s equilibrium strategy has a mass point at any
strictly positive bid. Then, there must exist an interval [t, t̄ ] ⊆ (0, s̄2] such that [t, t̄ ] ⊆

⋂
i∈I suppi, F2(t) <

F(t), and F2(t̄) > F(t̄). [t, t̄ ] ⊆ supp2. Therefore, player 2 must earn his expected equilibrium payoff at
any bid x ∈ [t, t̄ ]; that is, for every x ∈ [t, t̄ ]

u∗2(x,F,F) = v22[F(x)]2 + v2 j
(
1− [F(x)]2

)
− x

= v2 j +α[F(x)]2− x

= v2 j +α[F(0)]2,

where the last equality follows from Lemma 2. Hence,

F(x) =
(
[F(0)]2 +

x
α

) 1
2 for all x ∈ [t, t̄ ]. (A.1.4)

Similarly, [t, t̄ ] ⊆ supp j, j ∈ {1,3}, implies that player j, j ∈ {1,3}, must earn his expected equilibrium
payoff at any bid x ∈ [t, t̄ ]. Player j’s expected payoff from a bid, x ∈ [t, t̄ ], is

u∗j(x,F2,F) = v jk− γ

∫ s̄2

x
f2(s)F(s)ds+βF(x)F2(x)− x.

Player j’s payoff must be constant on [t, t̄], that is,

du∗j(x)

dx
= γF ′2(x)F(x)+β

(
F ′2(x)F(x)+F2(x)F ′(x)

)
−1 = 0 for all x ∈ [t, t̄ ].
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This yields the following linear first order differential equation, which must hold for all x ∈ [t, t̄ ]

F ′2(x)F(x)α +F2(x)F ′(x)β = 1. (A.1.5)

Since F takes the form described in (A.1.4), the solution to (A.1.5) is

F2(x) =
2α

α +β
F(x)+ c · [F(x)]−

β

α ,

where c ∈R is a constant of integration.
By assumption β > α , thus there exists a δ > 0 such that β = (1+δ )α and we can write

F2(x) =
2

2+δ︸ ︷︷ ︸
<1

F(x)+ c · [F(x)]−(1+δ )︸ ︷︷ ︸
>0

(A.1.6)

By differentiating (A.1.6) we obtain

F ′2(x) =
2

2+δ
F ′(x)− c · (1+δ )︸ ︷︷ ︸

>0

F ′(x)︸ ︷︷ ︸
>0

[F(x)]−(2+δ )︸ ︷︷ ︸
>0

. (A.1.7)

Suppose F(t̄)< F2(t̄), then by continuity of the equilibrium strategies (Lemma 3) F(t̄−ε)< F2(t̄−ε) for
sufficiently small ε > 0. Considering x = t̄− ε in (A.1.6) yields the necessary condition c > 0. Using this
in (A.1.7) shows that F ′2(x) < F ′(x) for x ∈ [t, t̄]. Hence, F(t) < F2(t), a contradiction to the assumption
that F(t) > F2(t). Therefore, there exists no point b0 ∈ [0, s̄2] such that F2(b0) < F(b0), and F first order
stochastically dominates F2.

Lemma 11 F2(x) = 1 for all x≥ 0

Proof Lemmas 2, 9, and 10 together imply F(0) = 0, hence by Lemma 2 player 2’s expected payoff in
equilibrium is v2 j . By way of contradiction assume that s̄2 > 0. Then, by the same argument as in the

proof of Lemma 10 equation (A.1.6) must hold at every x ∈ supp2 with F(x) =
( x

α

) 1
2 . Player 2 may not

randomize over strictly positive bids arbitrarily close to zero. Indeed, if such randomization did occur,
because all players’ equilibrium strategies are continuous over (0, s̄] by Lemma 3, F(0) = 0 and therefore

lim
ε→0

F(ε)−(1+δ ) = ∞,

and F2(0)< 1 (under the assumption that s̄2 > 0), then (A.1.6) would imply that c = 0, which is a contra-
diction to Lemma 10. Given that player 2 does not randomize over strictly positive bids arbitrarily close
to zero, there exists a t > 0 such that t = inf{t > 0 |t ∈ supp2}. Then, F2(t) = F2(0). By (A.1.1) player j’s
expected payoff from a bid x ∈ (0, t] is

u∗j(x,F2,F) = v j j− γ

∫ s̄

x
F(y) f2(y)dy−β (1−F2(0)F(x))− x.

