

Pharmacy Faculty Articles and Research

School of Pharmacy

2011

Click Chemistry Inspired One-Pot Synthesis of 1, 4-disubstituted 1, 2, 3-triazoles and Their Src Kinase Inhibitory Activity

Dalip Kumar Birla Institute of Technology and Science (BITS)

V. Buchi Reddy Birla Institute of Technology and Science (BITS)

Anil Kumar Birla Institute of Technology and Science (BITS)

Deendayal Mandal University of Rhode Island

Rakesh Tiwari Chapman University, tiwari@chapman.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles

Part of the Chemicals and Drugs Commons, Medical Biochemistry Commons, and the Medicinal and Pharmaceutical Chemistry Commons

Recommended Citation

Kumar, Dalip, et al. "Click chemistry inspired one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles and their Src kinase inhibitory activity." *Bioorganic & medicinal chemistry letters* 21.1 (2011): 449-452. doi: 10.1016/j.bmcl.2010.10.121

This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Click Chemistry Inspired One-Pot Synthesis of 1, 4-disubstituted 1, 2, 3-triazoles and Their Src Kinase Inhibitory Activity

Comments

NOTICE: this is the author's version of a work that was accepted for publication in *Bioorganic & Medicinal Chemistry Letters*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Bioorganic & Medicinal Chemistry Letters*, volume 21, issue 1, in 2011. DOI: 10.1016/j.bmcl.2010.10.121

The Creative Commons license below applies only to this version of the article.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright

Elsevier

Authors

Dalip Kumar, V. Buchi Reddy, Anil Kumar, Deendayal Mandal, Rakesh Tiwari, and Keykavous Parang

Click chemistry inspired one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory activity

Dalip Kumar,^{a.}* V. Buchi Reddy,^a Anil Kumar,^a Deendayal Mandal,^b Rakesh Tiwari,^b and Keykavous Parang^{b.}*

^aChemistry Group, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India ^bDepartment of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA

This is where the receipt/accepted dates will go; Received Month XX, 2000; Accepted Month XX, 2000 [BMCL RECEIPT]

Abstract—Two classes of 1,4-disubstituted 1,2,3-triazoles were synthesized using one-pot reaction of α -tosyloxy ketones/ α -halo ketones, sodium azide, and terminal alkynes in the presence of aq. PEG (1:1, v/v) using the click chemistry approach and evaluated for Src kinase inhibitory activity. Structure-activity relationship analysis demonstrated that insertion of C₆H₅- and 4-CH₃C₆H₄- at position 4 for both classes and less bulkier aromatic group at position 1 in class 1 contribute critically to the modest Src inhibition activity (IC₅₀ = 32-43 μ M) of 1,4-disubstituted 1,2,3-triazoles.

Protein tyrosine kinases (PTKs) catalyze the phosphorylation of phenolic group of tyrosine residue in many substrate proteins by the transfer of γ -phosphate moiety of ATP. PTKs play a crucial role in the signal transduction pathways. The non-receptor tyrosine kinases of the Src family, Src, Yes, Lck, Fyn, Lyn, Fgr, Hck, Blk, and Yrk, share a great deal of structural homology and are present in the cytoplasm.¹ Src tyrosine kinase plays a prominent role in regulating cell growth and differentiation. Src has been implicated in development of variety of cancers. Src mutations and/or overexpression has been correlated with tumor growth, metastasis, and angiogenesis.²

Various structural motifs have been reported to target Src kinase³ such as quinolinecarbonitriles,⁴ ATPphosphopeptide conjugates,⁵ pyrazolopyrimidines,⁶ purines,⁷ imidazo[1,5-a]pyrazines,⁸ benzotriazines,⁹ pyrimidoquinolines,¹⁰ pyridopyrimidinones¹¹, and quinazolines.¹² Imatinib, a well known marketed PTK inhibitor, is used to treat a number of malignancies like

myelogenous chronic leukemia (CML) and gastrointestinal stromal tumors (GISTs). Dasatinib is another marketed kinase inhibitor that inhibits Src family tyrosine kinases and BCR/ABL and is approved use after Imatinib treatment. А to 3inhibitor, quinolinecarbonitrile-based Src kinase Bosutinib, is undergoing rigorous trials for cancer treatment.¹

