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Can Manipulators Mislead Market Observers?

Abstract

We study experimental markets where privately informed traders exchange simple assets, and where
uninformed third parties are asked to forecast the values of these assets, guided only by market prices.
Although prices only partially aggregate information, they significantly improve the forecasts of third
parties. In a second treatment, a portion of traders are given preferences over the forecasts made by
observers. Although we find evidence that these traders attempt to manipulate prices in order to influence
the beliefs of observers, we find no evidence that observers make less accurate forecasts as a result.

1 Introduction

An important property of prices in asset markets is their ability to summarize dispersed information. Indeed,

prices in secondary financial markets are important forecasting tools for primary investors and serve a

vital role in guiding the allocation of capital. This property of prices has motivated practitioners in firms,

governments and academia to establish markets for the express purpose of forecasting uncertain future

events. These ”prediction markets” have been used to forecast presidential elections, sporting outcomes,

project completion dates, geopolitical events and futures sales of soon to be released products. These markets

appear to be very good predictors of future events (Wolfers and Zitzewitz , 2004; Forsythe et. al. , 1992)

and therefore may hold great promise as forecasting tools for decision makers in business and government.

Recently, critics have raised two concerns calling into question the usefulness of asset markets as decision

making tools. First, there is some debate about the interpretability of prices as estimators of probabilities

of future events. Although recently this debate has centered on theoretical concerns about aggregation,

there exists long standing experimental evidence suggesting that asset market prices are often imperfectly

efficient and therefore serve as imperfect probability estimates (Forsythe and Lundholm , 1990; Hanson et.

al. , 2006). Wealth constraints, informational thinness, insufficient time for proper convergence, insufficient

trader experience and even trader irrationality can result in imperfect information aggregation. In such

contexts it is unclear whether and how successfully decision makers can use prediction markets as forecasting

tools.

Second, some observers worry that asset markets may be vulnerable to price manipulation. If traders

have preferences over decisions made based on asset prices, they may be willing to take losses in the market

in order to influence prices and thereby alter observers’ beliefs. Indeed it was, in part, such concerns that
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lead Congress to shut down the Policy Analysis Market (Tucker and Meirowitz , 2004), a prediction market

established by the defense department to aggregate intelligence data for policy makers.

We report an experiment designed to assess these concerns. In our experiment, traders with noisy signals

regarding the value of an asset trade that asset in a double auction. A separate set of uninformed subjects

observe the price series and, afterwards, attempt to forecast the asset’s value. Although prices in these

markets are imperfectly efficient (and are, in some cases, severely biased), observers manage to use them to

significantly improve their forecasts.

In a second treatment, half of the population of traders are given preferences over observers’ forecasts.

These traders attempt to manipulate prices and in some cases succeed in mildly altering average contract

prices. This manipulation, however, has no negative impact on the accuracy of observer forecasts. Our

findings suggest that even if prediction markets are imperfectly efficient and subject to manipulation they,

nevertheless, may be useful forecasting tools.

It is worth noting that, although our experiment was motivated by prediction markets, the problems

we examine are relevant to naturally occurring asset markets as well. Our results suggest that primary

investors observing secondary prices may be capable of anticipating and correcting for some biases in the

price formation process when making forecasts. Thus even inefficient prices may serve as useful guides for

capital allocation decisions. Moreover, our experiment suggests that it is difficult for traders to affect capital

flows by manipulating asset market prices.

The aggregative properties of prices were first noted by Hayek (1945) and were formally examined by

Muth (1961). In 1988, implementation and field experimentation with prediction markets began in the Iowa

Electronic Market, a prediction market established to forecast the outcomes of political elections. (Wolfers

and Zitzewitz , 2004) provides a useful overview of progress in the field.

Plott and Sunder (1988) conducted pioneering experiments studying information aggregation in asset

markets. Though they reported aggregation in some of their markets, this aggregation was imperfect and

severely sensitive to theoretically benign institutional features of the market in which trade took place.

