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Abstract

In this paper, we generalize the General Lotto game (budget constraints satisfied

in expectation) and the Colonel Blotto game (budget constraints hold with probability

one) to allow for battlefield valuations that are heterogeneous across battlefields and

asymmetric across players, and for the players to have asymmetric resource constraints.

We completely characterize Nash equilibrium in the generalized version of the General

Lotto game and then show how this characterization can be applied to identify equi-

libria in the Colonel Blotto version of the game. In both games, we find that there

exist sets of non-pathological parameter configurations of positive Lebesgue measure

with multiple payoff nonequivalent equilibria.
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1 Introduction

The Colonel Blotto game is a two-player resource allocation game in which each player is

endowed with a level of a resource to allocate across a set of battlefields, within each battle-

field the player that allocates the higher level of the resource wins the battlefield, and each

player’s payoff is the sum of the valuations of the battlefields won. This simple game, which

originates with Borel (1921), illustrates some of the fundamental strategic considerations

that arise in conflicts or competition involving multi-dimensional resource allocation such as

political campaigns, research and development competition (where innovation may involve

obtaining a collection of interrelated patents), and military and systems defense.

In this paper, we examine generalized formulations of the General Lotto (budget con-

straints hold in expectation) and Colonel Blotto (budget constraints hold with probability

one) games in which battlefield (or component contest) valuations may be heterogeneous

across battlefields and asymmetric across players, and the players may face asymmetric

resource constraints.1 We completely characterize Nash equilibrium in the General Lotto

game. This generalizes the symmetric resource constraint versions of the General Lotto

game examined in Bell and Cover (1980), Myerson (1993), Sahuguet and Persico (2006),

and Hart (2008), where the valuation in the single battlefield2 is symmetric across players,

as well as Kovenock and Roberson (2008) and Washburn (2013), in which battlefield valu-

ations are heterogeneous across battlefields but symmetric across players.3 We then show

how this characterization can be applied over a subset of the parameter space to identify

equilibria in generalizations of the Colonel Blotto game (in which budget constraints hold

with probability one) that have hitherto been unexplored.

In contrast to existing constant-sum formulations of the General Lotto and Colonel Blotto

games, we find that uniqueness of the Nash equilibrium sets of univariate marginal distri-

1Other notable formulations of Blotto-type games include Friedman (1958), which introduces a version
of the game with the lottery contest success function (see also Robson (2005)), and Hart (2008) which
introduces a version of the game in which resource allocations are restricted to be nonnegative integers (see
also Hortala-Vallve and Llorente-Saguer (2012) and Dziubiński (2013)).

2The models in these papers may either be interpreted as having a single battlefield, where each player’s
allocation of the resource to this battlefield is drawn from his univariate distribution function that is budget
balancing on average, or as a continuum of homogeneous battlefields, where each point in the support of
a player’s univariate distribution function represents an allocation of the resource to a battlefield and the
budget constraint is on the average resource allocation. In this paper, we focus on the first interpretation.

3Following Myerson (1993), the General Lotto game has become a benchmark model of redistributive
politics. Related political economy applications include Lizzeri and Persico (2001, 2005), Sahuguet and
Persico (2006), Roberson (2008), and Crutzen and Sahuguet (2009). See also Laslier and Picard (2002) for
a similar application of the Colonel Blotto game.
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butions does not extend to the generalized (non-constant-sum) versions of the games ex-

amined here. We also show that in the generalized versions of both the General Lotto and

Colonel Blotto games there exist sets of non-pathological parameter configurations of positive

Lebesgue measure with multiple payoff nonequivalent equilibria.

To provide intuition for why multiple payoff nonequivalent equilibria arise, consider a

single all-pay auction in which one player, A, has a low valuation vA and one player B has

a high valuation vB, i.e. vB > vA. It is well known that in the unique Nash equilibrium4

B’s expected payoff is vB − vA and A’s expected payoff is 0. Now suppose vB decreases and

vA increases maintaining the inequality vB ≥ vA. In this case, the contest becomes more

competitive, which results in higher equilibrium expenditures for both players and a lower

equilibrium expected payoff for the high valuation player (B). In the General Lotto game,

the two players A and B each have a (normalized) value for each battlefield j, vi,j > 0, where∑n
j=1 vi,j = 1 for each player i = A,B. The players are also resource constrained, where the

expectation of player i’s total expenditure across battlefields must be less than or equal to

Xi, for i = A,B, and player B is assumed to have a resource advantage, XB ≥ XA > 0.

Given an equilibrium mixed strategy of the rival player, the budget constrained optimization

problem of player i yields a Lagrange multiplier λi – the shadow value of an increment to i’s

budget – that serves as a unit cost to an incremental allocation to each battlefield j. Player i

maximizes his payoff by acting as if he is playing in an all-pay auction in each battlefield with

constant unit cost equal to the multiplier λi. Because of invariance of behavior with respect

to affine transformations of utility, this implies that, in an equilibrium generating the pair of

player multipliers (λA, λB), the two players A and B behave in battlefield j as as if they are

engaged in an all-pay auction with constant unit cost equal to one and valuations
vA,j
λA

and
vB,j
λB
, respectively. In this all-pay auction, player A has a higher valuation than player B if

vA,j
vB,j

> λA
λB
≡ γ and B has a higher value than A if the inequality is reversed. This implies that

in each equilibrium of the General Lotto game there exists a cut point, γ, equal to the ratio

of the two multipliers λA and λB induced by the equilibrium, such that for each battlefield j

with γ >
vA,j
vB,j

player B utilizes a strategy similar to that of the high valuation player in the

all-pay auction and player A utilizes a strategy similar to that of the low valuation player in

the all-pay auction. Similarly, for each battlefield j with
vA,j
vB,j

> γ, the roles are reversed with

player A being the high valuation player and B being the low valuation player. Multiple

equilibria arise in this setting because there exist multiple pairs of shadow values (λA, λB),

or alternatively cut points γ, that generate budget-balancing strategies that are mutual best

4See Baye, Kovenock and de Vries (1996) for further details.
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responses and therefore form an equilibrium. In moving across equilibria, as γ increases the

set of battlefields for which
vA,j
vB,j

> γ (weakly) shrinks. Furthermore, in the remaining set of

battlefields for which
vA,j
vB,j

> γ each battlefield becomes more competitive, thereby increasing

both players’ expected expenditures in those battlefields and lowering player A’s expected

payoff for those battlefields. Conversely, each battlefield j with γ >
vA,j
vB,j

becomes less

competitive as γ increases, thereby decreasing both players’ expected expenditures in those

battlefields and increasing player B’s expected payoff across such battlefields. Therefore, in

moving from an equilibrium in which λA
λB

= γ to an equilibrium in which λA
λB

= γ′ > γ , the

increased allocation to battlefields j with higher values of
vA,j
vB,j

exactly offsets the reduced

allocation to battlefields with lower values of
vA,j
vB,j

, so that budget balance holds.

When battlefield valuations are homogeneous across battlefields and symmetric across

players, it is known that for sufficiently asymmetric resource endowments the relationship

between the equilibria in the General Lotto and Colonel Blotto games breaks down.5 In

Figure 1, the dashed line illustrates the (resource endowment) weak player A’s maximal

expected proportion of battlefields won in the General Lotto game with n battlefields, and the

solid curve is the weak player’s expected proportion of battlefields won in the corresponding

Colonel Blotto game, both as a function of the ratio of the weak player’s and the strong

player’s budgets (XA
XB

). Note that the point of departure between the weak player’s expected

payoffs in the General Lotto game and those arising in the Colonel Blotto game occurs at

a ratio XA
XB

= 2
n
. As the ratio of the weak player’s budget to the strong player’s budget

(XA
XB

) decreases the weak player focuses his resources in smaller and smaller random subsets

of battlefields. When the ratio XA
XB

is less than or equal to 2
n
, the fact that budgets bind

with certainty in the Colonel Blotto game results in a situation in which the weak player

has exhausted his ability to shrink the size of the subset of battlefields in which he focuses

his resources. This binding constraint is what causes the weak player’s expected payoffs to

decrease below the dashed line. Furthermore, once XA
XB

is less than 1
n
, the strong player has

the ability to outbid the weak player on each and every battlefield. This issue arises because,

with sufficiently asymmetric resource endowments, the Colonel Blotto game’s binding budget

constraint makes it infeasible for the weak player to play a multi-dimensional mixed strategy

that is budget-balancing with certainty and that provides the same set of univariate marginals

as in the corresponding General Lotto game in which the budget only holds in expectation.

For the generalized version of the Colonel Blotto game examined in this paper, we provide

5For asymmetric resource endowments, the characterization of the equilibrium payoffs in the General
Lotto game is due Sahuguet and Persico (2006) and for the Colonel Blotto game is due to Roberson (2006).
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Figure 1: The weak player A’s equilibrium expected payoff in the General Lotto (dashed
line) and Colonel Blotto (solid line) games as a function of the ratio of the weak player’s

resource endowment (XA) to the strong player’s resource endowment (XB)
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a sufficient condition for the existence of an equilibrium in which each player’s univariate

marginal distributions coincide with those of an equilibrium in the corresponding General

Lotto version of the game and a sufficient condition for the equilibrium sets of univariate

marginal distributions in the two versions of the game to differ across all equilibria. Because

the battlefield valuations may be heterogeneous across battlefields and asymmetric across

players, this condition involves the players’ resource endowments, as well as their n-tuples

of battlefield valuations. Furthermore, equilibrium univariate marginal distributions in the

Colonel Blotto and General Lotto games may differ in the case of symmetric resource en-

dowments, if the players have sufficiently different battlefield valuation n-tuples. That is,

asymmetries in players’ valuations alone may be sufficient for the equilibria in the Colonel

Blotto and General Lotto games to differ.

Table 1 summarizes the branch of the Colonel Blotto literature that assumes an auction

contest success function, a finite number of battlefields, resource endowments that are contin-

uously divisible and are use-it-or-lose-it in the sense that unused resources have no value (i.e.

the per unit cost of allocating the resource is 0 up to the budget constraint),6 and that each

player’s payoff is the sum of the battlefield valuations in the battlefields won.7 The type of

player objective varies across rows and the cost structure varies across columns. In describing

the type of player objective, linear pure count refers to games in which each player’s payoff is

the sum of the battlefield valuations in the battlefields won, where battlefield valuations are

homogeneous across battlefields and symmetric across players, so that each player’s payoff

is linear in the number, or pure count, of battlefields won. Linear heterogeneous symmet-

ric (asymmetric) is similar, except that battlefield valuations are now heterogeneous across

battlefields but symmetric (asymmetric) across players, and each player’s payoff is equal to

the sum of the player’s valuations in the battlefields won.