X-ray studies of phenylpyrazolopyrimidine inhibitors in Hck kinase-PP1 and Lck kinase-PP2¹⁴ complexes have revealed a deep hydrophobic binding pocket near the ATP binding site of Src family kinases for the aryl moiety of the pyrazolopyrimidine template. We have previously shown that the hydrophobic interaction of the phenyl group with hydrophobic pocket is essential for the binding of 3-phenylpyrazolopyrimidines (Figure 1) to the ATP binding site.¹⁵ The pyrazolopyrimidine core resembles the purine core of ATP itself and bind in the nucleotide binding site in the position normally occupied by the adenine base. Any substituent attached

^{*} Corresponding authors. Tel.: +91-1596-245073-279; Fax: +91-1596-244183; e-mail: dalipk@bits-pilani.ac.in (D.K.); kparang@uri.edu (K.P.)

to N^1 of pyrazole occupies a mostly hydrophobic cavity in PP1. Most of this hydrophobic cavity remains unfilled. This cavity, in part, formed from side chains of helix αC and helix αD .

Figure 1. Chemical structures of 3-phenylpyrazolopyrimidines and 1,4-disubstituted 1,2,3-triazoles.

Herein, we describe synthesis and evaluation of 1,4disubstituted 1,2,3-triazoles (Figure 1) as a novel template for Src kinase inhibition. The 1,2,3-triazoles are important heterocycles that are reported to possess several biological properties including anti-HIV,¹⁶ antiallergic,¹⁷ antifungal,¹⁸ and antimicrobial,¹⁹ activities. The 1,2,3-triazole based compounds have been previously reported to inhibit p38 MAP kinase and PfPK7 protein kinase.²⁰

We hypothesized that substitution at N_1 and position 4 of 1,2,3-triazoles with hydrophobic residues may occupy and interact with the hydrophobic binding pocket of Src ATP binding site similar to that of 3phenylpyrazolo-pyrimidines. The hydrophobic interactions of the hydrophobic groups with several amino acids in the hydrophobic pockets may contribute to the enhancement of potency. Furthermore, the attachment of hydrophobic group to 1,2,3-triazoles may generate novel geometric features that might contribute to binding of such compounds to Src kinase.

Preparation of 1,2,3-triazoles (**3a-z** and **4a-m**) has been widely explored using click chemistry approach due to its complete specificity, efficiency, simple reaction workup procedure, and quantitative reaction yield of the products.²¹ Furthermore, multicomponent reactions have been contributing considerably for the drug discovery by putting forth multiple arrays of compounds with diverse substitution patterns expeditiously.²² The synthetic strategy of these reactions can yield complex molecules with several new bonds and points of diversity in one pot thus alleviating the labor involved over a series of reaction workups.²³

The facile and eco-friendly synthesis of these derivatives involves a one-pot reaction of α -tosyloxy ketones/ α -halo ketones, sodium azide, and terminal alkynes in the presence of aq PEG 400 (1:1, v/v) at room temperature under 'Click' conditions²⁴ (Scheme

1). The convenient preparation of 1,2,3-triazoles involves initial nucleophilic substitution reaction of α tosyloxy ketones/ α -halo ketones with sodium azide to generate in situ α -azido ketones which is followed by Cu (I) catalyzed regioselective cycloaddition reaction with alkynes. The protocol is broadly applicable for the preparation of 1,2,3-triazoles as demonstrated by the use of various α -tosyloxy ketones/ α -halo ketones (aliphatic, aromatic and cyclic) and alkynes (alkyl and aryl). Both the α -tosyloxy ketones and α -halo ketones reacted with almost the same efficiency. It was observed that the α tosyloxy ketones required marginally shorter reaction time when compared to a-halo ketones. Moreover, atosyloxy ketones are ideal substitutes for the lachrymatory a-halo ketones. The mild reaction conditions and simple workup allowed us to rapidly prepare various substituted 1,2,3-triazoles in good yields (60-90%). After completion of the reaction, the contents were simply diluted with water, filtered, and dried to obtain 1,2,3-triazole which was finally recrystallized from ethyl acetate/hexane. The IR spectra of all the compounds exhibited a strong band at about 1685 cm⁻¹. In ¹H NMR a characteristic singlet was observed for triazolyl C₅–H at about δ 7.90 ppm. All the synthesized compounds were characterized by IR, ¹H NMR, and mass spectroscopy.

Scheme 1. Synthesis of 1,4-disubstituted 1,2,3-triazoles.