Follow up work by Forsythe and Lundholm (1990) examining factors affecting aggregation concluded, in

part, that trader experience has a substantial effect on informational efficiency of prices. Recently Manski

(2004) has argued that theoretically, even absent such factors, prediction market prices may do a poor job at

summarizing dispersed information. Wolfers and Zitzewitz (2005) and Gjerstad (2005) have countered that,

assuming moderate levels of risk aversion, prediction market prices can credibly be interpreted as probability

estimates.

Prior evidence on the vulnerability of prediction markets to manipulation is mixed. A field experiment

by Camerer (1998) failed to produce evidence of successful manipulation in racetrack betting markets.

However, in a second field experiment Hansen et. al. (2004) successfully influenced prices in the Iowa
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Electronic Market. Hanson and Oprea (2004) present a microstructure model in which manipulators create

liquidity by trading and can therefore have net positive effects on price accuracy. Hanson et. al. (2006)

conduct a laboratory experiment in which a subset of traders are given incentives to directly raise the level

of the price. Though these traders do in fact attempt to manipulate prices, their incentives are common

knowledge and they are countered by the rest of the market. Strumpf and Rhode (2003) provide evidence

that 19th century efforts to manipulate betting markets also failed to negatively affect efficiency.

The remainder of this paper will be organized as follows. In section 2, we describe our experimental

design. In section 3 we present our empirical questions and present corresponding results in section 4. We

conclude the paper in section 5.

2 Experimental Design

In a baseline treatment, a subset of subjects (traders) trade a common value asset in a standard double

auction after receiving noisy signals about the asset’s value. A set of uninformed subjects (observers) watch

the market and, using trading data, attempt to forecast the value. In a second treatment, half of the trading

subjects are paid a bonus depending on how well the observers’ forecast matches a private target. These

traders therefore may have incentives to use the market to affect observer beliefs.

2.1 Information Environment and Trader Profits

Our experiment consist of a series of asset markets with 8 traders, each endowed with 200 in currency and

2 shares of a binary option (an all or nothing contract) with a common value, v ∈ {0, 100} . Traders in

these markets are allowed to buy and sell shares in a standard double auction 1, though the true value of

these shares is uncertain. It is common knowledge, ex ante, that assets will be worthless (v = 0) or valuable

(v = 100) with equal probability. Once the market closes, Trader i’s total earnings are:

πi = C −
Ji∑
j=1

Bij +
Ki∑
k=1

Sik + V (N + Ji −Ki) (1)

C = Endowed Cash (200)

V = Realized Value of the Security (0,100)

N = Endowed Shares (2)

Ji= Number of units trader i Buys in the Market

Ki = Number of units trader i Sells in the Market

Bij = Price of Buy Contract j purchased by trader i

Sik = Price of Sell Contract k sold by trader i
1Note that traders are not allowed to short sell in these markets

3



Figure 1: The expected value a fully informed Bayesian would assign to assets as a function of the number
of positive signals distributed to the market. Dark black lines show the forecast a fully informed Bayesian
would make.

Prior to a trade each trader, i, receives a private noisy signal si ∈ {−,+} with replacement regarding the

value of the asset. The market, overall is therefore equipped with a vector of signals, ~s = (s1, s2, ..., s8) . The

distribution from which signals are drawn depends on the true state, 0 or 100, of the security. If the true state

is 0, each signal is drawn uniformly and independently from {−,−,+}; if the true state is 100, each signal

is drawn similarly from {+,+,−}. Urn designs such as this one are common in information aggregation

experiments. Our information environment is particularly similar to ones implemented in Anderson and

Holt [1997] and Hung and Plott [2001].

Notice that, prior to receiving a signal, a rational Bayesian trader will assign an expected value of 50 to

each share of the security. After receiving a signal, a Bayesian trader will revise this value to 1
3 × 100 if the

signal is - and about 2
3 × 100 if the signal is +.

In a perfectly revealing rational expectations equilibrium, the market price should aggregate all of the

information contained in the market, serving as a sufficient statistic for the 8 signals held by market partic-

ipants. Such a price will be the expected value a Bayesian trader would assign to the asset if she had access

to all 8 signals. This Bayesian price will therefore equal:

Ev(n) =
1
3

n 2
3

8−n

1
3

n 2
3

8−n + 2
3

n 1
3

8−n × 100 (2)

where n is the number of + signals in the market. Bayesian prices are charted in Figure 1.