As shown in Table 1, this paper provides a partial result for each of the three checked

cells: linear heterogeneous symmetric objective with asymmetric budget constraints, and

linear heterogeneous asymmetric objective with both symmetric and asymmetric budget

constraints. Section 4 provides a detailed discussion of the literature in Table 1, including

a discussion of the relationship between the equilibrium joint distributions that have been

constructed for those formulations and the distributions that we utilize in our analysis of

the Generalized Colonel Blotto game. As a point of reference, Table 1 also includes the

6For alternative cost functions see Kvasov (2007) and Roberson and Kvasov (2012).
7For alternative definitions of success see Szentes and Rosenthal (2003a, 2003b), Golman and Page (2009),

Kovenock and Roberson (2010), Tang, Shoham, and Lin (2010), Rinott, Scarsini, and Yu (2012), and Barelli,
Govindan, and Wilson (2014).
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Costs → Symmetric Budget Asymmetric Budget
Objective ↓ Use-it-or-lose-it Resources Use-it-or-lose-it Resources

Linear Pure-Count Continuous Continuous
Borel & Ville (1938) [n = 3] Gross & Wagner (1950) [n = 2]
Gross & Wagner (1950) [n ≥ 2] Roberson (2006) [n ≥ 3]
Weinstein (2012) [n ≥ 3] Macdonell & Mastronardi (2015) [n = 2]
Discrete Discrete
Hart (2008) Hart (2008) [partial result]

Linear Heterogeneous Continuous Continuous
Symmetric Gross (1950) Gross & Wagner (1950) [n = 2]

Laslier (2002) X
Thomas (2012) [partial result]
Discrete Schwartz et al. (2014) [n ≥ 3]
Hortala-Vallve & [partial result]
Llorente-Saguer (2012) Macdonell & Mastronardi (2015) [n = 2]
[partial result]

Linear Heterogeneous Continuous Continuous
Asymmetric X X

[partial result] [partial result]
Discrete
Hortala-Vallve &
Llorente-Saguer (2012)
[partial result]

Table 1: Blotto game variations with linear count objectives and use-it-or-lose-it resources

7



corresponding results for the discrete version of the Colonel Blotto game (in which the

feasible sets of bids of the players are discrete). Lastly, the case of n = 2 places a severe

restriction on the set of available joint distributions, which leads to a distinct set of strategic

considerations. For both symmetric and asymmetric budgets and both homogeneous and

heterogeneous (symmetric) battlefield valuations, the case of n = 2 was first examined in

Gross and Wagner (1950). Macdonell and Mastronardi (2015) complete the characterization

for the case of n = 2 and provide a characterization of equilibrium in a version of the

heterogeneous (symmetric) battlefield valuation game with nonlinear asymmetric budgets.

The rest of the paper is organized as follows. In section 2 we provide a description of

the General Lotto model. Section 3 provides the results for the General Lotto game and

an example of multiple payoff nonequivalent equilibria. Section 4 examines the Generalized

Colonel Blotto game and the relationship between our results and the existing literature.

Section 5 concludes.

2 The Model

Two players, A and B, simultaneously allocate a resource across a finite number, n ≥ 3, of

independent battlefields. Battlefield j has a (normalized) value of vi,j > 0, where
∑n

j=1 vi,j =

1, for player i = A,B. Each player has a fixed level of the available resource (or budget),

Xi for i = A,B. Let XB ≥ XA > 0, and let xi denote player i’s allocation of the resource

(xi,1, . . . , xi,j, . . . , xi,n) across the n-battlefields. In each battlefield the player with the higher

resource expenditure wins, and in the event of a tie8 each player wins the battlefield with

probability 1
2
.

In each battlefield j the payoff to player i for a resource expenditure of xi,j is given by

πi,j (xi,j, x−i,j) =





vi,j if xi,j > x−i,j
vi,j
2

if xi,j = x−i,j

0 if xi,j < x−i,j

Each player’s payoff across all n battlefields is the sum of the payoffs across the individual

8The choice of tie-breaking rule is not critical for any of our results. This is generally true in the General
Lotto game and is true for the corresponding parameter ranges covered in our treatment of the Colonel
Blotto game. More generally, in the Colonel Blotto game the choice of a tie-breaking rule is important for
the parameter range in which the correspondence between General Lotto and Colonel Blotto breaks down.
In this range, the tie-breaking rule in the Colonel Blotto game must be chosen judiciously in order to avoid
the need for ε-equilibrium arguments. See Roberson (2006).
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battlefields.

We now define the Generalized Colonel Blotto and General Lotto games.

The Generalized Colonel Blotto Game

The level of the resource allocated to each battlefield must be nonnegative. For player i, the

set of feasible resource allocations across the n battlefields is denoted by

Bi =

{
x ∈ Rn

+

∣∣∣∣
n∑

j=1

xi,j ≤ Xi

}
.

A mixed strategy, which we term a distribution of resources, for player i is an n-variate

distribution function Pi : Rn
+ → [0, 1] with support (denoted Supp(Pi)) contained in player

i’s set of feasible bids Bi and with one-dimensional marginal distribution functions {Fi,j}nj=1,

one univariate marginal distribution function for each battlefield j. Player i’s allocation of the

resource across the n battlefields is a random n-tuple drawn from the n-variate distribution

function Pi.

The Generalized Colonel Blotto game, which we label

CB
{
XA, XB, n, {vA,j, vB,j}nj=1

}
,

is the one-shot game in which players compete by simultaneously announcing distributions

of the resource subject to their budget constraints, each battlefield is won by the player that

allocates the higher level of the resource to that battlefield (where in the case of a tie the

tie-breaking rule described above applies), and each player’s payoff is the sum of the values

of the individual battlefields that he wins.

The Generalized General Lotto Game

In the Generalized General Lotto game, a mixed strategy for player i is still an n-variate

distribution function Pi : Rn
+ → [0, 1] with one-dimensional marginal distribution functions

{Fi,j}nj=1, one univariate marginal distribution function for each battlefield j. And, the level

of the resource allocated to each battlefield must be nonnegative, Fi,j(x) = 0 for all x < 0.

The General Lotto game differs from the Colonel Blotto game in that each player i’s budget

must hold in expectation,
∑n

j=1 EFi,j(x) ≤ Xi.
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The Generalized General Lotto game, which we label

GL
{
XA, XB, n, {vA,j, vB,j}nj=1

}
,

is the one-shot game in which players compete by simultaneously announcing distributions

of the resource subject to their budget constraints, each battlefield is won by the player that

allocates the higher level of the resource to that battlefield (where in the case of a tie the

tie-breaking rule described above applies), and each player’s payoff is the sum of the values

of the individual battlefields that he wins.

3 Generalized General Lotto Results

In order to provide intuition for our main results, we begin this section with a few informal

insights regarding the necessary conditions for equilibrium in the Generalized General Lotto

game. First, note that any joint distribution may be broken into a set of univariate marginal

distribution functions and an n-copula, the function that maps the univariate marginal dis-

tribution functions into a joint distribution function.9 Given that player −i’s strategy is

given by the n-variate distribution function P−i with the set of univariate marginal distri-

bution functions {F−i,j}nj=1, note that player i’s expected payoff10 for any feasible n-variate

distribution function Pi with the set of univariate marginal distribution functions {Fi,j}nj=1

is

πi
(
{Fi,j, F−i,j}nj=1

)
=

n∑

j=1

[∫ ∞

0

vi,jF−i,j (xi,j) dFi,j

]
. (1)

Recalling that the budget constraint holds in expectation, player i’s constrained optimization

problem may be written as

max
{{Fi,j}nj=1}

n∑

j=1

[∫ ∞

0

[vi,jF−i,j (xi,j)− λixi,j] dFi,j
]

+ λiXi, (2)

where λi is the multiplier on player i’s expected resource expenditure constraint. Note that

for the Generalized General Lotto game both the expected payoff in (1) and the budget

constraint depend on only the sets of univariate marginal distribution functions and not the

joint distribution function. That is, in the Generalized General Lotto game, any n-copula

9See Nelsen (1999) or Schweizer and Sklar (1983) for an introduction to copulas.
10This expression is for the case in which none of player −i’s univariate marginal distributions contains a

mass point.
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may be used to map a set of equilibrium univariate marginal distribution functions into

an equilibrium joint distribution function. However, because the budget constraint in the

Generalized Colonel Blotto game holds with probability one, the choice of a set of univariate

marginal distribution functions is constrained in the sense that there must exist an n-copula

for which the resulting joint distribution is budget-balancing with probability one. We will

return to this issue in Section 4.

For each j = 1, . . . , n the corresponding first-order condition provides a necessary condi-

tion for equilibrium and is given by

d

dxi,j
[vi,jF−i,j (xi,j)− λixi,j] = 0. (3)

Dividing both sides of (3) by λi > 0, we see that (3) is equivalent to the necessary condition

for a single all-pay auction, without a budget constraint, and in which player i’s value for

the prize is
vi,j
λi

. In such an all-pay auction, the unique equilibrium11 is described as follows.

If
vi,j
λi
≥ v−i,j

λ−i
, then

F−i,j (x) =

( vi,j
λi
−
v−i,j
λ−i

vi,j
λi

)
+ x

vi,j
λi

x ∈
[
0,

v−i,j
λ−i

]

Fi,j (x) = x
v−i,j
λ−i

x ∈
[
0,

v−i,j
λ−i

]
.

(4)

Next, to solve for the multipliers (λA, λB), let γ ≡ λA
λB

and let ΩA(γ) denote the set

of battlefields in which
vA,j
vB,j

> γ, or equivalently
vA,j
λA

>
vB,j
λB

. The combination of (4) and

budget-balance implies the following system of equations, which we refer to as (?):

∑

j∈ΩA(γ)

vB,j
2λB

+
∑

j /∈ΩA(γ)

(
vA,j
λA

)2

2
(
vB,j
λB

) = XA (5)

∑

j∈ΩA(γ)

(
vB,j
λB

)2

2
(
vA,j
λA

) +
∑

j /∈ΩA(γ)

vA,j
2λA

= XB. (6)

λ∗A and λ∗B are implicitly defined by equations (5) and (6), henceforth referred to as a solution

to system (?).

Our first result is that, for every feasible configuration of battlefield values {vA,j, vB,j}nj=1

11For more details see Baye, Kovenock, and de Vries (1996).
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and resource endowments {XA, XB}, there exists at least one solution to system (?).

