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Abstract

In Borel’s (1921) Colonel Blotto game two players simultaneously allocate their respective

endowments of a resource across n battlefields, the higher allocation wins each battlefield,

and players maximize the number of battlefields won. Here we examine two players who may

form an alliance before separately competing in two disjoint Colonel Blotto games against a

common adversary. Despite a lack of common interests, unilateral transfers — in a direction

consistent with the exploitation hypothesis — arise for a range of parameter configurations.

Such transfers alter the adversary’s strategy and the combination of the direct and strategic

effects benefits both allies.



1 Introduction

The Colonel Blotto game examines the strategic allocation of resources across a set of battle-

fields. In the original formulation, due to Borel (1921), two players allocate their respective

endowments of a resource across a finite number of battlefields. Each player must distribute

their resource without knowing their opponent’s distribution of the resource and the player

who submits the higher level of the resource to a battlefield wins that battlefield. Each

player’s payoff for the whole game is the sum of his wins across the individual battlefields.

The Colonel Blotto game figured prominently in the early game theory literature and ap-

plications of the model in public economics and political economy include the analyses of

multi-battle military conflict, electoral campaign resource allocation, and redistributive po-

litical competition.1

This paper examines a multi-player, multi-front Colonel Blotto game in which one player,

A, simultaneously competes in two disjoint Colonel Blotto games, against two separate op-

ponents, 1 and 2. Prior to competing in the games, players 1 and 2 have the opportunity

to form an alliance to share their endowments of a one-dimensional resource (e.g., troops,

military hardware, money). Our focus is on non-cooperative alliances in which only individ-

ually rational ex ante transfers of the resource are allowed. Once these transfers take place,

player A optimally responds in allocating his resource endowment across the two games and

then players play their respective Colonel Blotto games given their resource constraints. No

ex post transfers between the two alliance members are enforceable. We call such an alliance

a self–enforcing alliance without commitment.

1Early contributions include Borel and Ville (1938), Tukey (1949), Gross and Wagner (1950), Gross
(1951), Blackett (1954, 1958), and Bellman (1969). More recently, work on Blotto-type games has examined
asymmetries between the players (Hart 2008, Macdonell and Mastronardi 2010, Roberson 2006, Weinstein
2005), non-constant-sum variations (Kvasov 2007, Hortala-Vallve and Llorente-Saguer 2010a, b, Roberson
and Kvasov 2008), alternative definitions of success (Golman and Page 2009, Szentes and Rosenthal 2003a,
b, Kovenock and Roberson 2010, and Tang, Shoham, and Lin 2010), and political economy applications
(Laslier 2002, Laslier and Picard 2002, Roberson 2008).
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The main result of this paper is to show that, even though each member of the alliance

shares no common interest in the outcome of the other member’s game, there is a wide range

of parameters in which endogenous unilateral transfers take place within such an alliance.

That is, one player gives away resources to its ally, who happily accepts the gift. Unilateral

transfers arise because they lead to a strategic shift in the common opponent’s force allocation

away from the set of battlefields common to the player making the transfer, towards the set

of battlefields common to the player receiving the transfer. Our result demonstrates that

there exist unilateral transfers for which the combination of the direct and strategic effects

benefits both allies.

Our approach contrasts with the major focus of the literature on the economics of al-

liances, dating back to Olson (1965) and Olson and Zeckhauser (1966), (for a summary, see

Sandler and Hartley, 2001). This literature generally assumes that the resource employed by

allies is a (possibly impure) public good.2 In these models, one player’s resource allocation

provides direct non-rival, non-excludable benefits to an allied player.3 In our model, resource

expenditure by an ally is completely rival and excludable. However, through its effects on

the strategic choices of the enemy, strategic externalities may be created. These externalities

may suffice to generate endogenous unilateral transfers in strategic alliances without the a

priori assumption of pure or impure public goods and without commitment.

2In Olson (1965) and Olson and Zeckhauser (1966) alliance expenditure was treated as a pure public
good. Extensions to impure public good expenditure, known as the “joint product model” originate with
Van Ypersele De Strihou (1967). See also Sandler and Cauley (1975), Sandler (1977), Murdoch and Sandler
(1982, 1984), and Ihori and McGuire (2007).