In this study we are interested in how information influences third party decision making through the
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market price. It will therefore be useful to have a metric describing the degree to which the information

behind market activity indicates one value realization versus the other. We construct a variable called signal

strength, which indicates how consistent underlying information is but is independent of the direction of

information. When n = 4, ~s is uninformative in the sense that the prior estimate of the value and the

posterior coincide. The further n is from 4, the stronger is the indication that the asset will take one value

versus another. Denoting x = (n− 4), prob(100|x) = prob(0|−x), since the distributions are symmetric. We

then define signal strength as m = |x|. A signal strength of 0 means that observation of signals would not

change the beliefs of a Bayesian after viewing ~s. A signal strength of 4 means that such a Bayesian would

be virtually certain of the asset’s value.

2.2 Observer Incentives

In addition to 8 traders inside the market, there are 5 observers outside the market who observe trade in

the market and, after the market closes, make a forecast f ∈ {0, 100} . Observers have no money or shares

and are unable to trade. Instead they earn money if they make the decision f = v, correctly forecasting the

value of the asset based on their observation of market prices. Observer i’s earnings are

πo =

 250 if f = v

0 if f 6= v.
(3)

Observers are induced with the same priors as traders. However, unlike traders, observers are provided with

no private information and must, instead, rely entirely on data from the market to guide their decisions.

In order to judge how well observers are informed by prices, it will be useful to have a benchmark to

compare their forecasts. A natural benchmark is what we will call the indicated value. The indicated value,

vI , is simply the prediction in {0, 100} a risk neutral Bayesian would make after observing all 8 draws. To

be precise, the indicated value is:

vI =

 100 if prob(v = 100|~s) > 0.5

0 if prob(v = 100|~s) < 0.5
(4)

2.3 Manipulation Incentives

The environment described in sections 2.1 and 2.2 comprises our Baseline treatment. In it, a cohort of

privately informed traders are allowed to use private information to trade in a standard double auction. A

group of observers observe trade and, after the market closes, attempt to forecast the true value of assets

based on the time series of prices they have observed.

In a second treatment, called Forecast Preferences, we provide half of the traders (4 traders) in the market

with preferences over observers forecasts, f . Before the market opens these preference traders are assigned
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the same random target t, drawn uniformly from {0, 100}. Preference traders are provided incentives to

influence observers to make decisions, f , which approach this target. After trade, preference trader total

earnings are equal to their earnings as a trader, πt, plus a bonus that depends on the average forecasts of

observers. Earnings for preference traders are:

πp = πt + 200− 2|t− 1
5

5∑
j=1

Fj | (5)

where Fj is the forecast of observer j. Preference traders, therefore, have some incentives to influence decision

making and to influence it in a direction which is, ex ante, uncorrelated with the true value of the asset.

2.4 Discussion of Design

Our experimental design is optimized to study how asset market prices perform as forecasting tools when

markets suffer from two pathologies. First, we introduce bias into the price by mirroring the distribution of

assets and currency used in Hanson et. al. (2006) . The limited number of shares distributed to subjects

(combined with no short selling provision) limits the degree to which traders can influence prices downwards

while ample currency makes bidding prices up relatively easy. The result in Hanson et. al. (2006) was a

persistent bias in prices relative to perfect aggregation. Replicating this environment allows us to study how

well observers foresee and adjust for these biases in prices when forecasting.

Second, our Forecast Preferences treatment is designed to give traders a strong opportunity and incentives

to obscure information in the market price through manipulation. A key feature of the implementation of

the treatment is that the target observer forecst is known neither to non-preference traders nor to observers.

As a result non-preference traders cannot anticipate and automatically react to manipulation attempts as

they do in Hanson et. al. (2006). Moreover, without knowing the incentives of preference traders, observers

can expect noisier information coming from a successfully manipulated market, rendering it a less reliable

tool. This feature of the design allows us to study whether unpredictable and unobserved manipulation

campaigns might short circuit the use of and reliability of prices for the purpose of forecasting.