Proposition 1. For any feasible configuration of battlefield values {vA,j, vB,j}nj=1 and re-

source endowments {XA, XB} there exists a solution to system (?). If vA,j = vB,j for all j,

then there exists a unique solution to system (?).

Proof. We begin with the proof that there exists a solution to system (?), and then examine

the issue of uniqueness in constant-sum versions of the game. Recall that γ = λA
λB

and that

ΩA(γ) denotes the set of battlefields in which
vA,j
vB,j

> γ. Let ∂ΩA(γ) denote the (possibly

empty) set of battlefields for which
vA,j
vB,j

= γ and let Γ̂ ⊂ R+ denote the set of γ such

that ∂ΩA(γ) 6= ∅ — that is the set of γ that satisfy γ =
vA,j
vB,j

for some j ∈ {1, . . . , n}. Γ̂

corresponds to the set of γ at which ΩA(γ) ‘changes.’

Let

γ ≡ min



min

j

{
vA,j
vB,j

}
,
XB

XA

(
n∑

j=1

(vB,j)
2

vA,j

)−1


 > 0

and let

γ ≡ max

{
XB

XA

n∑

j=1

(vA,j)
2

vB,j
,max

j

{
vA,j
vB,j

}}
<∞.

We first bound the set of potential solutions by showing that if there exists a solution to

system (?), then γ ∈
[
γ, γ
]
.

Suppose that γ ≥ maxj{ vA,jvB,j
}. Because ΩA(γ) is the set of j for which

vA,j
vB,j

> γ, it follows

that if γ ≥ maxj{ vA,jvB,j
} then there exists no j such that

vA,j
vB,j

> γ and ΩA(γ) = ∅. Then,

because ΩA(γ) = ∅ equations (5) and (6) may be written as

λB
2λ2

A

n∑

j=1

(vA,j)
2

vB,j
= XA and

1

2λA
= XB. (7)

The unique solution to the system in (7) is λ∗A = 1
2XB

, λ∗B = XA
2X2

B

(∑n
j=1

(vA,j)
2

vB,j

)−1

, and γ∗ =

λ∗A
λ∗B

= XB
XA

∑n
j=1

(vA,j)
2

vB,j
. If XB

XA

∑n
j=1

(vA,j)
2

vB,j
≥ maxj{ vA,jvB,j

}, then there exists a unique solution

to system (?) for γ ≥ maxj{ vA,jvB,j
}, γ∗ = XB

XA

∑n
j=1

(vA,j)
2

vB,j
. If XB

XA

∑n
j=1

(vA,j)
2

vB,j
< maxj{ vA,jvB,j

},
then there exists no solution to system (?) with γ ≥ maxj{ vA,jvB,j

}, and so, in any solution to

system (?) γ < maxj{ vA,jvB,j
}.

Now, suppose that γ < minj{ vA,jvB,j
}. Because ΩA(γ) is the set of j for which

vA,j
vB,j

> γ,

it follows that if γ < minj{ vA,jvB,j
} then

vA,j
vB,j

> γ for all j and ΩA(γ) = {1, 2, . . . , n}. Then,

12



because ΩA(γ) = {1, 2, . . . , n} equations (5) and (6) may be written as

1

2λB
= XA and

λA
2λ2

B

n∑

j=1

(vB,j)
2

vA,j
= XB (8)

The unique solution to the system in (8) is λ∗A = XB
2X2

A

(∑n
j=1

(vB,j)
2

vA,j

)−1

, λ∗B = 1
2XA

, and

γ∗ =
λ∗A
λ∗B

= XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

. If XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

< minj{ vA,jvB,j
}, then there exists

a unique solution to system (?) for γ < minj{ vA,jvB,j
}, γ∗ =

λ∗A
λ∗B

= XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

. If

XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

≥ minj{ vA,jvB,j
}, then there exists no solution to system (?) with γ <

minj{ vA,jvB,j
}, and so, in any solution to system (?) γ ≥ minj{ vA,jvB,j

}. This completes the proof

that if there exists a solution to system (?), then γ ∈
[
γ, γ
]
.

We now show that for any feasible configuration of battlefield values {vA,j, vB,j}nj=1 and

resource endowments {XA, XB} there exists a solution to system (?) with γ ∈
[
γ, γ
]
. Because

γ ∈
[
γ, γ
]
, it follows directly that λA, λB ∈ (0,∞). Multiplying both sides of (5) by λB and

both sides of (6) by λA yields

λBXA =
1

2

∑

j∈ΩA(γ)

vB,j +
1

2γ2

∑

j /∈ΩA(γ)

(vA,j)
2

vB,j
(9)

λAXB =
γ2

2

∑

j∈ΩA(γ)

(vB,j)
2

vA,j
+

1

2

∑

j /∈ΩA(γ)

vA,j. (10)

Then dividing (10) by (9), we have:

XBγ

XA

=
γ2
∑

j∈ΩA(γ)

(vB,j)
2

vA,j
+
∑

j /∈ΩA(γ) vA,j

∑
j∈ΩA(γ) vB,j + 1

γ2

∑
j /∈ΩA(γ)

(vA,j)
2

vB,j

. (11)

The right-hand side of (11) is continuous with respect to γ. In particular, for each γ̂ ∈ Γ̂,

γ̂vB,k = vA,k for each k ∈ ∂ΩA(γ̂). Thus, for each γ̂ ∈ Γ̂

lim
γ→γ̂+

γ2
∑

j∈ΩA(γ)

(vB,j)
2

vA,j
+
∑

j /∈ΩA(γ) vA,j

∑
j∈ΩA(γ) vB,j + 1

γ2

∑
j /∈ΩA(γ)

(vA,j)
2

vB,j

= lim
γ→γ̂−

γ2
∑

j∈ΩA(γ)

(vB,j)
2

vA,j
+
∑

j /∈ΩA(γ) vA,j

∑
j∈ΩA(γ) vB,j + 1

γ2

∑
j /∈ΩA(γ)

(vA,j)
2

vB,j

.
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Next, note that if XB
XA

∑n
j=1

(vA,j)
2

vB,j
≥ maxj{ vA,jvB,j

} then γ∗ = XB
XA

∑n
j=1

(vA,j)
2

vB,j
is a solution to

(11) in which ΩA(γ∗) = ∅, and the result follows directly. Similarly, if XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

<

minj{ vA,jvB,j
} then γ∗ = XB

XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

is a solution to (11) in which ΩA(γ∗) = {1, . . . , n}
and the result follows directly.

We now examine the case in which XB
XA

∑n
j=1

(vA,j)
2

vB,j
< maxj{ vA,jvB,j

} and XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

≥
minj{ vA,jvB,j

}. Note first that if minj{ vA,jvB,j
} = maxj{ vA,jvB,j

}, then
vA,j
vB,j

= 1 for all j and the first

inequality becomes XB
XA

< 1, which is violated by the assumption that XB
XA
≥ 1. Hence, in this

case minj{ vA,jvB,j
} < maxj{ vA,jvB,j

}. To verify that a solution in γ to (11) exists multiply both

sides of (11) by XA
XB

. The left-hand side of (11) then equals γ and the right-hand side equals

the following continuous and increasing function:

f(γ) =

(
XA

XB

)


γ2
∑

j∈ΩA(γ)

(vB,j)
2

vA,j
+
∑

j /∈ΩA(γ) vA,j

∑
j∈ΩA(γ) vB,j + 1

γ2

∑
j /∈ΩA(γ)

(vA,j)
2

vB,j


 .

Because, by assumption, XB
XA

∑n
j=1

(vA,j)
2

vB,j
< maxj{ vA,jvB,j

}, it follows that

f

(
max
j
{ vA,j
vB,j
}
)

=

(
XA

XB

)



(
maxj{ vA,jvB,j

}
)2

∑n
j=1

(vA,j)
2

vB,j


 > max

j
{ vA,j
vB,j
} (12)

and, as XB
XA

(∑n
j=1

(vB,j)
2

vA,j

)−1

≥ minj{ vA,jvB,j
}, it follows that

f

(
min
j
{ vA,j
vB,j
}
)

=

(
XA

XB

)(
min
j
{ vA,j
vB,j
}
)2
(

n∑

j=1

(vB,j)
2

vA,j

)
≤ min

j
{ vA,j
vB,j
} (13)

Combining (12), (13), with the continuity of f(γ), it follows that there exists at least one

point γ∗ ∈
[
γ, γ
]

such that f(γ∗) = γ∗. This completes the proof of the existence of a γ∗

that solves (11), and then given a solution γ∗, (9) and (10) can be used to solve for λB and

λA (a solution to system (?)), respectively.

For uniqueness in the constant-sum game, note that when vA,j = vB,j for all j then

maxj{ vA,jvB,j
} = minj{ vA,jvB,j

} = 1 for all j and γ = 1 ≤ γ = XB
XA

. Consequently, ΩA(γ∗) = ∅ and

(11) becomes γ∗ = XB
XA

.

Although there exists a unique solution to system (?) when the game is constant-sum,
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there may exist multiple solutions to system (?) in non-constant-sum versions of the game,

and these multiple solutions give rise to multiple equilibria. Following the statement and

proof of Theorem 1, we provide an example in which there are multiple payoff nonequivalent

equilibria.

We now examine equilibrium in the general case of the linear heterogeneous asymmetric

objective and, then, discuss the special case of the linear heterogeneous symmetric objective.

Theorem 1. For each solution (λ∗A, λ
∗
B) to system (?), each player in the Generalized General

Lotto game has a unique set of Nash equilibrium univariate marginals. If vi,j/λ
∗
i ≥ v−i,j/λ

∗
−i,

then

F−i,j (x) =

(
vi,j
λ∗
i
−
v−i,j
λ∗−i

vi,j
λ∗
i

)
+ x

vi,j
λ∗
i

x ∈
[
0,

v−i,j
λ∗−i

]

Fi,j (x) = x
v−i,j
λ∗−i

x ∈
[
0,

v−i,j
λ∗−i

]
.

Conversely, for each equilibrium of the Generalized General Lotto game, there exists a cor-

responding solution (λ∗A, λ
∗
B) to system (?). For each solution (λ∗A, λ

∗
B) to system (?), the

expected payoff for player A is
∑

j∈ΩA(γ∗)

(
vA,j − γ∗vB,j

2

)
+
∑

j /∈ΩA(γ∗)

(
v2A,j

2γ∗vB,j

)
and the ex-

pected payoff for player B is
∑

j /∈ΩA(γ∗)

(
vB,j − vA,j

2γ∗

)
+
∑

j∈ΩA(γ∗)

(
γ∗v2B,j
2vA,j

)
.