3In early contributions to this literature it was standard to focus solely on the game between alliance
members and take the enemys expenditure as given. Exceptions to this approach include Bruce (1990),
Linster (1993), and Skaperdas (1998). Bruce examines a model of pure public good expenditure in which
“security” enters directly as a good into the utility function and is measured by the difference between total
allied expenditure and enemy expenditure. His assumptions generate upward sloping best response functions
in expenditures. Linster (1993) and Skaperdas (1998) examine the formation of alliances in contests in which
the probability of winning a prize is represented by a contest success function and the expenditure of each
alliance member serves as a (possibly impure) public good in that it directly increases the expected payoffs
of other alliance members for a given enemy expenditure in the contest. For surveys of the literature utilizing
this and similar approaches see Bloch (2009) and Konrad (2009).
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Despite its significant departure from the assumptions of the public goods-based literature

on alliances, our model also obtains results consistent with one prominent conjecture in

that literature, Olson’s (1965) “exploitation hypothesis.” This hypothesis asserts that larger

nations will bear a disproportionately higher share of the common cost of an alliance relative

to its benefits. In our model, a self–enforcing alliance without commitment arises involving

unilateral transfers from player i to player j when player i has a larger resource endowment

and the ratio of player i’s endowment to player j’s endowment is sufficiently greater than

the ratio of the total values of the battlefields in the two players’ respective Colonel Blotto

games. When such alliances arise, transfers flow from the player who is resource rich to the

player who is resource poor. The degree of asymmetry in resource endowments necessary

to generate a self–enforcing alliance without commitment depends not only on the relative

aggregate values of the players’ respective battlefields, but also on the absolute magnitudes

of the two players’ endowments relative to that of player A.

Our model appears to provide potential insight into the formulation of nations’ foreign

policies with respect to defense and strategic alliances as well as the behavior of alliances in

historical military conflicts. Often such alliances involve powerful nations providing material

or financial support to other nations whose values are very much at odds with their own.

The motivation for such action is often described by the phrase, “the enemy of my enemy is

my friend.” During the Cold War the United States supported dictators in Zaire and Chile

and the Afgan Mujahideen.4 Similarly, the Soviet Union supported strongly anti-Communist

governments such as the Nasser regime in Egypt. After the Iranian Revolution of 1979 the

United States provided aid to Saddam Hussein in the Iran-Iraq War. Chinese support for

Pakistan has been attributed to its desire to divert Indian resources from their own rivalry.5

Our approach also appears useful in explaining the assistance that the United States

4For further details see the political science literature on human rights and US military aid (e.g. Meernik,
Krueger, and Poe 1998 or Cingranelli and Pasquarello 1985).

5See Hoey (2009) for further details.
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provided to the Soviet Union in The Second World War through the Lend-Lease Act of

1941. Although the United States provided approximately 50 billion dollars aid to a host of

countries, including Britain, France, and China, transfers to the Soviets took place despite

a strong adversarial relationship between the nations.6 Estimates of these transfers vary,

ranging from $9 Billion to $11 billion for the four-year period after Nazi Germany’s invasion

of the Soviet Union in 1941. Historical accounts of this program lend some support for the

view that this assistance was extended with no expectation of repayment.7

Section 2 introduces our three stage game. Section 3 examines equilibrium in the final

stage of the game, which consists of a multi-player, multi-front Colonel Blotto game in

which one player, A, simultaneously competes in two disjoint Colonel Blotto games, against

two separate opponents, 1 and 2. This section provides a characterization of the payoffs of

the component Colonel Blotto games for arbitrary budget constraints and any number of

battlefields n ≥ 3. The resource endowments in this final stage are determined by choices

made in the first two stages. These two stages are examined in Section 4. In the first stage,

conditional on their endowments, players 1 and 2 decide on whether to transfer resources,

with any positive net transfer generating a self–enforcing alliance without commitment.