2.5 Experiments and Experimental Procedures

Each experimental session consisted of 16 periods,2 with each period constituting a distinct market. In each

period a new asset value was drawn, trader accounts were reset so that they had 200 in cash and 2 shares

of the asset, traders were assigned new signals, preference traders received new targets and observers made

new decisions once the market closed.

Subjects were recruited from the undergraduate population at George Mason University and given a $5

show-up payment upon arrival. The subjects went through a detailed instruction period with written and oral
2Subjects were not told how many periods would be conducted, but were recruited for 2 hours.
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Period + Signals Indicated Signal Preference Actual
Value Strength Target, t Value

1 6 100 2 0 100
2 1 0 3 0 0
3 2 0 2 0 0
4 3 0 1 100 0
5 5 100 1 0 100
6 0 0 4 100 0
7 3 0 1 0 0
8 7 100 3 0 100
9 3 0 1 100 100
10 1 0 3 100 0
11 4 NA 0 0 100
12 2 0 2 100 0
13 6 100 2 100 100
14 4 NA 0 100 100
15 5 100 1 100 100
16 2 0 2 0 0

Table 1: Parameter design by period, providing the number of positive signals distributed, the forecast of a
fully-informed risk-neutral Bayesian, the coherence of signals distributed to the market, the observer forecast
that preference traders would prefer and the actual value of the asset. The indicated value is undefined (we
write ”NA”) when only 4 signals are distributed to the market since, in this case, it is unclear what a risk
neutral Bayesian would forecast.

instructions. Care was taken to demonstrate the information and incentive structure in the experiment.3 We

used visual props to demonstrate the distribution from which the values and signals were drawn. In addition,

two detailed practice periods, in which payoffs were not calculated in an individual’s total earnings, were

used to provide experience. The value of the security for each round was set to be either 0 or 100 according

to a uniform random draw. At the start of each round, each trader is given a signal about the asset’s value.

The traders are informed that the signals were independently drawn, and with a 2/3 probability a + would

be drawn when the value was 100, and with a 2/3 probability a - would be drawn when the value was 0. 4

Between the two treatments we kept all elements in the design identical, including the value realizations

and the signals to traders each period, except that, in the Forecast Preferences treatment, half of all traders

were provided with a bonus based on the average of observers decisions each period. Table 1 shows, for

each period in an experimental session, the information draws (number of + signals drawn), the indicated

value, the signal strength, the preference traders’ target (known only to preference traders), and the actual

realization of the security value. 5

3Instructions for the Baseline treatment can be found at http://ices2.gmu.edu/dorina/No.Manipulation.Instructions/website11.htm
and for the Forecast Preferences treatment at http://ices2.gmu.edu/dorina/Manipulation.Instructions/start.treatment1.htm

4During the experiment subjects use e-cash, which was converted to US=dollars at a rate of 190 e to 1 for traders and 110
e = 1 for judges. The exchange rate used was known to the subject prior to the start of the experiment. Subjects average
earnings per session were $32.

5Traders, preference traders and observers interacted on networked computers using Zocalo, an open-source market software
package (available at http://zocalo.sourceforge.net). The screen design and wording used on the screens can be found in the
instructions.
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3 Experimental Questions

Previous experimental studies on information aggregation in asset markets have focused directly on the

relationship between trader information and the market price. Typically such experiments were designed

to examine the degree to which various functions of the price series (typically the closing price) reflect or

aggregate information provided to market participants. Although not our main research questions, we are

interested in the degree to which the price transmits information underlying the market.

Question 1 Do prices aggregate distributed information?

A common concern about prediction markets is that traders with preferences over the beliefs of market

observers may attempt to manipulate prices. By taking positions that either contradict or overstate their

beliefs, a group of traders can conceivably cause observers to take on false beliefs about the direction or

quality of information distributed to traders. Our Forecast Preferences treatment allows us to examine

whether traders with preferences over the beliefs of observers attempt to manipulate these beliefs through

the market price.

Question 2 Do preference traders attempt to manipulate market prices?

A direct extension of this question is whether, following Hanson et. al. (2006) manipulation attempts

significantly interfere with information aggregation in prices.

Question 3 Does manipulation damage the aggregative property of prices?

