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Click chemistry inspired one-pot synthesis of  
1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory 

activity  

Dalip Kumar,
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02881, USA 

This is where the receipt/accepted dates will go; Received Month XX, 2000; Accepted Month XX, 2000 [BMCL RECEIPT] 

Abstract—Two classes of 1,4-disubstituted 1,2,3-triazoles were synthesized using one-pot reaction of α-tosyloxy ketones/α-halo ketones, 

sodium azide, and terminal alkynes in the presence of aq. PEG (1:1, v/v) using the click chemistry approach and evaluated for Src kinase 

inhibitory activity. Structure-activity relationship analysis demonstrated that insertion of C6H5- and 4-CH3C6H4- at position 4 for both 

classes and less bulkier aromatic group at position 1 in class 1 contribute critically to the modest Src inhibition activity (IC50 = 32-43 µM) 

of 1,4-disubstituted 1,2,3-triazoles. 

                                                 
*
 Corresponding authors. Tel.: +91-1596-245073-279; Fax: +91-1596-244183;  
e-mail: dalipk@bits-pilani.ac.in (D.K.); kparang@uri.edu (K.P.) 

Protein tyrosine kinases (PTKs) catalyze the 
phosphorylation of phenolic group of tyrosine residue in 
many substrate proteins by the transfer of γ-phosphate 
moiety of ATP. PTKs play a crucial role in the signal 
transduction pathways. The non-receptor tyrosine 
kinases of the Src family, Src, Yes, Lck, Fyn, Lyn, Fgr, 
Hck, Blk, and Yrk, share a great deal of structural 
homology and are present in the cytoplasm.

1 
Src 

tyrosine kinase plays a prominent role in regulating cell 
growth and differentiation. Src has been implicated in 
development of variety of cancers. Src mutations and/or 
overexpression has been correlated with tumor growth, 
metastasis, and angiogenesis.

2
  

 
Various structural motifs have been reported to target 
Src kinase

3
 such as quinolinecarbonitriles,

4
 ATP-

phosphopeptide conjugates,
5
 pyrazolopyrimidines,

6 

purines,
7
 imidazo[1,5-a]pyrazines,

8
 benzotriazines,

9
 

pyrimidoquinolines,
10

 pyridopyrimidinones
11

, and 
quinazolines.

12
 Imatinib, a well known marketed PTK 

inhibitor, is used to treat a number of malignancies like 

chronic myelogenous leukemia (CML) and 
gastrointestinal stromal tumors (GISTs). Dasatinib is 
another marketed kinase inhibitor that inhibits Src 
family tyrosine kinases and BCR/ABL and is approved 
to use after Imatinib treatment. A 3-
quinolinecarbonitrile-based Src kinase inhibitor, 
Bosutinib, is undergoing rigorous trials for cancer 
treatment.

13
 

 
X-ray studies of phenylpyrazolopyrimidine inhibitors in 
Hck kinase-PP1 and Lck kinase-PP2

14
 complexes have 

revealed a deep hydrophobic binding pocket near the 
ATP binding site of Src family kinases for the aryl 
moiety of the pyrazolopyrimidine template. We have 
previously shown that the hydrophobic interaction of 
the phenyl group with hydrophobic pocket is essential 
for the binding of 3-phenylpyrazolopyrimidines (Figure 
1) to the ATP binding site.

15 The pyrazolopyrimidine 
core resembles the purine core of ATP itself and bind in 
the nucleotide binding site in the position normally 
occupied by the adenine base. Any substituent attached 



 

to N
1

 of pyrazole occupies a mostly hydrophobic cavity 
in PP1. Most of this hydrophobic cavity remains 
unfilled. This cavity, in part, formed from side chains of 
helix αC and helix αD. 
 

 
Figure 1. Chemical structures of 3-phenylpyrazolopyrimidines and 1,4-
disubstituted 1,2,3-triazoles. 