Proof. We now show that for each solution (λ∗A, λ
∗
B) to system (?) any pair of joint dis-

tributions (PA, PB) with the sets of univariate marginals specified in Theorem 1 is a Nash

equilibrium of the Generalized General Lotto game. In the Appendix, we show that: (i) for

each equilibrium of the Generalized General Lotto game, there exists a corresponding solu-

tion (λ∗A, λ
∗
B) to system (?) and (ii) for each solution (λ∗A, λ

∗
B) each player in the Generalized

General Lotto game has a unique set of Nash equilibrium univariate marginals.

For the proof that for each solution (λ∗A, λ
∗
B) to system (?) any pair of joint distributions

(PA, PB) with the sets of univariate marginals specified in Theorem 1 is a Nash equilibrium

of the Generalized General Lotto game, we focus on player A, and note that the argument

for player B is symmetric. First, observe that because (λA, λB) is a solution to (?), this is a

feasible strategy for player A:

n∑

j=1

∫ ∞

0

xdFA,j =
∑

j∈ΩA(γ∗)

vB,j
2λ∗B

+
∑

j /∈ΩA(γ∗)

(
vA,j
λ∗A

)2

2
(
vB,j
λ∗B

) = XA.

Then, given that player B is following the equilibrium strategy, player A’s payoff from an
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arbitrary strategy with the set of univariate marginals
{
F̄A,j

}n
j=1

is:

πA

({
F̄A,j, FB,j

}n
j=1

)
=

n∑

j=1

∫ ∞

0

vA,jFB,j (x) dF̄A,j (x) .

Because it is never a best response for player A to place strictly positive mass at zero in

any battlefield j ∈ ΩA(γ∗) nor to provide offers outside of the support of any of player B’s

univariate marginal distributions, we have:

πA

({
F̄A,j, FB,j

}n
j=1

)
=

∑

j∈ΩA(γ∗)

[(
vA,j −

vB,jλ
∗
A

λ∗B

)
+

∫ vB,j
λ∗
B

0

xλ∗AdF̄A,j (x)

]

+
∑

j /∈ΩA(γ∗)

∫ vA,j
λ∗
A

0

xλ∗AdF̄A,j (x) .

But from the budget constraint, it follows that

πA

({
F̄A,j, FB,j

}n
j=1

)
≤

∑

j∈ΩA(γ∗)

(
vA,j −

λ∗AvB,j
λ∗B

)
+ λ∗AXA

which, together with (5), yields

πA

({
F̄A,j, FB,j

}n
j=1

)
≤

∑

j∈ΩA(γ∗)

(
vA,j −

γ∗vB,j
2

)
+

∑

j /∈ΩA(γ∗)

(
v2
A,j

2γ∗vB,j

)
,

which holds with equality if {F̄A,j}nj=1 is the equilibrium strategy. This completes the proof

that there are no payoff increasing deviations for player A. A symmetric argument applies

to player B, and thus any pair of joint distributions (PA, PB) providing the sets of univariate

marginal distributions
(
{FA,j, FB,j}nj=1

)
is an equilibrium.

The Appendix contains the two remaining parts of the proof: (i) for each equilibrium

of the Generalized General Lotto game, there exists a corresponding solution (λ∗A, λ
∗
B) to

system (?) and (ii) for each solution (λ∗A, λ
∗
B) each player in the Generalized General Lotto

game has a unique set of Nash equilibrium univariate marginals.

Proposition 1 guarantees at least one solution to system (?) and Theorem 1 demonstrates

that corresponding to every such solution there is a unique set of Nash equilibrium univariate

marginal distributions in the General Lotto game. If the game is constant-sum (i.e. the
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players’ battlefield valuations are symmetric for all battlefields), then each player has a

unique set of equilibrium univariate marginal distribution functions. We now examine a

simple example in which player valuations are asymmetric and multiple payoff nonequivalent

equilibria arise. For such equilibria to arise there must exist a set of battlefields, termed the

disagreement set, in which vA,j 6= vB,j. Example 1 is a special case in which the configuration

of players’ valuations in the disagreement set takes a simple parametric form yielding only

two distinct values. Even in this simple case, we find that there are five payoff nonequivalent

sets of Nash equilibrium univariate marginal distributions. The parametric form used for

battlefield valuations is useful in that it makes the calculation of the set ΩA(γ) easier, thereby

simplifying the problem of solving system (?). In moving from this example to an arbitrary

configuration of battlefield valuations the calculation of the set ΩA(γ) becomes more involved.

Example 1. Consider a Generalized General Lotto game in which XA = XB = 1, and the

battlefields may be partitioned into an agreement set, denoted A, in which vA,j = vB,j for

each j ∈ A and
∑

j∈A vA,j = nA
n

, where nA is the number of battlefields in the agreement set,

and a disagreement set, denoted D, with an even number nD of battlefields, where for the

first nD
2

battlefields vA,j = 2(1−ε)
n

and vB,j = 2ε
n

and for the last nD
2

battlefields vA,j = 2ε
n

and

vB,j = 2(1−ε)
n

, with ε ∈ (0, .5). This configuration of battlefield values is illustrated in Figure

2 below.

Agreement	  Set (A)

vA,j = vB,j , 8 j 2 A

Disagreement	  Set (D)

vA,j = 2(1�✏)
n , vB,j = 2✏

n

vA,j = 2✏
n , vB,j = 2(1�✏)

n

Figure 2: Example 1 battlefield configuration [ε ∈ (0, 0.5)]
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For all ε ∈ (0, .5), nD ≥ 0, and nA ≥ 0 equation (11) has a solution at γ = 1, but

depending on the values of ε, nD, and nA there may exist multiple solutions, and thus

multiple equilibria. To solve for all possible solutions to system (?) note that (11) may be

written as

γ3
∑

j∈ΩA(γ)

(vB,j)
2

vA,j
− XBγ

2

XA

∑

j∈ΩA(γ)

vB,j + γ
∑

j /∈ΩA(γ)

vA,j −
XB

XA

∑

j /∈ΩA(γ)

(vA,j)
2

vB,j
= 0. (14)

Next, note that with symmetric resource constraints it must be the case that either 1−ε
ε
>

γ ≥ 1 or 1 > γ ≥ ε
1−ε .

12 If 1 > γ ≥ ε
1−ε , then ΩA(γ) includes A and the portion of D in

which vA,j = 2(1−ε)
n

and vB,j = 2ε
n

, and (14) may be written as

γ3

(
ε2

1− ε ·
nD
n

+
nA
n

)
− γ2

(
ε · nD

n
+
nA
n

)
+ γ

(
ε · nD

n

)
−
(

ε2

1− ε ·
nD
n

)
= 0. (15)

Similarly, if 1−ε
ε
> γ ≥ 1, then ΩA(γ) includes only the portion of D in which vA,j = 2(1−ε)

n

and vB,j = 2ε
n

and (14) may be written as

γ3

(
ε2

1− ε ·
nD
n

)
− γ2

(
ε · nD

n

)
+ γ

(
ε · nD

n
+
nA
n

)
−
(

ε2

1− ε ·
nD
n

+
nA
n

)
= 0. (16)

If, for example, we let ε = 0.10, (nA/n) = 0.1, and (nD/n) = 0.9, then there are five solutions

to system (?) — equation (15) has two real roots for 1 > γ ≥ ε
1−ε = 1

9
and equation (16) has

three real roots for 9 = 1−ε
ε
> γ ≥ 1 — and Theorem 1 provides the equilibrium expected

payoffs and unique sets of equilibrium univariate marginal distributions. These five equilibria

are summarized in Table 2 below.

For the two solutions with 1 > γ ≥ 1
9

equilibrium is described as follows: for all battle-

fields j ∈ A let vj ≡ vA,j = vB,j

FB,j (x) =
(

1− λA
λB

)
+ λAx

vj
x ∈

[
0,

vj
λB

]

FA,j (x) = λBx
vj

x ∈
[
0,

vj
λB

]
,

12If γ < minj{ vA,j

vB,j
} = ε

1−ε then ΩA(γ) = {1, . . . , n}, and if γ ≥ maxj{ vA,j

vB,j
} = 1−ε

ε then ΩA(γ) = ∅. In

either case, one player has a weakly higher expected expenditure of the resource in every battlefield and a
strictly higher expenditure in a nonempty subset of battlefields. With symmetric budget constraints it is
clear that this is not possible.
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γ∗ λ∗A λ∗B π∗A π∗B
0.1604 0.0464 0.2893 0.9259 0.5383
0.5669 0.0627 0.1106 0.8650 0.7618
1.00 0.10 0.10 0.82 0.82

1.7640 0.1106 0.0627 0.7618 0.8650
6.2362 0.2893 0.0464 0.5383 0.9259

Table 2: Multiple Equilibria in Example 1

for j ∈ D such that vA,j = 9
5n

and vB,j = 1
5n

FB,j (x) =
(

1− λA
9λB

)
+ λAx

(9/5n)
x ∈

[
0, 1

5nλB

]

FA,j (x) = λBx
(1/5n)

x ∈
[
0, 1

5nλB

]
,

and for j ∈ D such that vA,j = 1
5n

and vB,j = 9
5n

FA,j (x) =
(

1− λB
9λA

)
+ λBx

(9/5n)
x ∈

[
0, 1

5nλA

]

FB,j (x) = λAx
(1/5n)

x ∈
[
0, 1

5nλA

]
.

The expected payoff for player A is 91
100
− 19γ

200
+ 1

200γ
and the expected payoff for player B is

81
100
− 9

200γ
+ 11γ

200
. Similarly, for the three solutions with 9 > γ ≥ 1 equilibrium is described as

follows: for all battlefields j ∈ A

FA,j (x) =
(

1− λB
λA

)
+ λBx

vj
x ∈

[
0,

vj
λA

]

FB,j (x) = λAx
vj

x ∈
[
0,

vj
λA

]
,

for j ∈ D such that vA,j = 9
5n

and vB,j = 1
5n

FB,j (x) =
(

1− λA
9λB

)
+ λAx

(9/5n)
x ∈

[
0, 1

5nλB

]

FA,j (x) = λBx
(1/5n)

x ∈
[
0, 1

5nλB

]
,

and for j ∈ D such that vA,j = 1
5n

and vB,j = 9
5n

FA,j (x) =
(

1− λB
9λA

)
+ λBx

(9/5n)
x ∈

[
0, 1

5nλA

]

FB,j (x) = λAx
(1/5n)

x ∈
[
0, 1

5nλA

]
.
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The expected payoff for player A is 81
100
− 9γ

200
+ 11

200γ
and the expected payoff for player B is

91
100
− 19

200γ
+ γ

200
.