In the second stage, player A decides upon an allocation of its resources across the two

Blotto games, contingent on the choices of players 1 and 2. Section 4 shows that self–

enforcing alliances without commitment may indeed occur and characterizes both the range of

parameter values for which they arise and the nature of transfers in such alliances. Section 5

compares the range of parameters for which positive transfers arise in self–enforcing alliances

6According to the United States State Department website America.gov Lend-Lease transfers totaled
$50.1 billion to over 30 different countries. $31.4 billion of these funds went to Britain. Although also
strong adversaries of the Soviets, Great Britain also transferred aid to the Soviet Union during the conflict.
In advocating this aid the strongly anti-Communist Winston Churchill was famously quoted as stating “If
Hitler invaded Hell, I would make at least a favourable reference to the Devil in the House of Commons.”
Soviet distrust of the “imperialist powers” was mutual. Indeed, Stalin refused to ever acknowledge to the
Soviet people the scale of the transfers from the United States and Britain.

7See for instance, Herring (1973, p.38).
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without commitment to the range for which positive individually rational ex ante transfers

would arise between players 1 and 2 when complete and binding contingent commitments may

be made as to the ex post division of payoffs. We call alliances in which such commitments can

be made alliances with complete commitment. Section 6 concludes and outlines extensions.

2 The Coalitional Colonel Blotto Game

Players

There are 3 players, {A, 1, 2}, and two simultaneous Colonel Blotto games, G1 and G2.

Player A competes in both of the Colonel Blotto games, G1 and G2. Each player i ∈ 1, 2

competes in only one Colonel Blotto game, Gi (see the schematic in Figure 1). The Colonel

Blotto game Gi has ni battlefields, and we will assume that ni ≥ 3, i = 1, 2.8 Each battlefield

j ∈ {1, . . . , ni} in Colonel Blotto game Gi has a payoff of vi > 0. The total value of Colonel

Blotto game Gi, nivi, is denoted by φi ≡ nivi. The force allocated to each battlefield in each

Colonel Blotto game must be nonnegative and each player i ∈ A ∪ {1, 2} has a normalized

budget of Xi, where player A’s normalized budget is XA = 1. On each battlefield the player

that allocates the higher level of force wins that battlefield. In the case that the players

allocate the same level of force on a given battlefield, the player that has the higher level

of resources in that Colonel Blotto game wins that battlefield. The specification of the tie-

breaking rule does not affect the results as long as no player has less than 2
ni

times the forces

of their opponent in Colonel Blotto game Gi, i = 1, 2. In the case that this condition does

apply this specification of the tie-breaking rule avoids the need to have the stronger player

allocate a level of force that is arbitrarily close to, but above, the weaker player’s maximal

allocation of force. A range of tie-breaking rules yield similar results.

8Moving from ni = 2 to ni ≥ 3 greatly enlarges the space of feasible n-variate distribution functions, and
the equilibrium strategies examined in this paper require that ni ≥ 3.
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[Insert Figure 1 here]

Alliances

In the first stage of the game players 1 and 2 choose whether or not to form an alliance.

We focus on the case in which it is not possible for players 1 and 2 to a priori commit to a

division rule for the alliance’s ex post payoff. In this case each alliance member, conditional

on the resources that are available, maximizes the payoff from their individual Colonel Blotto

game. To emphasize the point that unilateral transfers between allies may take place in the

absence of pure or impure public goods, we assume that neither player’s payoff depends on

the eventual outcome of his ally’s game. However, prior to the play of their respective games,

alliance members may reallocate resources among themselves subject to the constraint that

the resulting allocation of resources is individually rational for each alliance member.

Since there are many game forms that might govern how mutually beneficial transfers

might take place, we instead focus on the following simple question: When does there exist

a nonzero and feasible9 net transfer, t, from player 1 to player 2 (negative t corresponds to a

positive net transfer from 2 to 1) that strictly increases both allies’ payoffs when compared

to the case in which t = 0. In examining this question, we assume that following any choice

of t the game that follows is one in which player A observes the resulting budget constraints,

X t
1 ≡ X1−t and X t

2 ≡ X2+t, takes them as given, and then responds optimally in allocating

XA across G1 and G2. We label the resulting allocations of XA across G1 and G2 by XA1

and XA2, respectively. Once the budgets (X t
1, X

t
2, XA1, XA2) are determined, they become

common knowledge and the corresponding complete information simultaneous move Colonel

Blotto games G1 and G2 are played. If such Pareto improving transfers between players

1 and 2 exist, it is reasonable to assume that the allies, in this environment of complete

information, can implement some such transfer.