Our main question is whether and how well observers use market prices to inform their forecasts. Prices in

experimental prediction markets are often imperfectly efficient and cannot be straightforwardly interpreted

as estimates of expected value. It is therefore unclear whether observers will make use of prices at all. Even if

they do use prices as forecasting tools, it is difficult to know exactly how ex ante. We suspect that if observers

do use prices to inform their forecasts, relatively simple functions of the price are unlikely to capture all of

the information a decision maker is likely to glean from a price series. Including market observers as subjects

endogenizes the problem allowing us to empirically pose this fourth question:

Question 4 Do observers use information from markets to enhance their decision-making? If so, how much

does the market improve forecasting? 6

It will be difficult to fully assess the damage done by price manipulation by looking directly at the effects

of extra-market incentives on the market price. Even if traders who care about observer forecasts can affect
6Note that since observers have no private information, absent a market they cannot systematically make correct forecasts.

Any deviation from random forecasting is evidence that markets improve forecasting
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the market price through trade, it is not necessarily true that this will constitute manipulation in the sense

intended here. Because it is difficult to discern how observers interpret market prices (as discussed above),

it is difficult to know what manipulations of the market price will actually be effective in altering observer

beliefs. Furthermore, it is unclear that would-be manipulators will correctly make this assessment and

succeed in manipulating the market price. Our experimental design endogenizes the relationship between

the trades of potential manipulators and the forecasts of observers and therefore allows us to pose a final

question:

Question 5 Do manipulators negatively impact the ability of observers to use prediction markets as a fore-

casting tool?

4 Experimental Results

We report experimental results in three sections. In section 4.1 we provide evidence that preference traders

do attempt to manipulate prices and succeed in affecting average contract prices. In section 4.2 we show that

although prices in our markets correlate with the informationally efficient price, information aggregation is

decidedly imperfect. Mirroring Hanson et. al. (2006) (in which subjects have similar levels of currency and

shares of assets), our environment results in upwardly biased prices which imperfectly adjust to variation in

underlying information . Price manipulation, however does not ultimately affect the quality of aggregation.

In section 4.3 we provides evidence that, although prices are imperfectly efficient, observers use them to

significantly improve the quality of their forecasts.

4.1 Price Manipulation

We begin by examining whether preference traders attempt to influence observer forecasts by manipulating

the market price (Question 2). In order to test for price manipulation we compare price offers and acceptances

made by preference traders with offers made by a similar pool of subjects from the Baseline treatment.

Intuitively, if preference traders wish to convince observers that v=100, we suspect they will mimic the

behavior of traders with positive expectations of value and make relatively high bids to buy. Likewise,

preference traders wishing to convince observers that v = 0, they will make relatively low asks to sell.

To test for manipulation, we compare the bids, asks and acceptances of preference traders with those

of a pool of subjects with identical information (and history of information) from the Baseline treatment.

We estimate the following mixed effects model which is essentially a means test of offers across treatments,

controlling for subject and session level effects.

priceijk = α1 + α2 × prefi + ui + ηj + εijk (6)

9



Variable Offers:
t=0

Offers:
t=100

Contracts:
t=0

Contracts:
t=100

Intercept 67.77177 55.68884 61.53712 60.53099
(0.000) (0.000) (0.000) (0.000)

pref -7.579531 7.621655 -1.853006 6.785543
(0.011) (0.045) (0.344) (0.001)

Table 2: Mixed effects estimates from model (6) on four subsets of the data. Offers include bids in t=100
rounds and asks in t=0 rounds (and price acceptances in both). p-values are included below estimates in
parentheses.

This model is estimated on two subsets of the data. The first is bids (and acceptances) in rounds in

which t=100 and the second is asks (and acceptances) from rounds in which t=0. Thus priceik is bids in

one regression and asks is the other. Indices are i for subject, j for session and k indexes trades within that

session. prefi is an indicator variable that takes a value of 1 if session i is under the Forecast Preferences

treatment and 0 otherwise, ui is a random effect on subjects assumed to be distributed N(0, σu), ηj is a

random effect on sessions assumed to be distributed N(0, ση), and εijk is a disturbance term assumed to be

distributed N(0, σε). Estimates are presented in Table 2 (under the Offers column).