Although this example is a simple one in which only three values of the ratio
vA,j
vB,j

arise,

there continues to exist a multiplicity of payoff nonequivalent equilibria even when all of

the parameters of the example are slightly perturbed, so that the ratio
vA,j
vB,j

may be distinct

for every battlefield j. In fact, fixing n and taking the relevant space of parameters to be

(XA, XB, {vA,j}nj=1, {vB,j}nj=1) ∈ R2
++×[Int(Sn−1)]2, where Int(Sn−1) is the interior of the n−1

dimensional unit simplex containing the values {vi,j}nj=1, i = A,B, there is a set of positive

Lebesgue measure in R2
++ × [Int(Sn−1)]2 which contains the parameters in our example and

in which such a multiplicity exists.13 That is, a multiplicity of payoff nonequivalent equilibria

should not be viewed as an anomaly.

We conclude the discussion of our results on the (continuous) Generalized General Lotto

game by noting that in the special case of the linear heterogeneous symmetric objective,

vA,j = vB,j ≡ vj for all j, the unique solution to system (?)14 is λ∗A = 1
2XB

and λ∗B = XA
2X2

B
. We

then have the following corollary, which appears in a closely related form in Bell and Cover

(1980), Sahuguet and Persico (2006), and Washburn (2013).

Corollary 1. If vA,j = vB,j ≡ vj for all j, then the unique set of Nash equilibrium univariate

13For a fixed number of battlefields n, the equilibrium values γ∗ are the solutions in γ to equation (14).
If the set of indices ΩA(γ) is invariant over an interval of γ’s, the left-hand side of (14) is a cubic in γ over
that interval. In our specific numerical example with ε = 0.1, nA

n = 0.1, and nD

n = 0.9, the sets of indices
ΩA(γ) are invariant in each of two adjacent domains of γ, 1 > γ ≥ 1

9 and 9 > γ ≥ 1, but differ across the
domains (represented, respectively, by equations (15) and (16)). More generally, because the set of indices
ΩA(γ) changes only at values of γ for which γ =

vA,j

vB,j
for some j, the coefficients of γ in the cubic are fixed

over distinct intervals between adjacent values of
vA,j

vB,j
and the left-hand side of (14) is, in fact, continuous in

γ over [γ, γ], including at values of γ at which the set of indices ΩA(γ) changes. Moreover, the left hand side
of (14) is also continuous in the 2n+ 2-tuple of parameters (XA, XB , {vA,j}nj=1, {vB,j}nj=1) over the relevant
domain. In the numerical example, two of the five solutions γ∗ to (14) identified in Table 2 are interior to
[ 19 , 1) and two are interior to [1, 9). (The remaining solution γ∗ = 1 is on the boundary of the two sets). It is
easily verified that none of the four solutions to (14) that are interior to [ 19 , 1) or [1, 9) are multiple roots of
the polynomial in γ (for the fixed set of indices ΩA(γ) applicable over the interval). Therefore, they cannot
represent tangencies to the γ-axis of the applicable polynomial, but rather represent values of γ where the
left-hand side of (14) cuts the origin. As a consequence, for sufficiently small perturbations of the 2n + 2-
tuple of parameters chosen in the example, for each of these four values of γ∗ there exists a neighborhood
about γ∗such that the set of indices contained in ΩA(γ∗) coincides with the set of indices in the example
and, for that fixed set ΩA(γ∗), the polynomial in γ given by the left-hand side of (14) has a root within the
neighborhood. That is, there is an open set of parameters (XA, XB , {vA,j}nj=1, {vB,j}nj=1) containing those
in the example for which there are solutions to (14) ”close” to the four values of γ∗ identified in the interior
of [ 19 , 1) and [1, 9).

14As XA

XB
≤ 1 it must be the case that λB ≤ λA.
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marginal distributions of the Generalized General Lotto game are, for all j ∈ {1, . . . , n}:

FA,j (x) =
(

1− XA
XB

)
+ x

2vjXB

(
XA
XB

)
x ∈ [0, 2vjXB]

FB,j (x) = x
2vjXB

x ∈ [0, 2vjXB]

The expected payoff for player A is XA
2XB

and the expected payoff for player B is 1− XA
2XB

.

4 Generalized Colonel Blotto Results

As pointed out in Hart (2008, 2014), the General Lotto game can be used as an intermediate

step in solving the Colonel Blotto game. In moving from the Generalized General Lotto

game to the Generalized Colonel Blotto game, we face the added requirement that for each

player a joint distribution exists that satisfies the player’s budget constraint with probability

one, and not just in expectation. From this, it is clear that if a pair of joint distributions is

found that yields for each player the set of univariate marginal distributions corresponding

to an equilibrium in the Generalized General Lotto game and each joint distribution satisfies

the constraint that the budget holds with probability one, then this pair will also be an

equilibrium of the Colonel Blotto version of the game.

The following proposition provides a sufficient condition for the set of univariate marginal

distributions corresponding to an equilibrium in the Generalized General Lotto game given

in Theorem 1 to be generated by a pair of joint distributions that balance the players’

respective budgets with probability one. That is, it provides a sufficient condition for an

equilibrium set of univariate marginal distributions in the Generalized General Lotto game

to be attainable in equilibrium in the Generalized Colonel Blotto game. In the analysis

that follows, consider a partition of the battlefields into subsets based on distinct pairs of

valuations vA,j and vB,j so that two battlefields h and m, h,m ∈ {1, . . . , n}, are in the same

set in the partition if and only if vA,h = vA,m and vB,h = vB,m. Let k ≤ n denote the number

of subsets in this partition, j ∈ {1, . . . , k} index the distinct pairs of battlefield valuations

(vA,j, vB,j), and nj ≥ 1 denote the number of battlefields with the distinct pair of valuations

(vA,j, vB,j).

Proposition 2. Given a solution (λ∗A, λ
∗
B) to system (?), if for each distinct pair of battlefield

valuations (vA,j, vB,j) with
v−i,jλ∗i
vi,jλ∗−i

≤ 1, for some i ∈ {A,B}, it is the case that 2
nj
≤ v−i,jλ∗i

vi,jλ∗−i
,

then there exists a Nash equilibrium of the Generalized Colonel Blotto game with the same set

of univariate marginal distributions and expected payoffs as in the corresponding equilibrium
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in Theorem 1.

Given the k ≤ n distinct pairs of battlefield valuations, we can form independent nj-

variate marginal distributions on each of the j = 1, . . . , k subsets of battlefields with a

distinct pair of valuations, where the budget constraint for each subset j is equal to the

expected expenditure from the Theorem 1 set of univariate marginal distribution functions

on that subset of battlefields. For example, if
vi,j
λ∗i
≥ v−i,j

λ∗−i
, then from Theorem 1 it follows

that player −i’s expected expenditure on the jth set of battlefields is
nj
2

(
v−i,j
λ∗−i

)2

/
(
vi,j
λ∗i

)
and

i’s expected expenditure on the jth set of battlefields is nj

(
v−i,j
2λ∗−i

)
. Then, the problem of

constructing an equilibrium n-variate joint distribution Pi, for each player i, that is budget

balancing with probability one and that provides the univariate marginals given in Theorem

1 is replaced by the problem of constructing k nj-variate marginal distributions, denoted Pi,j,

one for each of the k sets of battlefields with distinct valuations, and then letting each player

i’s joint distribution be defined as Pi(x) =
∏k

j=1 Pi,j(xj) where xj is the restriction of x to

the battlefields in set j. For each of the sets of battlefields j ∈ {1, . . . , k} if
vi,j
λ∗i
≥ v−i,j

λ∗−i
and

it is the case that 2
nj
≤ v−i,jλ∗i

vi,jλ∗−i
, then player i’s nj-variate marginal distribution Pi,j may be

formed by deterministically allocating nj

(
v−i,j
2λ∗−i

)
of i’s budget to the subset j of battlefields

and then constructing Pi,j using the existing construction methods in Gross and Wagner

(1950), Roberson (2006), or Weinstein (2012). Similarly, player −i’s nj-variate marginal

distribution P−i,j may be formed by deterministically allocating
nj
2

(
v−i,j
λ∗−i

)2

/
(
vi,j
λ∗i

)
of −i’s

budget to the subset j of battlefields and then constructing P−i,j using the distribution from

Roberson (2006, Theorem 4 p.9).15 Any such construction provides the necessary univariate

marginals characterized in Theorem 1 and the resulting joint distributions Pi and P−i are

budget-balancing with probability one.

To fix ideas regarding the multi-variate marginal distributions that are utilized in the

construction method summarized above, it is instructive to briefly examine an example of

such a multi-variate marginal. For the case of nj = 3 and
v−i,jλ∗i
vi,jλ∗−i

> 2
nj

, the support of P−i,j

is given in Figure 3 below. Note that the support of P−i,j lies on the budget hyperplane∑3
i=1 xi = 3

(
v−i,jλ∗i
vi,jλ∗−i

)(
v−i,j
2λ∗−i

)
and, as is shown in Roberson (2006), there exists a distribution

of mass across this support that provides the set of univariate marginals specified by Theorem

15In Roberson (2006) the construction is carried out with respect to the players’ aggregate resource en-
dowments XA ≤ XB . Note that in this paper’s subset j of battlefields player −i’s budget is X−i,j ≡
nj

2

(
v−i,j

λ∗
−i

)2
/
(
vi,j
λ∗
i

)
and player i’s budget is Xi,j ≡ nj

(
v−i,j

2λ∗
−i

)
, where X−i,j ≤ Xi,j . To apply the construc-

tion in Roberson (2006) to an nj-variate marginal distribution in this paper, substitute player −i and X−i,j
for player A and XA, respectively, and player i and Xi,j for player B and XB respectively.
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1. The role of the condition that 2
nj
≤ v−i,jλ∗i

vi,jλ∗−i
for each j = 1, . . . , k can be seen in Figure

3, where the condition implies that that budget hyperplane cuts through the nj-box, or

hypercube, above its intercepts and thus the upper bound of the support of each of the

univariate marginals is feasible. Furthermore, Roberson (2006) shows that, as long as the

hyperplane cuts through the hypercube above its intercepts, the constraint that the support

of the joint distribution satisfies the budget constraint with probability one is satisfied and

the results in Theorem 1 extend directly to the Colonel Blotto version of the game. Thus,

the conditions of Proposition 2 are sufficient for the existence of budget-balancing joint

distributions, one for each player, that provide the sets of equilibrium univariate marginal

distributions in Theorem 1. It follows directly that a necessary condition for the existence of

such a joint distribution is Xi ≥ maxj

{
min

{
v−i,j
λ∗−i

,
vi,j
λ∗i

}}
for each player i. This necessary

condition states that each player’s budget-balancing hyperplane cuts through the n-box

formed by the supports of each of the n univariate marginals specified by Theorem 1 above

its intercepts.