9Feasibility in this context means that the transfer lies in the interval [−X2, X1].

6



Naturally, there are many game forms that might govern the implementation of transfers

of the one-dimensional resource between the two allies. For instance, in one version of such

a game each ally simultaneously decides upon a nonnegative amount to transfer to its ally.

Each ally then observes these amounts and then the allies simultaneously decide whether to

accept or reject the offer of its ally. It is straightforward to show that when nonzero transfers

exist which are Pareto improving, this offer process can implement one such transfer, the

transfer in which the ally making the Pareto improving positive net transfer obtains his most

preferred positive net transfer. When nonzero transfers between players 1 and 2 exist that

are strictly Pareto improving, we refer to the alliance as a self–enforcing alliance without

commitment.

Before examining this game in more detail, it is important to note that one immediate

result of Roberson’s (2006) characterization of equilibrium payoffs in Colonel Blotto games

with asymmetric budgets is that, for a given opposition budget constraint, a player’s payoff

is nondecreasing in his own budget. Hence, if player A’s allocation of his budget over the

two games Gi, i = 1, 2, cannot be adjusted in response to transfers, as would be the case if

A’s allocation of XA across the two games preceded or was simultaneous with the transfer

between players 1 and 2, neither player could possibly strictly benefit from a transfer of

resources to his ally.

In the analysis that follows, let πt
i denote the payoff of the Colonel Blotto game Gi to

player i = 1, 2 if a self–enforcing alliance without commitment is formed with net transfer

from 1 to 2 equal to t, and π0
i , denote the payoff to player i = 1, 2 from acting in isolation,

with no transfer taking place. By definition, a self–enforcing alliance without commitment

forms if and only if πt
i > π0

i for some t 6= 0 for each i = 1, 2. Thus, a self–enforcing

alliance without commitment forms if and only if there exists a reallocation of the alliance

members’ budgets such that each player i = 1, 2 strictly prefers this to competing with his

own endowment, given the corresponding optimal responses of A in allocating his resources.
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Before defining the players’ strategies, it is useful to motivate the leadership role the

alliance takes in determining transfers. As noted above, if player A cannot condition the

allocation of his budget on the available budgets of the alliance members, the private good

nature of the expenditure of players 1 and 2 insures that no transfers take place between the

two players. However, if A has an opportunity to condition his allocation upon the alliance

transfers, a positive transfer from one player to the other may induce a sufficient shift in the

optimal budget allocations of player A away from the transferring player’s Colonel Blotto

game to more than compensate the player for making the positive net transfer. That is, the

strategic effect may more than compensate for the direct effect of the transfer for one player,

while the direct effect more than compensates for the strategic effect for the other.

Why might it be reasonable to assume that A can condition his allocation across fronts

on the transfers of the allies? One reason is that it seems plausible to believe that transfers

between alliance members are more easily observed than transfers between different Colonel

Blotto games by player A. After all, alliance members are different players and reaching

agreements to transfer material between players may take longer than solving an individual

allocation problem and may involve a public announcement. Moreover, as in the case with

the Allies fighting Nazi Germany in The Second World War, it may be the case that the

two Colonel Blotto games G1 and G2 represent two distinct geographically separate fronts

in a war and country A can transfer resources between these fronts within the confines of

the geographical area that it controls. Finally, the notion of the transfer of resources as

a commitment seems more reasonable in the context of a Pareto improving transfer across

players than as a shifting of resources controlled by a single player. Any attempt to undo

such a commitment would require the compliance and coordination of two decision makers,

not just the command of one.

8



Strategies

Let XA1 and XA2 = 1 −XA1 be player A’s resources allocated to the Colonel Blotto games

G1 and G2, respectively, and X t
i be player i’s, i = 1, 2, level of resources utilized in Gi

after a transfer t is implemented. Each distinct pair of games (G1(X
t
1, XA1), G2(X

t
2, XA2))

represents a distinct final stage subgame of the overall game. In the final stage, it is well

known that for a given i ∈ {1, 2}, if either 1
ni
XAi < X t

i ≤ XAi or
1
ni
X t

i < XAi ≤ X t
i there

exists no pure strategy equilibrium in the final stage Colonel Blotto game Gi.
10