Under the hypothesis that forecast preferences have no effect on offers, the coefficient on pref will be

insignificantly different from zero. However a positive coefficient when t=100 and a negative one when

t=0 will support the alternative hypothesis that traders respond to forecast preferences by attempting to

manipulate prices. Indeed this is exactly what our estimates indicate. The coefficient on pref is 7.62 when

t=100 and -7.57 when t=0 and is statistically significant in both cases. This results in our first finding:

Finding 1 Subjects with incentives over observer beliefs attempt to manipulate price. When t=100, bids

are higher under the Forecast Preferences treatment than under the Baseline treatment. When t=0, asks are

lower under Forecast Preferences than in the Baseline.

A related question is whether these efforts to manipulate actually alter contract prices. In order to

investigate this, we estimate (6) using only prices from the set of completed contracts. Once again we

produce separate estimates for t=0 and t=100 rounds. Results are presented in Table 2 (under the Contracts

columns). When t=100, manipulation efforts succeed in raising prices by 6.78 (p=0.001). Manipulation

appears to have no corresponding effect on prices in rounds in which t=0 (p=0.344).

Finding 2 Attempts to raise the price through manipulation succeed in raising prices by nearly 7 points;

attempts to lower prices fail.
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Figure 2: Observed closing prices (dots) and the average of these prices across sessions (black line) with fully
informed expected values (gray line).

4.2 Information Aggregation in Closing Prices

When a market fully aggregates information, its contract prices approach the expected value of assets, given

all of the information in the market. We are interested therefore (Question 1) in estimating aggregation

by looking at the relationship between the prices we observe in our markets and the expected value a fully

informed Bayesian would assign to the asset. Figure 2 shows the fully informed expected value of assets and

the average closing prices for each period, broken up by treatment. Though it is clear that closing prices are

strongly correlated with information, it is also clear that they fail to adjust fully to changes in probabilities

from period to period. Hanson et. al. (2006) report similar qualitative but incomplete correlation between

expected value and price in an experimental prediction market with similar currency and asset distributions

but a very different information environment.

We formally support these observations by estimating the following random effects regression:

pricejt − 50 = α1 + α2prefj + β1(Ev(n)j − 50) + β2prefj(Ev(n)j − 50) + uj + εjt. (7)

The dependent variable, pricejt − 50 is the price amount of the t’th contract in treatment j, relative to the

uninformed price estimate of 50. The variable prefj is an indicator variable for the Forecast Preferences

treatment, Ev(n) is defined as in (2) and uj is a random effect on session and εjt is an error term (both

assumed to be normally distributed). If the market aggregates perfectly in the Baseline treatment, the

intercept α1 will be indistinguishable from zero and the coefficient on expected value, β1, will be equal to 1.
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Variable Q1 Q2 Q3 Q4 F10
Coefficient 10.20671 11.01617 11.20923 12.30581 13.03491

(0.008) (0.002) (0.000) (0.000) (0.001)
pref 2.324719 1.206104 2.00208 1.849452 1.598616

(0.669) (0.812) (0.652) (0.643) (0.781)
Ev(n)− 50 .0431189 0.0147719 0.0854649 0.1636089 0.1955946

(0.099) (0.511) (0.000) (0.000) (0.000)
pref ×
(Ev(n)− 50)

-0.0107977 0.0147755 -0.0124539 -0.0296694 -0.0397304

(0.756) (0.624) (0.669) (0.32) (0.372)

Table 3: Results from random effects model (7) estimating the relationship between the expected valuation of
a fully informed Bayesian to the price. Estimates are given for the four consecutive quarters of contracts (Q1-
Q4) and for the final ten percent of contracts (F10). p-values are included below estimates in parentheses.

We estimate this model on 5 subsamples of the data including the first, second, third and fourth quarters of

trades (Q1, Q2, Q3 and Q4) and the final 10% of trades. Results for each of these sub-samples are shown in

Table 3.