The conditions in Proposition 2 provide a sufficient condition for the existence of a

Nash equilibrium of the Generalized Colonel Blotto game with the same set of equilibrium

univariate marginals as an equilibrium of the corresponding General Lotto game. If XB >

nXA then, clearly, this relationship breaks down and in any equilibrium of the Generalized

Colonel Blotto game player B wins every battlefield with certainty. But, it turns out that

there exists a stronger condition that can be invoked. Recall that given a solution to system

(?) a necessary condition for the existence of a budget-balancing joint distribution that

provides the Theorem 1 sets of univariate marginals is Xi ≥ maxj

{
min

{
v−i,j
λ∗−i

,
vi,j
λ∗i

}}
for each

player i. Thus, if in a Generalized Colonel Blotto game CB
{
XA, XB, n, {vA,j, vB,j}nj=1

}
, it

is the case that for each solution to system (?) there exists a player i such that Xi <

maxj

{
min

{
v−i,j
λ∗−i

,
vi,j
λ∗i

}}
, then there exists no equilibrium in which both players utilize joint

distributions providing the Theorem 1 sets of univariate marginals. That is, the constraint

on the joint distribution function is binding. This result is summarized in the following

corollary.

Corollary 2. If for each solution (λ∗A, λ
∗
B) to system (?) there exists a player i ∈ {A,B}

such that Xi < maxj

{
min

{
v−i,j
λ∗−i

,
vi,j
λ∗i

}}
, then there exists no equilibrium of the Colonel

Blotto game with the same set of univariate marginal distributions as in Theorem 1.
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Linear Pure-Count Objective 
Joint Distribution Example

Consider the trivariate distribution formed by the support below

✲ x1

✻
x2

✠x3

3X

i=1

xi = 3

✓
v�i,j�i

vi,j��i

◆✓
v�i,j
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◆

v�i,j
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��i
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Figure 3: Support of P−i,j for the case of
vi,j
λ∗i
≥ v−i,j

λ∗−i
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4.1 Relationship to the Colonel Blotto Literature

As indicated in Table 1 of Section 1, Proposition 2 provides a partial characterization of two

variations of the (continuous) Colonel Blotto game that have not previously been examined.

We now briefly summarize how our results relate to the literature on the four variations that

have been previously examined (liner-pure count objective with symmetric and asymmetric

budgets, and the linear heterogeneous symmetric objective with symmetric and asymmetric

budgets), and focus, in particular, on the equilibrium joint distribution functions previously

identified in the literature.

Because all of the constructions of the equilibrium joint distributions in the first two rows

of the symmetric budget column of Table 1 — with the exception of Weinstein (2012), which

we will return to below — involve randomizing on the surface of an n-gon, the two following

properties of regular n-gons are worth noting: (1) the sum of the perpendiculars from any

point in a regular n-gon to the sides of the regular n-gon is equal to n times the inradius,

i.e. the radius of the incircle (the largest circle that can be inscribed in the n-gon) and (2)

if each side of the regular n-gon has length (2/n) tan(π/n), then the inradius is equal to

(1/n). Normalizing the symmetric budget to one unit of a (use-it-or-lose-it) resource, these

two properties of regular n-gons imply that any arbitrary point in a regular n-gon with side

length of (2/n) tan(π/n) is budget balancing in that the perpendiculars sum to one, and, for

the case of n = 3, this is illustrated in panel A of Figure 4 below where x1 + x2 + x3 = 1.

For n = 3 any distribution on the surface of a regular 3-gon with side lengths (2/3) tan(π/3)

that generates uniform marginal distributions on [0, 2/3] for each of the three battlefields is

an equilibrium joint distribution, and Borel and Ville (1938) provide two such equilibrium

joint distributions.16 Gross and Wagner (1950), making use of the two properties of regular

n-gons listed above, show that both types of equilibria in Borel and Ville (1938) for the linear

pure-count objective game with symmetric budgets and n = 3 can be directly extended to

n > 3. They also provide a new fractal equilibrium.

For the case of symmetric budgets, the regular n-gon approach can be modified to allow

for battlefield valuations to be symmetric across players, but heterogeneous across battle-

fields, i.e. the linear heterogeneous symmetric objective game with n ≥ 3 as in the second

row of the first column of Table 1. This is exactly what is demonstrated in Gross (1950) and

Laslier (2002),17 where the modification involves partitioning the n battlefields into three

16Borel (1921), a paper on mixed strategies in zero-sum games, introduces the Colonel Blotto game as an
example, but does not provide a solution.

17See also Thomas (2012), who provides a new construction method for the linear heterogeneous symmetric
objective game with symmetric budgets and n ≥ 3. Thomas’s approach also involves irregular n-gons, but
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Figure 4: Arbitrary points in a regular and an irregular 3-gon

sets, denoted A, B, and C, and then randomizing on the surface of the irregular triangle

with the three side lengths equal to the total valuations of each of the three sets of battle-

fields, henceforth denoted VA, VB, and VC, respectively.18 Then, as illustrated in panel B of

Figure 4, for each point on the surface of this irregular triangle the sum across the three

sides of the product of each perpendicular and the length of its corresponding side is equal

to a constant. That is, hAVA+hBVB+hCVC is equal to twice the surface area of the triangle

which, with VA + VB + VC = 1, is equal to the inradius. Furthermore, note that hi ≤ 2r for

all i, where r denotes the inradius. Thus, for any tri-variate distribution on the incircle the

random variable h̃i is contained in the interval [0, 2r] for each i = A,B, C. Thus, we can

construct an n-variate distribution function where the random variable h̃A is transformed

into x̃j ≡ h̃Avj
r

for each j ∈ A, and a similar transformation is carried out for each j ∈ B and

j ∈ C. The resulting n-variate distribution function is budget-balancing with probability

one (
∑n

j=1 xj = 1) and for each j = 1, . . . , n, the random variable x̃j is contained in [0, 2vj].

Lastly, as shown in Gross (1950) and Laslier (2002), one of the Borel and Ville (1938) so-

the method differs in that it does not involve merging the battlefields into three groups, but instead utilizes
an irregular n-gon in which the number of sides equals the number battlefields.

18This construction, and the following discussion, is for the case in which no battlefield has a value that
is over half of the total value of all battlefields and for which it is not possible to combine battlefields into
four groups with equal sums of valuations. For more details on the remaining two special cases see Laslier
(2002).
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lutions can be used for the tri-variate distribution of the h̃i variables. In this case, each h̃i

is uniformly distributed on the interval [0, 2r] — so that each x̃j is uniformly distributed

on the interval [0, 2vj] for each battlefield j where vj is the value of battlefield j — and

with symmetric budgets, equilibrium in the linear heterogeneous symmetric objective game

requires, utilizing a similar argument as the linear-pure count game, that the univariate

marginal distribution functions are uniform on [0, 2vj] for each battlefield j.

A drawback of using n-gons to construct budget-balancing joint distribution functions is

that this method reduces the dimensionality of the set of points that can be used to form

the support of the joint distribution function. With symmetric budgets and symmetric bat-

tlefield valuations, this reduction in dimensionality does not preclude the construction of

equilibrium joint distribution functions. However, with asymmetric budgets and/or asym-

metric battlefield valuations it is easier, if not necessary, to work directly with the budget

hyperplane in Rn, as in Roberson (2006) and Weinstein (2012). In this paper, we utilized

this full dimensionality approach to examine a subset of possible parameter configurations

for each of the three checked cells in Table 1.

For the first two rows of the asymmetric budget column of Table 1, the case of n = 2 —

where the Blotto game’s binding budget constraint implies that an increase in the allocation

of the resource in one battlefield necessarily implies a corresponding decrease in the allocation

of the resource to the remaining battlefield — leads to a substantively different set of strategic

considerations than those arising in the case of n ≥ 3. For n = 2, Gross and Wagner (1950)

provide an equilibrium for all feasible parameter configurations in the first two rows of the

asymmetric budget column of Table 1. Macdonell and Mastronardi (2015) complete the

characterization of equilibrium and examine the case of non-linear budgets. For the case of

the linear heterogeneous symmetric objective with n ≥ 3, Schwartz et al. (2014)19 show how

in this constant-sum case where battlefield valuations are heterogeneous across battlefields

but symmetric across players, the construction utilized in Roberson (2006) can be extended,

along the lines described above, to construct a Nash equilibrium of the Generalized Colonel

Blotto game with the same set of equilibrium univariate marginal distributions and expected

payoffs as in the corresponding equilibrium in Corollary 1.

19Following the first circulated version of our paper, Schwartz et al. (2014) independently derived the
special case of our construction for the constant-sum game with the linear heterogeneous symmetric objective
and asymmetric budgets.
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5 Conclusion

In this paper we provide a complete characterization of the set of Nash equilibria in the

Generalized General Lotto game in which battlefield valuations may be heterogeneous across

battlefields and asymmetric across players, and in which players’ budgets may be asymmet-

ric. We demonstrate that there exist non-pathological parameter configurations for which

multiple payoff nonequivalent equilibria exist.

We then show that this characterization may be applied to extend the existing analysis of

equilibrium in the Colonel Blotto game to incorporate a range of parameter configurations

with heterogeneous battlefield valuations and asymmetric valuations and budgets across

players. For the Generalized Colonel Blotto game we provide sufficient conditions for the

existence of an equilibrium pair of joint distributions with univariate marginal distributions

that coincide with those of an equilibrium in the Generalized General Lotto game. Charac-

terization of Colonel Blotto equilibria for the remaining subset of parameter configurations

remains an open question but, for this region, we provide a sufficient condition for the sets of

equilibrium univariate marginal distributions to differ from those arising in any equilibrium

of the General Lotto game.
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6 Appendix

This Appendix contains the remaining two parts of the proof of Theorem 1: (i) for each

equilibrium of the Generalized General Lotto game there exists a corresponding solution

(λ∗A, λ
∗
B) to system (?) and (ii) for each solution (λ∗A, λ

∗
B) to system (?) each player in the

Generalized General Lotto game has a unique set of Nash equilibrium univariate marginal

distributions. We begin with the proof of part (i), and then conclude with the proof of part

(ii).