For each player i ∈ 1, 2 a mixed strategy in Gi, which we label a distribution of force

for player i, is an ni-variate distribution function Pi : R
ni
+ → [0, 1] with support contained

in the set of player i’s feasible allocations of force, Xi = {x ∈ R
ni
+ |
∑ni

j=1 xj ≤ X t
i}, and

with a set of univariate marginal distribution functions {F j
i }

ni
j=1, one univariate marginal

distribution function for each battlefield in player i’s Colonel Blotto game Gi. The ni-

tuple of player i’s allocation of force across their ni battlefields is a random ni-tuple drawn

from the ni-variate distribution Pi with the set of univariate marginal distribution functions

{F j
i }

ni
j=1. Player A’s mixed strategy, a distribution of force for player A, is a set compromised

of an n1-variate distribution function PA1 : R
n1
+ → [0, 1] and an n2-variate distribution

function PA2 : R
n2
+ → [0, 1]. Each of the ni-variate distributions PAi has support contained in

XAi = {x ∈ R
ni
+ |
∑ni

j=1 xj ≤ XAi} and has a set of univariate marginal distribution functions

{F j
Ai}

ni
j=1, one univariate marginal distribution function for each battlefield in the Colonel

Blotto game Gi. For each Colonel Blotto game Gi, the ni-tuple of player A’s allocation of

force across the ni battlefields is a random ni-tuple drawn from the ni-variate distribution

PAi with the set of univariate marginal distribution functions {F j
Ai}

ni
j=1.

10In the cases where 1

ni

XAi ≥ Xt
i or 1

ni

Xt
i ≥ XAi there, trivially, exists a pure strategy equilibrium in the

game Gi and the player with the higher level of resources in that game wins all of the battlefields.

9



Coalitional Colonel Blotto Games

The Coalitional Colonel Blotto Game, which we label

Γ {G1, G2, XA, X1, X2} ,

is the multistage game in which players 1 and 2 first implement a feasible net transfer of

resources between themselves, player A then observes this transfer and allocates his budget

XA(= 1) across the two Colonel Blotto games G1 and G2, and then players 1 and 2 indi-

vidually compete with player A in their respective Colonel Blotto games by simultaneously

announcing distributions of forces to their respective battlefields, subject to their respec-

tive budget constraints determined in the previous stages. In the games G1 and G2 each

battlefield is won by the player that provides the higher allocation of force to that battle-

field (subject to the tie breaking rules discussed above), and each player’s payoff equals the

expected value of all battlefields won.

3 The Final Stage Colonel Blotto Games

We start our analysis with the final stage subgames Gi, i = 1, 2, and work our way back

through the game tree. Theorem 1 provides Roberson’s (2006) characterization of the unique

equilibrium payoffs in the Colonel Blotto game. For further details on the nature of the

equilibrium strategies see Roberson (2006). To simplify the exposition we adopt the following

notation: let X i = max {XAi, X
t
i} and X i = min {XAi, X

t
i} for i = 1, 2. Let the player with

X i forces be denoted as player k, and the player with X i forces be denoted as player −k.

Theorem 1 (Roberson (2006)). The unique Nash equilibrium payoffs of the final stage

Colonel Blotto game Gi in the game Γ {G1, G2, XA, X1, X2} are given as follows:

A. If Xi and Xi satisfy
2
ni

≤
Xi

Xi
≤ 1, then the payoff for player k is φi

(

Xi

2Xi

)

and the payoff

10



for player −k is φi

(

1−
Xi

2Xi

)

.

B. If Xi and X i satisfy
1

ni−1
≤

Xi

Xi
< 2

ni
, then the payoff for player k is φi

(

2
ni

− 2Xi

n2
iXi

)

and

the payoff for player −k is φi

(

1− 2
ni

+ 2Xi

n2
iXi

)

.

C. If X i and X i satisfy
1
ni

<
Xi

Xi
< 1

ni−1
, then define m =

⌈

Xi

Xi−Xi(ni−1)

⌉

, and note that 2 ≤

m < ∞. The payoff for player k is φi

(

2m−2
mn2

i

)

, and the payoff for player −k is φi

(

1− 2m−2
mn2

i

)

.