 
Herein, we describe synthesis and evaluation of 1,4-

disubstituted 1,2,3-triazoles (Figure 1) as a novel 

template for Src kinase inhibition. The 1,2,3-triazoles 

are important heterocycles that are reported to possess 

several biological properties including anti-HIV,
16

 

antiallergic,
17

 antifungal,
18

 and antimicrobial,
19

 

activities. The 1,2,3-triazole based compounds have 

been previously reported to inhibit p38 MAP kinase and 

PfPK7 protein kinase.
20   

 
We hypothesized that substitution at N1 and position 4 
of 1,2,3-triazoles with hydrophobic residues may 
occupy and interact with the hydrophobic binding 
pocket of Src ATP binding site similar to that of 3-
phenylpyrazolo-pyrimidines. The hydrophobic 
interactions of the hydrophobic groups with several 
amino acids in the hydrophobic pockets may contribute 
to the enhancement of potency. Furthermore, the 
attachment of hydrophobic group to 1,2,3-triazoles may 
generate novel geometric features that might contribute 
to binding of such compounds to Src kinase. 
 

Preparation of 1,2,3-triazoles (3a-z and 4a-m) has been 
widely explored using click chemistry approach due to 
its complete specificity, efficiency, simple reaction 
workup procedure, and quantitative reaction yield of the 
products.

21 
Furthermore, multicomponent reactions have 

been contributing considerably for the drug discovery 
by putting forth multiple arrays of compounds with 
diverse substitution patterns expeditiously.

22
 The 

synthetic strategy of these reactions can yield complex 
molecules with several new bonds and points of 
diversity in one pot thus alleviating the labor involved 
over a series of reaction workups.

23
  

 
The facile and eco-friendly synthesis of these 

derivatives involves a one-pot reaction of α-tosyloxy 

ketones/α-halo ketones, sodium azide, and terminal 

alkynes in the presence of aq PEG 400 (1:1, v/v) at 

room temperature under ‘Click’ conditions
24

 (Scheme 

1). The convenient preparation of 1,2,3-triazoles 

involves initial nucleophilic substitution reaction of α-

tosyloxy ketones/α-halo ketones with sodium azide to 

generate in situ α-azido ketones which is followed by 

Cu (I) catalyzed regioselective cycloaddition reaction 

with alkynes. The protocol is broadly applicable for the 

preparation of 1,2,3-triazoles as demonstrated by the use 

of various α-tosyloxy ketones/α-halo ketones (aliphatic, 

aromatic and cyclic) and alkynes (alkyl and aryl). Both 

the α-tosyloxy ketones and α-halo ketones reacted with 

almost the same efficiency. It was observed that the α-

tosyloxy ketones required marginally shorter reaction 

time when compared to α-halo ketones. Moreover, α-

tosyloxy ketones are ideal substitutes for the 

lachrymatory α-halo ketones. The mild reaction 

conditions and simple workup allowed us to rapidly 

prepare various substituted 1,2,3-triazoles in good 

yields (60-90%). After completion of the reaction, the 

contents were simply diluted with water, filtered, and 

dried to obtain 1,2,3-triazole which was finally 

recrystallized from ethyl acetate/hexane. The IR spectra 

of all the compounds exhibited a strong band at about 

1685 cm
-1

. In 
1
H NMR a characteristic singlet was 

observed for triazolyl C5–H at about δ 7.90 ppm. All the 

synthesized compounds were characterized by IR, 
1
H 

NMR, and mass spectroscopy.  
  

 
Scheme 1. Synthesis of 1,4-disubstituted 1,2,3-triazoles. 

 
Two classes of compounds with R1-CO(CH)- 
substitution at position 1 were synthesized using this 
procedure. The first class of compounds (3a-z) (Table 
1) includes 1,2,3-triazoles where R1 is a hydrophobic 
residue, such as phenyl, substituted phenyl, coumarinyl, 
2-thienyl, or other nonaromatic substituents (i.e., CH3, 
OCH3, N(C2H5)). In class 2 compounds (4a-m) (Table 
2), R1 is a cyclopentanone-2-yl, cyclohexanone-2-yl, or 
cycloheptanone-2-yl. The substitution at position 4 (R2) 
is phenyl, substituted phenyl, short alkyl, or a 
heteroaromatic (i.e., 2-pyridyl, 3-thienyl). The diversity 
of hydrophobic substitutions at R1 and R2 positions 
allowed the structure-activity relationship analysis of 
1,4-disubstituted 1,2,3-triazoles.

  

 

An array of 39 diversely substituted 1,2,3-triazoles (20 
novel compounds) was evaluated against Src kinase. 
The results of Src kinase inhibitory activity of 
compounds in classes 1 and 2 are shown in Tables 1 and 
2, respectively.  
 