Two classes of compounds with R_1 -CO(CH)substitution at position 1 were synthesized using this procedure. The first class of compounds (**3a-z**) (Table 1) includes 1,2,3-triazoles where R_1 is a hydrophobic residue, such as phenyl, substituted phenyl, coumarinyl, 2-thienyl, or other nonaromatic substituents (i.e., CH₃, OCH₃, N(C₂H₅)). In class 2 compounds (**4a-m**) (Table 2), R_1 is a cyclopentanone-2-yl, cyclohexanone-2-yl, or cycloheptanone-2-yl. The substitution at position 4 (R_2) is phenyl, substituted phenyl, short alkyl, or a heteroaromatic (i.e., 2-pyridyl, 3-thienyl). The diversity of hydrophobic substitutions at R_1 and R_2 positions allowed the structure-activity relationship analysis of 1,4-disubstituted 1,2,3-triazoles.

An array of 39 diversely substituted 1,2,3-triazoles (20 novel compounds) was evaluated against Src kinase. The results of Src kinase inhibitory activity of compounds in classes 1 and 2 are shown in Tables 1 and 2, respectively.

In general, the compounds in class 1 with R_1 as nonaromatic alkyl groups (Me, *N*-ethyl, OMe, **3w-z**)

exhibited weak Src kinase inhibition with IC₅₀ values more than 100 µM or minimal inhibitory activity at highest concentration tested (375 µM). Furthermore, compounds with large aromatic groups such as styryl (3e), 3-coumarinyl (e.g., 3t, 3u) or aromatic groups with a bulky substitution (4-ClC₆H₄, 4-BrC₆H₄) in 3k-q showed weak Src inhibitory potency. Attempts to improve the activity by introducing an aliphatic substituent at R_2 (**3r**, **3s**) also resulted in poor inhibition, suggesting that the size of aromatic moiety at R_1 position is critical, and a bulky moiety at this position must be avoided. In contrast, the introduction of less bulkier unsubstituted phenyl and thienyl groups at position 1 in compounds **3b** (IC₅₀ = 41.6 μ M) and **3v** $(IC_{50} = 32.5 \mu M)$ in class 1 significantly improved the Src inhibitory activities.

The presence of an electron-donating methyl group in R_1 and R_2 phenyl ring in 3g (IC₅₀ = 49.8 µM) did not result in improved inhibition when compared with **3b**. The introduction of phenyl (**3a**), 4-F-3-CH₃C₆H₃ (**3c**), 2-pyridyl (**3d**), and *n*-butyl (**3f**) as R_2 group drastically decreased the Src inhibitory activity versus **3b**. Introduction of electronegative fluorine also did not improve the activity (**3h**, **3m**, and **3q**). These data indicate that the nature of R_2 group contributes significantly to the overall activity.

 Table 1. The Src kinase inhibitory activities of 1,2,3-triazoles
 3a-z (class 1).

N≃N

Ο

R_1 N R_2					
Compds	R,	R,	$IC_{50} (\mu M)^{a}$		
3a	C ₆ H ₅	C ₆ H ₅	>100.0		
3b	C_6H_5	$4-CH_3C_6H_4$	41.6		
3c	C_6H_5	$4-F-3-CH_3C_6H_3$	81.0		
3d	C ₆ H ₅	2-pyridyl	NA^{b}		
3e	Styryl	C_6H_5	>100.0		
3f	C_6H_5	n-butyl	NA		
3g	$4-CH_{3}C_{6}H_{4}$	$4-CH_3C_6H_4$	49.8		
3h	$4-CH_3C_6H_4$	$4-F-3-CH_{3}C_{6}H_{3}$	82.3		
3i	$4-OCH_3C_6H_4$	C_6H_5	>100.0		
3ј	$4-OCH_3C_6H_4$	$3-CH_3C_6H_4$	72.8		
3k	$4-ClC_6H_4$	C_6H_5	139.0		
31	$4-ClC_6H_4$	$4-CH_3C_6H_4$	108.7		
3m	$4-ClC_6H_4$	$4-FC_6H_4$	NA		
3n	$4-ClC_6H_4$	$4-OCH_3C_6H_4$	NA		
30	$4-ClC_6H_4$	3-thienyl	>150.0		
3р	$4-BrC_{6}H_{4}$	$4-CH_3C_6H_4$	NA		
3q	$4-BrC_6H_4$	$4-FC_6H_4$	NA		
3r	$4-BrC_6H_4$	n-butyl	NA		
3s	$4-BrC_{6}H_{4}$	1-Cl-butan-4-yl	>100.0		
3t	coumarin-3-yl	C_6H_5	89.5		
3u	coumarin-3-yl	$4-CH_3C_6H_4$	>150.0		
3v	2-thienyl	C ₆ H ₅	32.5		
3w	CH ₃	C_6H_5	>150.0		
3x	CH ₃	$4-CH_3C_6H_4$	>150.0		
3у	OCH ₃	C ₆ H ₅	>100		
3z	$N(C_2H_5)$	C_6H_5	>150.0		
Staurosporine	_	_	0.3		
PP2	_	_	2.8		