For a proof of Theorem 1 see Roberson (2006). This proof establishes the existence

of equilibrium ni-variate distributions which are feasible (i.e., with supports contained in

{x ∈ R
ni
+ |
∑ni

j=1 xj = Xi} and {x ∈ R
ni
+ |
∑ni

j=1 xj = Xi} respectively) and that provide the

equilibrium payoffs given above. Note that the final stage games G1 and G2 are constant-sum

games, guaranteeing the uniqueness of the equilibrium payoffs. These payoffs are illustrated

in Figure 2 as a function of
Xi

Xi
. A salient feature of this characterization is that as the

number of battlefields, ni, becomes large, the ranges of
Xi

Xi
covered by parts (B) and (C) of

Theorem 1 collapse to zero, and the weaker player’s payoff (in these ranges) goes to zero as

well. We use these facts in the analysis of the second stage game that follows.

[Insert Figure 2 here]

4 Stages One and Two: Alliances and Resource Allo-

cations

We begin in stage two with player A’s optimal allocation of resources between the two

Colonel Blotto games. The primitives in this section are the payoffs derived in the previous

section. Given the above characterization, it follows that the form of player A’s payoff

function depends critically on the transfer of resources between players 1 and 2 in the first

period. In fact for player A there are 64 different regions each with a distinct form for the

payoff function. These regions correspond to the cases where either
Xt

i

XAi
or XAi

Xt
i
, i = 1, 2,

11



satisfy one of the three conditions of Theorem 1, or one player has more than ni times the

budget of the other in Gi.

For example, assume that XA = 1 > X t
1 +X t

2. If player A divides his resources between

the two Colonel Blotto games such that 2
n1

≤
Xt

1

XA1
≤ 1 and 2

n2
≤

Xt
2

XA2
≤ 1 then player A’s

payoff function is:

πA

(

{

XAi, X
t
i

}

i=1,2

)

= φ1

(

1−
X t

1

2XA1

)

+ φ2

(

1−
X t

2

2XA2

)

.

The payoff functions for the remaining regions are similarly constructed.

To simplify the analysis the number of battlefields ni is assumed to be arbitrarily large.

(However, the total value of each Colonel Blotto game φi = nivi is held constant.) Thus,

the number of different regions collapses from 64 to 4, which are given by 2
ni

≤
Xt

i

XAi
≤ 1

and 2
ni

≤ XAi

Xt
i
≤ 1 for each Colonel Blotto game Gi, i = 1, 2. For given post-transfer levels

of resources of players 1 and 2, X t
1 and X t

2 respectively, player A’s payoffs in each Colonel

Blotto game are shown in Figure 3 below.

[Insert Figure 3 here]

Player A’s optimal second stage allocation of resources between the two Colonel Blotto

games is determined by the marginal payoffs in each Colonel Blotto game. In particular,

there are four qualitatively distinct cases of optimal resource allocations for player A. These

correspond to the four distinct regions of (X t
i , X

t
−i) pairs illustrated in Figure 4.

Case 1. Suppose φi

φ
−i

>
max

{

(Xt
i)

2
,1
}

Xt
iX

t
−i

or 1 > X t
i and φi

φ
−i

= 1
Xt

iX
t
−i
. Then player A allocates

all of his resources to Colonel Blotto game Gi.

In Case 1, each unit of resource that player A allocates to the Colonel Blotto game Gi has

a marginal payoff that is higher than the first unit allocated to G−i. If the initial endowments

12



X0
1 , X

0
2 are such that this case holds, it is clear that there can be no nonzero net transfer

that strictly improves upon the allocation for both players, since player −i cannot do strictly

better.

Case 2. Suppose φi

φ
−i

>
Xt

i

Xt
−i

and 0 < 1 −
(

φiXt
iX

t
−i

φ
−i

)
1
2
≤ X t

−i. Then player A allocates

XAi =
(

φiX
t
iX

t
−i

φ
−i

)
1
2
to Colonel Blotto game Gi and XA(−i) = 1 −

(

φiX
t
iX

t
−i

φ
−i

)
1
2
to Colonel

Blotto game G−i.