The proof of the converse claim in Theorem 1, that for each equilibrium of the Generalized

General Lotto game there exists a corresponding solution (λ∗A, λ
∗
B) to system (?), extends

the arguments in Hart (2008) on the continuous General Lotto game and Hart (2014) on

the relationship between the all-pay auction and the continuous General Lotto game. We

begin by noting that the standard constant-sum continuous General Lotto game, denoted

L{XA, XB}, is a special case of the Generalized General Lotto game in which n = 1, vA =

vB = 1, and a strategy is a univariate distribution function denoted Fi, for i = A,B, with

EFi(x) ≤ Xi. Let x̃i denote the realization of a random variable distributed according to the

distribution function Fi.
20 Player A’s expected payoff in the General Lotto game is given by

πA(FA, FB) = Pr(x̃A > x̃B) + 1
2
Pr(x̃A = x̃B)

and player B’s expected payoff is given by

πB(FB, FA) = Pr(x̃B > x̃A) + 1
2
Pr(x̃B = x̃A) = 1− Pr(x̃A > x̃B)− 1

2
Pr(x̃A = x̃B).

In this constant-sum game player A chooses FA to maximize Pr(x̃A > x̃B) + 1
2
Pr(x̃A = x̃B)

and player B chooses FB to minimize Pr(x̃A > x̃B) + 1
2
Pr(x̃A = x̃B).

Equilibrium in the (continuous) General Lotto game with strictly positive budgets is

characterized by Sahuguet and Persico (2006) and Hart (2008). The following theorem

extends that characterization to allow for one or both of the players to have a budget of 0.

Unlike the case of XB ≥ XA > 0, if either XA = 0 and XB > 0 or XA > 0 and XB = 0, then

there are multiple equilibria.21 However, because the game is constant sum, the equilibrium

20Here and in the remainder of the Appendix, whenever we introduce a random variable that is distributed
according to a player’s joint or univariate marginal distribution we assume that it is independent of the
random variable distributed according to the opponent’s corresponding distribution.

21For the player i with Xi = 0, the unique equilibrium strategy is F ∗i,j(0) = 1, but for player −i with
X−i > 0 any distribution function with F ∗−i,j(0) = 0 and EF−i,j

(x) ≤ X−i is an equilibrium strategy.
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expected payoffs are unique for all possible resource endowments (XA, XB).

Theorem 2. For the General Lotto game L{XA, XB} with XB ≥ XA > 0, the unique

equilibrium strategies are

FA(x) =

(
1− XA

XB

)
+
x ·XA

2X2
B

for x ∈ [0, 2XB]

FB(x) =
x

2XB

for x ∈ [0, 2XB]

and the equilibrium expected payoffs are XA
2XB

for player A and 1− XA
2XB

for player B.

For the General Lotto game L{XA, XB} with XB = 0 and/or XA = 0:

1. If XA = 0 and XB > 0, then the unique equilibrium expected payoffs are 0 for player

A and 1 for player B.

2. If XA > 0 and XB = 0, then the unique equilibrium expected payoffs are 1 for player

A and 0 for player B.

3. If XA = 0 and XB = 0, then the unique equilibrium strategies are F ∗A,j(0) = F ∗B,j(0) = 1

and the equilibrium expected payoffs are 1
2

for player A and 1
2

for player B.

In moving from the General Lotto game L{XA, XB} to the Generalized General Lotto

game GL(XA, XB, n, {vA,j, vB,j}nj=1), recall that in the Generalized General Lotto game a

strategy is an n-variate distribution function, Pi for i = A,B, that satisfies the constraint

that
∑n

j=1EFi,j(x) ≤ Xi, where Fi,j is the univariate marginal distribution of Pi for battlefield

j. Let x̃i,j denote the realization of a random variable distributed according to the univariate

marginal distribution Fi,j. Then, given the strategy profile (PA, PB), player A’s expected

payoff is given by

πA(PA, PB) =
n∑

j=1

vA,j

(
Pr(x̃A,j > x̃B,j) +

1

2
Pr(x̃A,j = x̃B,j)

)

and player B’s expected payoff is given by

πB(PB, PA) =
n∑

j=1

vB,j

(
1− Pr(x̃A,j > x̃B,j)−

1

2
Pr(x̃A,j = x̃B,j)

)
.

Given an equilibrium (P ∗A, P
∗
B), let X∗i,j ≡ EF ∗i,j(x) for i = A,B denote player i’s expected

allocation of the resource to battlefield j under the strategy P ∗i .
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Lemma 1. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then within each

battlefield j, (F ∗A,j, F
∗
B,j) is an equilibrium of L(X∗A,j, X

∗
B,j).

Proof. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then there are no

payoff-increasing deviations for either player. But one feasible type of deviation for player i

is to hold constant X∗i,j on each battlefield j and choose a feasible deviation P̂i with the set

of univariate marginals {F̂i,j}nj=1 with EF̂i,j(x) = X∗i,j for all j. Let x̂i,j denote the realization

of a random variable distributed according to the univariate marginal distribution function

F̂i,j. Because in battlefield j each player i does not have a payoff increasing deviation F̂i,j

with EF̂i,j(x) = X∗i,j, it follows that

vi,j

(
Pr(x̃i,j > x̃−i,j) +

1

2
Pr(x̃i,j = x̃−i,j)

)
≥ vi,j

(
Pr(x̂i,j > x̃−i,j) +

1

2
Pr(x̂i,j = x̃−i,j)

)

(17)

for all possible univariate marginal distributions F̂i,j with EF̂i,j(x) = X∗i,j. But it follows

directly from (17) that

(
Pr(x̃i,j > x̃−i,j) +

1

2
Pr(x̃i,j = x̃−i,j)

)
≥
(

Pr(x̂i,j > x̃−i,j) +
1

2
Pr(x̂i,j = x̃−i,j)

)
(18)

for all possible deviations F̂i,j with EF̂i,j(x) = X∗i,j, and, thus, (F ∗A,j, F
∗
B,j) is an equilibrium

of L(X∗A,j, X
∗
B,j).

To complete the proof of the claim that if (P ∗A, P
∗
B) is an equilibrium ofGL(XA, XB, n, {vA,j, vB,j}nj=1),

then there exists a corresponding solution (λ∗A, λ
∗
B) to system (?), Lemmas 2-4 collectively

establish that in any equilibrium (P ∗A, P
∗
B) of GL(XA, XB, n, {vA,j, vB,j}nj=1) it must be the

case that min{X∗A,j, X∗B,j} > 0 for all j. Because min{X∗A,j, X∗B,j} > 0 for all j, it fol-

lows from Lemma 1 and Theorem 2 that the equilibrium univariate marginal distributions

are uniquely determined. Using the unique equilibrium univariate marginal distributions,

Lemma 5 completes the proof that there exists a corresponding solution (λ∗A, λ
∗
B) to system

(?).

Lemma 2. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then

max{X∗A,j, X∗B,j} > 0 for all j.

Proof. By way of contradiction, suppose that there exists an equilibrium (P ∗A, P
∗
B) in which

for some battlefield k max{X∗A,k, X∗B,k} = 0, which implies that F ∗A,k(0) = F ∗B,k(0) = 1. We
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begin with the case in which
∑n

j=1EF ∗A,j(x) < XA, and then examine the case in which∑n
j=1 EF ∗A,j(x) = XA. If

∑n
j=1 EF ∗A,j(x) < XA, then player A can increase his payoff by

vA,k
2

by allocating a strictly positive level of the resource XA,k ≤ XA−
∑n

j=1EF ∗A,j(x) to battlefield

k and setting FA,k(0) = 0, a contradiction.

For
∑n

j=1 EF ∗A,j(x) = XA > 0, there exists at least one battlefield j′ in which X∗A,j′ > 0

and there are two cases to consider: (i) X∗B,j′ = 0 and (ii) X∗B,j′ > 0. In case (i), because∑n
j=1 EF ∗A,j(x) = XA > 0 and in battlefield j′ X∗A,j′ > 0 and X∗B,j′ = 0, player A can increase

his payoff by
vA,k

2
by shifting XA,k < X∗A,j′ of the resource from battlefield j′ to battlefield k

and setting FA,k(0) = FA,j′(0) = 0, a contradiction.

In case (ii), X∗A,j′ > 0 and X∗B,j′ > 0, and it follows from Lemma 1 and Theorem 2

that F ∗B,j′(x) is the unique equilibrium strategy in the General Lotto game L(X∗A,j′ , X
∗
B,j′),

where the support of F ∗B,j′(x), denoted supp(F ∗B,j′(x)), is [0, 2 max{X∗A,j′ , X∗B,j′}]. Thus,

player A can increase his total expected payoff by an amount arbitrarily close to
vA,k

2
by

shifting, for a sufficiently small ε > 0, ε of the resource from battlefield j′ to battlefield k,

in battlefield k choosing a distribution function FA,k(x) with FA,k(0) = 0 and EFA,k(x) = ε,

and in battlefield j′ choosing a distribution function FA,j′(x) with FA,j′(0) = 0, EFA,j′ (x) =

X∗A,j′ − ε, and supp(FA,j′) ⊆ supp(F ∗B,j′(x)). In battlefield j′ player A’s expected payoff from

the distribution function FA,j′(x) when player B’s distribution function is F ∗B,j′(x) is given

by

vA,j′

∫ ∞

0

F ∗B,j′(x)dFA,j′(x) =





vA,j′

((
1− X∗

B,j′

X∗
A,j′

)
+

(
X∗
A,j′−ε

)
X∗
B,j′

2
(
X∗
A,j′

)2
)

if X∗A,j′ > X∗B,j′

vA,j′

((
X∗
A,j′−ε

)
2X∗

B,j′

)
if X∗A,j′ ≤ X∗B,j′

Thus, the loss in player A’s payoff in battlefield j′ approaches 0 as ε approaches 0, but the

gain on battlefield k is
vA,k

2
for all ε > 0. This is a contradiction to the assumption that

(P ∗A, P
∗
B) is an equilibrium and completes the proof that if (P ∗A, P

∗
B) is an equilibrium of

GL(XA, XB, n, {vA,j, vB,j}nj=1) then max{X∗A,j, X∗B,j} > 0 for all j.

Lemma 3. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then

∑n
j=1EF ∗i,j(x) >

0 for each player i = A,B.

Proof. By way of contradiction, suppose that there exists an equilibrium (P ∗A, P
∗
B) in which∑n

j=1 EF ∗i,j(x) = 0 for some player i. From Lemma 2, it follows that for player −i, X∗−i,j > 0

for all j, which from Lemma 1 and Theorem 2 implies that player i earns an equilibrium

expected payoff of 0. If i = B, then because XB ≥ XA > 0, it is clear that player B has a
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payoff increasing deviation that involves mimicking player A’s strategy, which yields B an

expected payoff of 1
2

∑n
j=1 vB,j. Hence a contradiction. If i = A, then player A can mimic

player B’s strategy with probability XA
XB

and bid 0 in every battlefield with probability (1−
XA
XB

), which similarly yields A an expected payoff of XA
2XB

∑n
j=1 vA,j. This yields a contradiction

and completes the proof.