A first observation is that the value of the coefficient on Ev(n)i increases over the four quarters of trade

and takes its highest value during the final 10 percent of trades, indicating that the market price increasingly

incorporates distributed information over time. During the final half of trade (Q3, Q4, F10) the slope term

on expected value is significantly greater than zero, indicating a relationship between the efficient price and

the realized price. Moreover, in all phases of trade, the intercept term is significantly greater than zero

indicating a bias in the price. This is clear from Figure 2 in which prices rarely fall below 50, even when

much of the information in the market is negative.

By the end of trade (F10) there is a significant relationship between the full-information expected value

and the market price ( β2 is significant), though at 0.19 the coefficient still lies significantly below 1. Further,

the intercept coefficient, α1, is estimated at 13, meaning that, even when the market is equipped with only

negative signals, the price fails to predict a low enough value realization (a price near 50, taken as a probability

estimate, simply reiterates the markets priors).7

We summarize these observations in our third finding:

Finding 3 Over the course of trade, prices increasingly correlate with underlying information. However,

even towards the end of trade they fail to fully aggregate and therefore cannot be straightforwardly interpreted

as probability estimates. These markets have particular trouble aggregating negative information (information

indicating a low value) resulting in prices which are upwardly biased relative to fully aggregated prices.

We can also use the estimates from (7) to assess the effects of manipulation on aggregation (Question
7The upward bias in price we observe may be due, in part, asymmetries in subject endowments; each subject could only sell

two units, but had enough cash to buy about three to four units at the observed prices. Similar bias was observed in (Hanson
et. al. , 2006)

12



Figure 3: Proportion of forecasts matching the indicated value in each period and for each treatment.

3). If the interaction terms or indicator variables for the Forecast Preferences treatment are significantly

different from zero, we have evidence that the relationship between price and expected value is affected by

manipulation. In fact, these interaction terms are never significantly different from zero, indicating that

aggregation is not weakened by preference traders.

Finding 4 Manipulation has no effect on aggregation.

4.3 Observer Forecasts

After observing the full price series in a market, do observers, in fact, tend to make decisions that reflect

signals in the market (Question 4)? Figure 3 charts the proportion of observers’ predictions that match

the indicated value in each period for each treatment. It is clear that (i) in most periods the indicated

value is predicted more than 50% of the time (observations are generally above the dotted line) and (ii)

there is little difference between data in the Baseline treatment and the Forecast Preferences treatment.

This figure therefore provides qualitative answers to both Questions 4 and 5: Observers do use information

from prediction markets to enhance their decision-making and preference traders do not affect observers

decision-making abilities.

To answer these first questions more formally, we estimate the following random effects probit model

(without intercept):

prob(fij = vIj |~s) = prob(ηi + α1bi + α2prefi +mj(β1bi + β2prefi) > εij (8)

where fij is the forecast by observer i in period j, vIj is the indicated value, vI (the forecast a risk neutral
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Figure 4: Predictions from probit model (8), showing, for each treatment, the estimated probability the
observer forecasts the indicated value as a function of signal strength. Gray shaded areas show the 95% con-
fidence interval. The dotted line on the Baseline (Forecast Preferences) panel shows the Forecast Preferences
(Baseline) estimates for easier comparison.

Bayesian would make, defined in 7) in period j given ~s, b is an indicator variable taking a value of 1 under the

Baseline treatment, prefi is an indicator variable taking a value of 1 under the Forecast Preferences treatment,

mj is the signals strength in period j ,ηi is a normally distributed random effect drawn by subject and εij

is an error term assumed to be distributed normally with mean 0 and variance 1.

Table 4 provides the estimates from this model and Figure 4 shows the resulting predicted probability of

the indicated decision being made at each level of signal strength in the Baseline and Preference treatments.

The gray areas around these estimates give 95 % confidence intervals on the predictions.

The coefficient on signal strength in the baseline treatment, β1, is significant and positive, indicating

that observers forecast the indicated value more frequently when the information in the market is more

consistent. From Figure 4, it is clear (with 95% confidence) that, when the signal strength is greater than 1,

the probability that observers forecast the indicated value is greater than .5 (the confidence interval does not

contain 0.5). However, the same is not true when the signal strength is 1. Since 0.5 is the prior distribution

over states, there is no evidence in this case that observers gather usable information from the prediction

market. We sum up these observations as a fifth finding.