x ∈ (0, t] is a best response for player j therefore u∗j(x,F2,F) must be constant over (0, t]. It follows that
F ′(x) = 1

F2(0)β
for x ∈ (0, t]. From F(0) = 0 follows that players 1 and 3 randomize uniformly over [0, t]

according to

F(x) =
x

F2(0)β
, x ∈ [0, t].

Continuity of F at t yields
t

F2(0)β
=
( t

α

) 1
2 ⇔ t =

β 2

α
· [F2(0)]2.

Consequently,
F(t) = (1+δ )F2(0).
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Using this and F2(t) = F2(0) in (A.1.6) yields

F2(0) = F2(t)

=
2

2+δ
F(t)+ c · [F(t)]−(1+δ )

=
2

2+δ
(1+δ )F2(0)+ c · [(1+δ )F2(0)]−(1+δ ),

which implies

c =
(
− δ

2+δ
F2(0)

)
[(1+δ )F2(0)]

1+δ ≤ 0.

This contradicts Lemma 10; therefore s̄2 = 0.

Altogether, this shows that player 2 stays out of the conflict in equilibrium. Hence, the equilibrium
described in Proposition 1 is the unique equilibrium of Γ21.

B Proof of Proposition 5

Proof Under the assumption that all three players make positive bids with strictly positive probability
and players 1 and 3 use identical strategies, i.e. F1 = F3 =: F , we know that s1 = s2 = s3 = 0 and s̄2 =
s̄1 = s̄3 =: s̄. Moreover, s̄ ∈ (r jk,r2 j), j,k ∈ {1,3}, j 6= k, and player 2 cannot have a masspoint at zero.
Assume that all players randomize continuously over [0, s̄]. All players must earn their equilibrium payoff
at s̄, therefore player 2’s expected payoff from a bid b ∈ (0, s̄], u2(b,F) = v22[F(b)]2 + v2i(1− [F(b)]2),
must be v22− s̄. This yields

F(x) =


0 x < 0[(

1− s̄
r2 j

)
+ x

r2 j

] 1
2 0≤ x≤ s̄

1 x > s̄

.

Player j’s payoff must be v j j− s̄. Moreover, player j chooses his equilibrium strategy such that his expected
payoff, u j(b,F2,F) =−b+v j2+[v j j−v j2]F(b)F2(b)+[v jk−v j2]

∫ s̄
b F2(s)F ′(s)ds, is maximized. The first

order condition yields the first order differential equation

0 = F(x)F ′2(x)r j2 +F ′(x)F2(x)r jk−1.

Using the boundary conditions F2(0) = 0 and F2(s̄) = 1 this yields

F2(x) = κF(x)− (κ−1)F(x)
−

r jk
r j2

with κ =
2r j2

r j2+r jk
> 1 and s̄ = r j2

[
1−
(
1− 1

κ

)κ
]
. Note that s̄ ∈ (r jk,r j2) and F2 is strictly increasing.

In order to show that this equilibrium exhibits extremism, we need to show that F2(x)≤ F(x)∀x. All
players’ cdfs coincide for x < 0 and x ≥ x̄. The centrist players put strictly positive mass on zero, thus
F2(0)< F(0). For x ∈ (0, x̄),

F2(x) = κF(x)− (κ−1)F(x)−
r13
r12 = F(x)

[
κ− (κ−1)

>1︷ ︸︸ ︷
F(x)−

(
1+ r13

r12

)]
︸ ︷︷ ︸

<κ−(κ−1)=1

< F(x).

Therefore, F2 first order stochastically dominates F .
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