In Case 2, A’s budget is sufficiently large that it is optimal to allocate a level of resources

greater than X t
i to the Blotto game Gi, XAi > X t

i , thereby hitting the range of diminishing

returns (see Figure 3). At the margin A equates the return to an extra unit of resource

allocated to game Gi to the constant marginal return that he receives for allocating XA(−i) <

X t
−i. That is

φ
−i

2Xt
−i

=
φiXt

i

2(XAi)
2 (see Figure 3), yielding XAi =

(

φiXt
iX

t
−i

φ
−i

)
1
2
. Player A’s remaining

forces 0 < 1−
(

φiX
t
iX

t
−i

φ
−i

)
1
2
< X t

−i are allocated to the remaining Colonel Blotto game, G−i.

Case 3. Suppose φi

φ
−i

≥
Xt

i

Xt
−i

and 1 −
(

φiXt
iX

t
−i

φ
−i

)
1
2

> X t
−i. Then player A allocates

XAi =
(φiXt

i)
1
2

(φiXt
i)

1
2+(φ−iXt

−i)
1
2

to Colonel Blotto game Gi and XA(−i) =
(φ−iXt

−i)
1
2

(φiXt
i)

1
2 +(φ−iXt

−i)
1
2

to

Colonel Blotto game G−i.

In Case 3 player A has a sufficient level of resources to be able to set the marginal

payoffs from the two Colonel Blotto games equal at levels greater than the corresponding

resource levels of players 1 and 2. In particular, player A chooses XAi and XA(−i) such that

φ
−iXt

−i

2(XA(−i))
2 =

φiXt
i

2(XAi)
2 (see Figure 3).

Case 4. Suppose φi

φ
−i

=
Xt

i

Xt
−i

and 1 ≤ X0
1 +X0

2 . Then any pair (XA1, XA2) such that XA1 +

XA2 = 1 and XAi ≤ X t
i , i = 1, 2 is an optimal response of player A.

In Case 4 any allocation by player A in which XAi ≤ X t
i , i = 1, 2 sets the marginal

payoffs from the two Colonel Blotto Games equal. As is shown in Section 5, if players 1 and

13



2 had the ability to commit to binding agreements and 1 ≤ X0
1 +X0

2 , then the transfer, t,

which sets φi

φ
−i

=
Xt

i

Xt
−i

maximizes the sum of the two players’ payoffs. Thus, it is clear that

in Case 4 there can be no nonzero net transfer that strictly improves upon the allocation for

both players.

Figure 4 illustrates the ranges of
(

X t
i , X

t
−i

)

pairs corresponding to the cases described

above for values of φi and φ−i such that φi

φ
−i

≥ 1. The analysis is analogous when φi

φ
−i

< 1.

[Insert Figure 4 here]

We now determine when there exists a nonzero transfer t from player 1 to player 2 that

strictly Pareto improves upon their initial endowments of the resource. The primitives at this

stage are the (X t
1, X

t
2)-contingent subgame payoffs arising when player A optimally responds

as detailed in Cases 1 through 4 above, and the resulting Colonel Blotto game payoffs are

given as in Theorem 1, part (A).

By definition a self–enforcing alliance without commitment exists if and only if there

exists a t 6= 0 such that

πt
i

(

X t
i , XAi

(

X t
1, X

t
2

))

> π0
i

(

X0
i , XAi

(

X0
1 , X

0
2

))

in each of the respective games Gi, i = 1, 2.

Clearly if the initial resource endowments (X0
1 , X

0
2 ) satisfy the conditions of Case 1, then

there is no incentive for a non-zero transfer to take place (player −i is already receiving his

highest feasible payoff).11 The following two propositions examine alliance formation when

the initial resource endowments satisfy the conditions of Cases 2 and 3, respectively.

11While our focus is on alliance transfers that strictly benefit both alliance members, it is instructive to
note that in the portion of the Case 1 region in which 1 ≤ X0

i or 1 > X0

i and φi

φ
−i

6= 1

X0

i
X0

−i

, player −i is

indifferent between keeping his endowment and making a transfer to player i that leaves the endowment pair
within the region, whereas player i prefers to accept any such transfer.

14



Proposition 1. Suppose (X0
1 , X

0
2 ) satisfies the conditions of Case 2. Then a self–enforcing

alliance without commitment exists in which player −i transfers a net positive level of re-

sources to player i if and only if

X0
i +X0

−i > 2

(

φ−iX
0
i

φiX
0
−i

)
1
2

.