Finding 5 Asset market prices significantly improve the accuracy of observer forecasts, but only when the
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Variables Coefficients
(p-values)

Marginal Effects

pref -0.5381658 -0.197
(0.013)

b -0.3386443 -0.125
(0.123)

pref ×m 0.4208571 0.156
(0.000)

b×m 0.3957784 0.146
(0.000)

Table 4: Probit estimates from model (8).

signal strength is sufficiently high. Observers are more likely to forecast the indicated value at higher signal

strengths.

We finally examine whether the manipulation efforts reported in findings 1 and 2 have a negative effect

on the accuracy of observer forecasts.

In order to do this we use a Chow-type test suggested in Greene (2002) testing the hypothesis that the

intercept and slope term on signal strength jointly differ across treatments. We first estimate the following

random effects probit model8: prob(Fij = Ij |~s) = prob(ηi + α + siβ > εij) once with all of our data

and once each for the Baseline and Forecast Preferences treatments. Under the hypothesis that there is

no difference across treatments, twice the difference between the sum of the likelihoods in the individual

treatment estimates and the likelihood from the pooled estimate will be chi-square distributed with 1 degree

of freedom. Summing our likelihoods in this way, we arrive at a test statistic of 1.5 (p=0.220), evincing

no significant difference between the treatments. A simple (though extremely conservative) alternative test

of such a difference across the treatments can be accomplished visually using the predictions in Figure 4.

The dashed lines in each panel of Figure 4 show predictions from the other treatment. Predictions from the

preference treatment fall, at each level of signal strength, within the 95 % confidence interval of the baseline

prediction. Thus, our data fails to produce evidence that manipulation significantly alters observer forecasts.

This provides us with a sixth finding.

Finding 6 Manipulation does not reduce the accuracy of observer forecasts.

5 Discussion

We conducted laboratory experiments studying how well asset markets function as forecasting tools. Un-

informed third party observers were asked to forecast a stochastic event after watching trade in a market
8Variables have the same interpretation as corresponding variables in (8)
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populated by partially informed traders. In one treatment, selling constraints lead to severe biases in the

price formation process. Still, observers tended to correctly forecast the event using the market data. In a

second treatment, half of the traders in the market were given preferences over the forecasts of observers.

These subjects attempted to manipulate prices by submitting more extreme orders than normal traders.

These manipulation attempts, however, failed to negatively impact the accuracy of observer forecasts.

Two main conclusions can be drawn from our study. First, inefficient asset prices do not necessarily

imply equally inefficient capital allocation decisions. Our subjects seem to exhibit rational expectations

regarding pathologies in the price formation process and at least partially filter these pathologies when

forming forecasts. The result is forecasts that are superior to those that would be made by simply interpreting

prices as efficient probability estimates. Second, our results suggest that price manipulation is a largely

ineffective strategy for altering the beliefs of investors and other decision makers. Several features of our

experimental design were included to favor successful manipulation. In each market, half of the traders

were given coordinated incentives to manipulate and these incentives were sufficient to significantly alter

the orders these subjects submitted. Moreover, other traders and observers were kept in the dark about the

direction in which manipulation incentives ran, making it difficult to counteract or discount their effects on

prices. Still, the manipulation effort we observe failed to reduce the accuracy of observers’ forecasts.

Both of these conclusions merit further study and robustness tests. Experiments designed with even

stronger incentives to manipulate seem especially appropriate. While it seems likely that this would lead to

more intensive manipulation attempts, it is unclear whether this would significantly alter the aggregation and

forecasting conclusions reported here. Further research also seems warranted on the correspondence between

secondary market prices and the efficiency of capital allocation. While our results suggest that rational

expectations can limit the degree to which inefficient prices mislead primary investors, it is unclear how far

this reasoning can be taken. Experiments varying the efficiency of market prices (perhaps by manipulating

share endowments) would provide a clearer picture of the relationship between price efficiency and forecast

efficiency. It also seems fruitful to study forecasting in markets which are inefficient for less predictable

reasons than order constraints. One obvious candidate is markets which are subject to endogenous price

bubbles ala (Smith, Suchanek and Williams, 1988).
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