"The concentration of the compound that inhibited enzyme activity by 50%; "less than 10% enzyme inhibitory activity was observed up to the concentration of 75 μ M.

In order to explore the effect of nonaromatic cyclic functional groups at R₁ position in Src inhibitory activity, a series of analogs 4a-m having different cyclic ketones and bearing nonaromatic groups at R₁ position were prepared and evaluated (Table 2). Compounds 4g and 4h with N1 2-cyclohexanone and C4 phenyl/tolyl groups exhibited modest Src kinase inhibition with IC_{50} values of 43.2 and 33.9 µM, respectively. Introduction of 4-fluorophenyl, 4-methoxyphenyl and 3-thienyl substituents at C4 position of 1,2,3-triazole also led to the compounds (4c, 4d, 4e, 4i, 4j, and 4k) with poor activity. Other compounds in class 2 showed diminished activity versus 4g and 4h, confirming the importance of R_2 groups in overall activity. Compound **4h** (IC₅₀ = 33.9 µM), a modest Src kinase inhibitor, was selected for inhibitory selectivity assays against Lck, a member of Src family kinase, EGFR, a receptor tyrosine kinase, and Csk, a tyrosine kinase that phosphorylates Src. IC_{50} values in all cases were >100 µM (See, Figure S1, Supplementary Data). These data suggested that compound 4h was selective against Src when compared with the selected kinases.

Table 2. The Src kinase inhibitory activity of compounds 4a-m(class 2).

0)	N=N	≻-R₂
Ŗ ₁	\checkmark	.n _//	
1	;		

	· · *		
Compds	\mathbf{R}_{1}	\mathbf{R}_{2}	$IC_{50} (\mu M)^{a}$
4a	cyclopentan-1-on-2-yl	C_6H_5	105.5
4b	cyclopentan-1-on-2-yl	$4-CH_3C_6H_4$	62.1
4c	cyclopentan-1-on-2-yl	3-thienyl	NA^{b}
4d	cyclopentan-1-on-2-yl	$4-OCH_3C_6H_4$	NA
4 e	cyclopentan-1-on-2-yl	$4-FC_6H_4$	NA
4 f	cyclopentan-1-on-3-yl	C ₆ H ₅	NA
4g	cyclohexan-1-on-2-yl	C_6H_5	43.2
4h	cyclohexan-1-on-2-yl	$4-CH_3C_6H_4$	33.9
4i	cyclohexan-1-on-2-yl	3-thienyl	NA
4j	cyclohexan-1-on-2-yl	$4-FC_6H_4$	NA
4k	cyclohexan-1-on-2-yl	$4-OCH_3C_6H_4$	NA
41	cyclohexan-1-on-3-yl	C ₆ H ₅	NA
4m	cycloheptan-1-on-2-yl	$4-CH_3C_6H_4$	66.1

The concentration of the compound that inhibited enzyme activity by 50%; ^bless than 10% enzyme inhibitory activity was observed up to the concentration of 75 μ M.

Molecular modeling was utilized to examine how the structures would fit within the ATP binding site of the enzyme (Figure 2). The modeling studies indicated that tolyl groups in **3b** and **4h** occupy the hydrophobic binding pocket similar to tolyl group of PP1 with slightly different orientations (Figure 2). The substitution at N1 position of triazole occupied mostly the hydrophobic cavity of Src ATP binding site similar to that of *t*-butyl group of PP1. The compounds demonstrated only modest inhibitory potency possibly

because of mostly hydrophobic interactions. The 4amino group of PP1 and PP2 is hydrogen bonded to the side chain of Thr338 as well as the carbonyl of Glu339 that contributes significantly to their potency as Src kinase inhibitors.