Lemma 4. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then

min{X∗A,j, X∗B,j} > 0 for all j.

Proof. By way of contradiction, suppose that there exists an equilibrium (P ∗A, P
∗
B) in which

there is at least one battlefield k with min{X∗A,k, X∗B,k} = 0. There are two cases to con-

sider: (i) min{X∗A,j, X∗B,j} = 0 for all j or (ii) min{X∗A,j, X∗B,j} = 0 for at least one, but

not all j. Beginning with case (i), because min{X∗A,j, X∗B,j} = 0 for all j, from Lemma 3∑n
j=1 EF ∗i,j(x) > 0 for each player i, and from Lemma 2 max{X∗A,j, X∗B,j} > 0 for all j, there

exists at least one battlefield j′ with X∗A,j′ > 0 and X∗B,j′ = 0 and at least one battlefield

j′′ with X∗A,j′′ = 0 and X∗B,j′′ > 0. But, player B can strictly increase his total expected

payoff by decreasing X∗B,j′′ by an ε ∈ (0,min{X∗B,j′′ , X∗A,j′}), allocating ε to battlefield j′, and

utilizing a univariate marginal distribution on battlefield j′ that places mass

(
1− ε

X∗
A,j′

)
on

0 and randomizes according to F ∗A,j′ with probability ε
X∗
A,j′

. Such a deviation would increase

player B’s expected payoff on battlefield j′ by
εvB,j′

2X∗
A,j′

with no decrease in the expected payoff

on battlefield j′′, a contradiction.

For case (ii), if min{X∗A,j, X∗B,j} = 0 for at least one, but not all j, then there exists

at least one battlefield j′ with min{X∗A,j′ , X∗B,j′} > 0 and at least one battlefield k with

min{X∗A,k, X∗B,k} = 0. Because from Lemma 2 max{X∗A,k, X∗B,k} > 0, there exists a player i

with Xi,k > 0 and a player −i with X−i,k = 0. Then, because from Lemma 1, each player’s

unique equilibrium univariate marginal distribution in battlefield j′ is given by Theorem 2,

player i has a payoff increasing deviation that involves shifting ε ∈ (0, X∗i,k) of the resource

from battlefield k to battlefield j′, in battlefield k choosing a distribution function Fi,k(x)

with Fi,k(0) = 0 and EFi,k(x) = X∗i,k − ε, in battlefield j′ choosing a distribution function

Fi,j′(x) with Fi,j′(0) = 0, EFi,j′ (x) = X∗i,j′ + ε, and supp(Fi,j′) ⊆ supp(F ∗−i,j′(x)). Such a

deviation results in no loss to player i’s expected payoff in battlefield k. In battlefield j′,

player i’s expected payoff from the distribution function Fi,j′(x) when player −i’s distribution
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function is F ∗−i,j′(x) is given by

vi,j′

∫ ∞

0

F ∗−i,j′(x)dFi,j′(x) =





vi,j′

((
1− X∗−i,j′

X∗
i,j′

)
+

(
X∗
i,j′+ε

)
X∗−i,j′

2
(
X∗
i,j′

)2
)

if X∗i,j′ > X∗−i,j′

vi,j′

((
X∗
i,j′+ε

)
2X∗−i,j′

)
if X∗i,j′ ≤ X∗−i,j′

.

Thus, for all ε ∈ (0, X∗i,k) player i’s expected payoff in battlefield j′ is strictly higher under the

deviation, and there is no loss to player i’s expected payoff in battlefield k. This is a contradic-

tion and completes the proof that if (P ∗A, P
∗
B) is an equilibrium ofGL(XA, XB, n, {vA,j, vB,j}nj=1)

then min{X∗A,j, X∗B,j} > 0 for all j.

Lemma 5. If (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), then there exists

a corresponding solution (λ∗A, λ
∗
B) to system (?).

Proof. From Lemma 4, min{X∗A,j, X∗B,j} > 0 for all j. Then, because (P ∗A, P
∗
B) is an equi-

librium of GL(XA, XB, n, {vA,j, vB,j}nj=1) and min{X∗A,j, X∗B,j} > 0 for all j, it follows from

Lemma 1 that in each battlefield j the players’ unique equilibrium univariate marginal dis-

tributions are given by Theorem 2. Because, the unique equilibrium univariate marginal

distributions given by Theorem 2 are linear, it follows that for player A any deviation

PA that satisfies the following two conditions is payoff maximizing and feasible: (i) in

each battlefield j the associated univariate marginal distribution function FA,j(x) satisfies

FA,j(0) = 0 if X∗A,j > X∗B,j and supp(FA,j) ⊆ supp(F ∗B,j(x)), and (ii) across battlefields∑n
j=1 EFA,j(x) = XA. Letting XA,j = EFA,j(x), player A’s total expected payoff from such

a joint distribution function PA, given that player B is using the joint distribution function

P ∗B, is given by

πA(PA, P
∗
B) =

n∑

j=1

vA,j

∫ ∞

0

F ∗B,j(x)dFA,j(x)

=
∑

j|X∗A,j>X
∗
B,j

vA,j

[(
1− X∗B,j

X∗A,j

)
+
XA,jX

∗
B,j

2(X∗A,j)
2

]
+

∑

j|X∗A,j≤X
∗
B,j

vA,j

(
XA,j

2X∗B,j

)
.

(19)

Similarly, for player B the maximum achievable total expected payoff from a feasible devia-
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tion PB with {XB,j}nj=1 is given by

πB(PB, P
∗
A) =

n∑

j=1

vB,j

∫ ∞

0

F ∗A,j(x)dFB,j(x)

=
∑

j|X∗A,j≥X
∗
B,j

vB,j

(
XB,j

2X∗A,j

)
+

∑

j|X∗A,j<X
∗
B,j

vB,j

[(
1− X∗A,j

X∗B,j

)
+
XB,jX

∗
A,j

2(X∗B,j)
2

] (20)

Because (P ∗A, P
∗
B) is an equilibrium of GL(XA, XB, n, {vA,j, vB,j}nj=1), it must be the case that

player A is maximizing equation (19) with respect to {XA,j}nj=1 and player B is maximizing

equation (20) with respect to {XB,j}nj=1. Then, because equations (19) and (20) are concave

and continuously differentiable with respect to {Xi,j}nj=1 ∈ Rn
+, i = A,B respectively, it

follows that there exists a Lagrange multiplier λ∗i ≥ 0 such that the Kuhn-Tucker first-order

conditions hold:22




vi,j

(
1

2X∗−i,j

)
− λ∗i = 0 in each battlefield j with X∗i,j ≤ X∗−i,j

vi,j

(
X∗−i,j

2(X∗i,j)
2

)
− λ∗i = 0 in each battlefield j with X∗i,j > X∗−i,j

, (21)

with complementary slackness condition λ∗i ≥ 0,
∑n

j=1X
∗
i,j ≤ Xi, and λ∗i

(∑n
j=1X

∗
i,j −Xi

)
=

0. Complementary slackness is clearly satisfied because from (19) and (20) it is clearly

suboptimal to set
∑n

j=1Xi,j < Xi.

From the first-order conditions in (21) we see that in each battlefield j with X∗i,j > X∗−i,j:

(i) X∗i,j =
v−i,j
2λ∗−i

and (ii) X∗i,j =
(
vi,jX

∗
−i,j

2λ∗i

)1/2

or equivalently X∗−i,j =
(v−i,j/2λ∗−i)

2

(vi,j/2λ∗i )
. Combining

(i) and (ii), it follows from budget balance that λ∗A and λ∗B solve

∑

j|X∗A,j>X
∗
B,j

vB,j
2λ∗B

+
∑

j|X∗A,j≤X
∗
B,j

(
vA,j
λ∗A

)2

2
(
vB,j
λ∗B

) = XA (22)

and

∑

j|X∗A,j≥X
∗
B,j

(
vB,j
λ∗B

)2

2
(
vA,j
λ∗A

) +
∑

j|X∗A,j<X
∗
B,j

vA,j
2λ∗A

= XB (23)

Because X∗A,j =
vB,j
2λ∗B

and X∗B,j =
(vB,j/2λ∗B)

2

(vA,j/2λ∗A)
when X∗A,j > X∗B,j, and X∗A,j =

(vA,j/2λ∗A)
2

(vB,j/2λ∗B)
and

22For further details see p. 187 of Sundaram (1996).
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X∗B,j =
vA,j
2λ∗A

when X∗A,j ≤ X∗B,j, it follows that
vA,j
λ∗A

>
vB,j
λ∗B

if and only if X∗A,j > X∗B,j. Thus,

the system (22) and (23) is equivalent to system (?).

This completes the proof of part (i), for each equilibrium of the Generalized General

Lotto game, there exists a corresponding solution (λ∗A, λ
∗
B) to system (?).

We now conclude with the proof of part (ii), for each solution (λ∗A, λ
∗
B) to system (?)

each player in the Generalized General Lotto game has a unique set of Nash equilibrium

univariate marginal distributions. From the argument utilized in the proof of Lemma 5, it

follows that for each solution (λ∗A, λ
∗
B) each player i’s n-tuple of the expected allocation of the

resource to each of the n battlefields, {X∗i,j}nj=1, is uniquely determined. Namely, X∗A,j =
vB,j
2λ∗B

and X∗B,j =
(vB,j/2λ∗B)

2

(vA,j/2λ∗A)
when X∗A,j > X∗B,j, and X∗A,j =

(vA,j/2λ∗A)
2

(vB,j/2λ∗B)
and X∗B,j =

vA,j
2λ∗A

when

X∗A,j ≤ X∗B,j. From Lemma 4, each player’s expected allocation of the resource to each

battlefield is strictly positive, min{X∗A,j, X∗B,j} > 0 for all j. Then, because {X∗A,j, X∗B,j}nj=1

is uniquely determined by (λ∗A, λ
∗
B) and min{X∗A,j, X∗B,j} > 0 for all j, it follows from Lemma

1 that in each battlefield j the players’ unique equilibrium univariate marginal distributions

are given by Theorem 2. That is, for each solution (λ∗A, λ
∗
B) each player in the Generalized

General Lotto game has a unique set of Nash equilibrium univariate marginals, and this

completes the proof of Theorem 1.
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