In general, the compounds in class 1 with R1 as 
nonaromatic alkyl groups (Me, N-ethyl, OMe, 3w-z) 



 

exhibited weak Src kinase inhibition with IC50 values 
more than 100 µM or minimal inhibitory activity at 
highest concentration tested (375 µM). Furthermore, 
compounds with large aromatic groups such as styryl 

(3e), 3-coumarinyl (e.g., 3t, 3u) or aromatic groups with 
a bulky substitution (4-ClC6H4, 4-BrC6H4) in 3k-q 
showed weak Src inhibitory potency. Attempts to 
improve the activity by introducing an aliphatic 
substituent at R2 (3r, 3s) also resulted in poor inhibition, 
suggesting that the size of aromatic moiety at R1 
position is critical, and a bulky moiety at this position 
must be avoided. In contrast, the introduction of less 
bulkier unsubstituted phenyl and thienyl groups at 
position 1 in compounds 3b (IC50 = 41.6 µM) and 3v 
(IC50 = 32.5 µM) in class 1 significantly improved the 
Src inhibitory activities.  

 
The presence of an electron-donating methyl group in 
R1 and R2 phenyl ring in 3g (IC50 = 49.8 µM) did not 
result in improved inhibition when compared with 3b. 
The introduction of phenyl (3a), 4-F-3-CH3C6H3 (3c), 2-
pyridyl (3d), and n-butyl (3f) as R2

 
group

 
drastically 

decreased the Src inhibitory activity versus 3b. 
Introduction of electronegative fluorine also did not 
improve the activity (3h, 3m, and 3q). These data 
indicate that the nature of R2 group contributes 
significantly to the overall activity.  
 
Table 1. The Src kinase inhibitory activities of 1,2,3-triazoles 3a-z (class 

1). 

 
Compds R

1

 
R

2

 
IC

50
 (µM)

a
 

3a C
6
H

5
 C

6
H

5
 >100.0 

3b C
6
H

5
 4-CH

3
C

6
H

4
 41.6 

3c C
6
H

5
 4-F-3-CH

3
C

6
H

3
 81.0 

3d C
6
H

5
 2-pyridyl NA

b
 

3e Styryl C
6
H

5
 >100.0 

3f C
6
H

5
 n-butyl NA 

3g 4-CH
3
C

6
H

4
 4-CH

3
C

6
H

4
 49.8 

3h 4-CH
3
C

6
H

4
 4-F-3-CH

3
C

6
H

3
 82.3 

3i 4-OCH
3
C

6
H

4
 C

6
H

5
 >100.0 

3j 4-OCH
3
C

6
H

4
 3-CH

3
C

6
H

4
 72.8 

3k 4-ClC
6
H

4
 C

6
H

5
 139.0 

3l 4-ClC
6
H

4
 4-CH

3
C

6
H

4
 108.7 

3m 4-ClC
6
H

4
 4-FC

6
H

4
 NA 

3n 4-ClC
6
H

4
 4-OCH

3
C

6
H

4
 NA 

3o 4-ClC
6
H

4
 3-thienyl >150.0 

3p 4-BrC
6
H

4
 4-CH

3
C

6
H

4
 NA 

3q 4-BrC
6
H

4
 4-FC

6
H

4
 NA 

3r 4-BrC
6
H

4
 n-butyl NA 

3s 4-BrC
6
H

4
 1-Cl-butan-4-yl >100.0 

3t coumarin-3-yl C
6
H

5
 89.5 

3u coumarin-3-yl 4-CH
3
C

6
H

4
 >150.0 

3v 2-thienyl C
6
H

5
 32.5 

3w CH
3
 C

6
H

5
 >150.0 

3x CH
3
 4-CH

3
C

6
H

4
 >150.0 

3y OCH
3
 C

6
H

5
 >100 

3z N(C
2
H

5
) C

6
H

5
 >150.0 

Staurosporine _ _ 0.3 

PP2 _ _ 2.8 

a
The concentration of the compound that inhibited enzyme activity by 
50%; 

b
less than 10% enzyme inhibitory activity was observed up to the 

concentration of 75 µM. 