Figure 2. Comparison of structural complexes of Src kinase with different 1,2,3-triazoles (3b, red; 4h, green) and PP1 (blue) based on molecular modeling. The compounds are rendered in stick styles. They are the lowest energy conformers predicted for the compounds.

In summary, compounds **3b**, **3g**, **3v**, **4g**, and **4h** exhibited modest Src kinase inhibitory activity among the synthesized 1,2,3-triazoles with IC_{50} values in the range of 32-43 μ M. Comparison of moderately active compounds indicate that the insertion of C_6H_5 - and 4- $CH_3C_6H_4$ - at R_2 position in both groups with appropriate less bulkier group at R_1 position in class 1 is well tolerated for the modest Src inhibition activity of 1,2,3-triazoles. The structure-activity relationship data provide insights for further optimization of this scaffold and/or use in fragment-based discovery of Src kinase inhibitors.

Acknowledgements

We thank University Grants Commission (SAP, DRS), Birla Institute of Technology & Science, Pilani, India, National Science Foundation, Grant Number CHE 0748555, and the American Cancer Society Grant # RSG-07-290-01-CDD for the financial support.

Supplementary data

Supplementary data including experimental procedures and characterization of compounds can be found in the online version of this article.

References and notes

- (a) Bjorge, J. D.; Jakymiw, A.; Fujita, D. J. Oncogene 2000, 19, 5620. (b) Irby, R. B.; Yeatman, T. J. Oncogene 2000, 19, 5636.
- (a) Martin, G. S. *Nature Rev. Mol. Cell Biol.* 2001, 2, 467.
 (b) Counterneidge, S. A. *Biochem. Soc. Trans.* 2002, *30*, 11.
 (c) Schlessinger, J. *Cell* 2000, *100*, 293.

- (a) Ye, G., Tiwari, R., Parang K. Curr. Opin. Investig. Drugs 2008, 9, 605 (b) Parang, K., Sun, G. Expert Opin. Ther. Patents 2005, 15, 1183. (c) Sawyer, T. K.; Top Med Chem 2007, 1, 383.
- 4. (a) Boschelli, D. H.; Sosa, A. C. B.; Golasb, J. M.; Boschelli, F. *Bioorg. Med. Chem. Lett.* 2007, *17*, 1358.
 (b) Boschelli, D. H.; Wu, B.; Ye, F.; Durutlic, H.; Golas, J. M.; Lucas, J.; Boschelli, F. *Bioorg. Med. Chem.* 2008, *16*, 405. (c) Sosa, A. C. B.; Boschelli, D. H.; Wu, B.; Wang, Y.; Golas, J. M. *Bioorg. Med. Chem. Lett.* 2005, *15*, 1743. (d) Wu, B.; Sosa, A. C. B.; Boschelli, D. H.; Boschelli, F.; Honores, E. E.; Golas, J. M.; Powell, D. W.; Wang, Y. D. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3993.
- Nam, N. H.; Lee, S.; Ye, G.; Sun, G.; Parang, K. Bioorg. Med. Chem. 2004, 12, 5753.
- Wang, Y.; Metcalf, C. A. M.; Shakespeare, W.; Sundaramoorthi, R.; Keenan, T. P.; Bohacek, R. S.; Schravendijk, M. R.; Violette, S. M.; Narula, S. S.; Dalgarno, D. C.; Haraldson, C.; Keats, J.; Liou, S.; Mani, U.; Pradeepan, S.; Ram, M.; Adams, S.; Weigele, M.; Sawyer, T. K. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3067.
- Wang, Y.; Metcalf, C. A.; Shakespeare, W. C.; Sundaramoorthi, R.; Keenan, T. P.; Bohacek, R. S.; Schravendijk, M. R.; Violette, S. M.; Narula, S. S.; Dalgarno, D. C.; Haraldson, C.; Keats, J.; Liou, S.; Mani, U.; Pradeepan, S.; Ram, M.; Adams, S.; Weigele, M.; Sawyer, T. K. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3067.
- Mukaiyama, H.; Nishimura, T.; Kobayashi, S.; Ozawa, T.; Kamada, N.; Komatsu, Y.; Kikuchi, S.; Oonota, H.; Kusama, H. *Bioorg. Med. Chem. Lett.* 2007, 15, 86.
- Noronha, G.; Barrett, K.; Boccia, A.; Brodhag, T.; Cao, J.; Chow, C. P.; Dneprovskaia, E.; Doukas, J.; Fine, R.; Gong, X.; Gritzen, C.; Gu, H.; Hanna, E.; Hood, J. D.; Hu, S.; Kang, X.; Key, J.; Klebansky, B.; Kousba, A.; Li, G.; Lohse, D.; Mak, C. C.; McPherson, A.; Palanki, M. S. S.; Pathak, V. P.; Renick, J.; Shi, F.; Soll, R.; Splittgerber, U.; Stoughton, S.; Tang, S.; Yee, S.; Zeng, B.; Zhaoa, N.; Zhu, H. *Bioorg. Med. Chem. Lett.* 2007, 17, 602.
- Boschelli, D. H.; Powell, D.; Golas, J. M.; Boschelli, F. Bioorg. Med. Chem. Lett. 2003, 13, 2977.
- 11. Vu, C. B.; Luke, G. P.; Kawahata, N.; Shakespeare, W. C.; Wang, Y.; Sundaramoorthi, R.; Metcalf, C. A.; Keenan, T. P.; Pradeepan, S.; Corpuz, E.; Merry, T.; Bohacek, R. S.; Dalgarno, D. C.; Narula, S. S.; Schravendijk, M. R.; Ram, M. K.; Adams, S.; Liou, S.; Keats, J. A.; Violette, S. M.; Guan, W.; Weigele, M.; Sawyer, T. K. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3071.
- Barlaam, B.; Fennell, M.; Germain, H.; Green, T.; Hennequin, L.; Morgentin, R.; Olivier, A.; Ple', P.; Vautiera, M.; Costello, G. *Bioorg. Med. Chem. Lett.* 2005, 15, 5446.
- Vultur, A.; Buettner, R.; Kowolik, C.; Liang, W.; Smith, D.; Boschelli, F.; Jove1, R. *Mol. Cancer Ther.* 2008, 7, 1185.