In order to explore the effect of nonaromatic cyclic 

functional groups at R1 position in Src inhibitory 

activity, a series of analogs 4a-m having different cyclic 

ketones and bearing nonaromatic groups at R1 position 

were prepared and evaluated (Table 2). Compounds 4g 

and 4h with N1 2-cyclohexanone and C4 phenyl/tolyl 

groups exhibited modest Src kinase inhibition with IC50 

values of 43.2 and 33.9 µM, respectively. Introduction 

of 4-fluorophenyl, 4-methoxyphenyl and 3-thienyl 

substituents at C4 position of 1,2,3-triazole also led to 

the compounds (4c, 4d, 4e, 4i, 4j, and 4k) with poor 

activity. Other compounds in class 2 showed diminished 

activity versus 4g and 4h, confirming the importance of 

R2 groups in overall activity. Compound 4h (IC50 = 33.9 

µM), a modest Src kinase inhibitor, was selected for 

inhibitory selectivity assays against Lck, a member of 

Src family kinase, EGFR, a receptor tyrosine kinase, 

and Csk, a tyrosine kinase that phosphorylates Src. IC50 

values in all cases were >100 µM (See, Figure S1, 

Supplementary Data). These data suggested that 

compound 4h was selective against Src when compared 

with the selected kinases. 
 
Table 2. The Src kinase inhibitory activity of compounds 4a-m  
(class 2). 

 
Compds R

1

 
R

2

 
IC

50
 (µM)

a
 

4a cyclopentan-1-on-2-yl C
6
H

5
 105.5 

4b cyclopentan-1-on-2-yl 4-CH
3
C

6
H

4
 62.1 

4c cyclopentan-1-on-2-yl 3-thienyl NA
b
 

4d cyclopentan-1-on-2-yl 4-OCH
3
C

6
H

4
 NA 

4e cyclopentan-1-on-2-yl 4-FC
6
H

4
 NA 

4f cyclopentan-1-on-3-yl C
6
H

5
 NA 

4g cyclohexan-1-on-2-yl C
6
H

5
 43.2 

4h cyclohexan-1-on-2-yl 4-CH
3
C

6
H

4
 33.9 

4i cyclohexan-1-on-2-yl 3-thienyl NA 

4j cyclohexan-1-on-2-yl 4-FC
6
H

4
 NA 

4k cyclohexan-1-on-2-yl 4-OCH
3
C

6
H

4
 NA 

4l cyclohexan-1-on-3-yl C
6
H

5
 NA 

4m cycloheptan-1-on-2-yl 4-CH
3
C

6
H

4
 66.1 

a
The concentration of the compound that inhibited enzyme activity by 
50%; 

b
less than 10% enzyme inhibitory activity was observed up to the 

concentration of 75 µM. 

 

Molecular modeling was utilized to examine how the 

structures would fit within the ATP binding site of the 

enzyme (Figure 2). The modeling studies indicated that 

tolyl groups in 3b and 4h occupy the hydrophobic 

binding pocket similar to tolyl group of PP1 with 

slightly different orientations (Figure 2). The 

substitution at N1 position of triazole occupied mostly 

the hydrophobic cavity of Src ATP binding site similar 

to that of t-butyl group of PP1. The compounds 

demonstrated only modest inhibitory potency possibly 



 

because of mostly hydrophobic interactions. The 4-

amino group of PP1 and PP2 is hydrogen bonded to the 

side chain of Thr338 as well as the carbonyl of Glu339 

that contributes significantly to their potency as Src 

kinase inhibitors. 

 

 
 
Figure 2. Comparison of structural complexes of Src kinase with 

different 1,2,3-triazoles (3b, red; 4h, green) and PP1 (blue) based on 

molecular modeling. The compounds are rendered in stick styles. They 

are the lowest energy conformers predicted for the compounds. 

 

In summary, compounds 3b, 3g, 3v, 4g, and 4h 
exhibited modest Src kinase inhibitory activity among 
the synthesized 1,2,3-triazoles with IC50 values in the 
range of 32-43 µM. Comparison of moderately active 
compounds indicate that the insertion of C6H5- and 4-
CH3C6H4- at R2 position in both groups with appropriate 
less bulkier group at R1 position in class 1 is well 
tolerated for the modest Src inhibition activity of 1,2,3-
triazoles. The structure-activity relationship data 
provide insights for further optimization of this scaffold 
and/or use in fragment-based discovery of Src kinase 
inhibitors.  
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