- 14. (a) Schindler, T.; Sicheri, F.; Pico, A.; Gazit, A.; Levitzki, A.; Kuriyan, J. *Mol Cell* **1999**, *3*, 639. (b) Zhu, X.; Kim, J. L.; Newcomb, J. R.; Rose, P. E.; Stover, D. R.; Toledo, L. M.; Zhao, H.; Morgenstern, K. A. *Structure Fold Des.* **1999**, *7*, 651.
- 15. Kumar, A.; Wang, Y.; Lin, X.; Sun, G.; Parang, K. *ChemMedChem* **2007**, *2*, 1346.
- 16. Alvarez, R.; Velazquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. *J. Med. Chem.* **1994**, *37*, 4185.
- 17. Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med. Chem. **1986**, 29, 2262.
- 18. (a) Vicentini, C. B.; Brandolini, V.; Guarneri, M.; Giori, P. Farmaco 1992, 47, 1021. (b) Joan, C. F. T.; Elizabeth, H.; Beatrice, M.; Daniel, P. B. Antimicrob. Agents Chemother. 1998, 42, 313.
- Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
- 20. (a) Diner, P.; Andersson, T.; Kjellén, J.; Elbing, K.; Hohmann, S.; Grøtli, M. *New J. Chem.* **2009**, *33*, 1010
 (b) Klein, M.; Dinér, P.; Dorin-Semblat, D.; Doerig C.; Grøtli, M. *Org. Biomol. Chem.*, **2009**, *7*, 3421.
- 21. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (b) Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128.
- Zhu, J.; Bienayme, H. In *Multicomponent Reactions*, 1st Ed.; Wiley-VCH: Weinheim, 2005.
- 23. (a) Elders, N.; Born, D. V.; Hendrickx, L. J. D.; Timmer, B. J. J.; Krause, A.; Janssen, E.; Kanter, F. J. J.; Ruijter, E.; Orru, R. V. A. Angew. Chem. Int. Ed., 2009, 48, 5856. (b) Santra S.; Andreana P. R. Org. Lett., 2007, 9, 5035.
- 24. (a) Kumar, D.; Reddy, V. B.; Varma, R. S. *Tetrahedron Lett.* 2009, *50*, 2065. (b) Kumar, D.; Patel, G.; Reddy, V. B. *Synlett* 2009, 399.