No self–enforcing alliance exists in which player i transfers a positive net level of resources.

Proof. With the initial endowments satisfying the conditions of Case 2, player A’s optimal

allocation of forces between the two Blotto games is determined by φ
−i

2X0
−i

=
φiX0

i

2(XAi)
2 , and thus

XAi =
(

φiX0
1X

0
2

φ
−i

)
1
2

and XA(−i) = 1−
(

φiX0
1X

0
2

φ
−i

)
1
2

. Given player A’s optimal stage 2 allocation

of resources between the two Colonel Blotto games with no transfers, player i’s payoff is

π0
i

(

X0
i , XAi

(

X0
1 , X

0
2

))

=
1

2

(

φiφ−iX
0
i

X0
−i

)
1
2

and player −i’s payoff is

π0
−i

(

X0
−i, XA(−i)

(

X0
1 , X

0
2

))

= φ−i −
φ−i

2X0
−i

+
1

2

(

φiφ−iX
0
i

X0
−i

)
1
2

.

Note that any positive net transfers τ from i to −i would result in the pair (X t
1, X

t
2)

satisfying the conditions of Case 2 ( φi

2X0
i −2τ

increases while φ
−i

2X0
−i+2τ

decreases), and that in

this case player A’s optimal allocation of forces between the two Blotto games is determined

by φ
−i

2X0
−i+2τ

=
φi(X0

i −τ)
2(XAi)

2 . Thus player i’s payoff from such a transfer is

πτ
i

(

X0
i − τ,XAi

(

X0
i − τ,X0

−i + τ
))

=
1

2

(

φiφ−i (X
0
i − τ)

(

X0
−i + τ

)

)
1
2

.

It follows immediately that since
∂πτ

i

∂τ
< 0 for all feasible positive net transfers τ , it is clear
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that any nonzero strictly Pareto improving transfer must be from player −i to player i.

Furthermore, it is also clear that any such transfer of resources from player −i could not

result in the pair (X t
1, X

t
2) satisfying the conditions of Case 3 or Case 2 with φ

−i

X0
−i−τ

> φi

X0
i +τ

(i.e. the roles reversed) since in both cases player −i would be worse off. Thus we can

restrict our attention to alliance transfers from player −i to player i in which the resulting

levels of resources remain in the current Case 2.

If a positive net transfer, τ , of resources from player −i to player i takes place, resulting

in an allocation that remains in Case 2, player A’s optimal allocation of forces between the

two Blotto games is determined by the marginal condition φ
−i

2X0
−i−2τ

=
φi(X0

i +τ)
2(XAi)

2 and thus

player i’s payoff is

πτ
i

(

X0
i + τ,XAi

(

X0
i + τ,X0

−i − τ
))

=
1

2

(

φiφ−i (X
0
i + τ)

(

X0
−i − τ

)

)
1
2

and player −i’s payoff is

πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

=

φ−i −
φ
−i

2X0
−i−2τ

+ 1
2

(

φiφ−i(X0
i +τ)

(X0
−i−τ)

)
1
2

.

Note that
∂πτ

i

∂τ
=

(φiφ−i)
1/2(X0

i +X0
−i)

4(X0
−i−τ)

3/2
(X0

i +τ)
1/2 , which is positive for all τ . Thus player i is always

willing to accept a transfer τ > 0. It is straightforward to show that,

∂πτ
−i

∂τ
= −

φ−i

2
(

X0
−i − τ

)2 +
(φiφ−i)

1/2 (
X0

i +X0
−i

)

4
(

X0
−i − τ

)3/2
(X0

i + τ)
1/2

.

Clearly, if
∂πτ

−i

∂τ
|τ=0 > 0, a sufficiently small positive transfer would benefit −i as well. More-

over, it is straightforward to show that if
∂πτ

−i

∂τ
|τ=0 ≤ 0 then

∂πτ
−i

∂τ
will remain nonpositive for

all τ > 0 such that τ < X0
−i. Hence player −i will strictly benefit from a positive transfer to
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player i if and only if
∂πτ

−i

∂τ
|τ=0 > 0. This holds if and only if X0

i +X0
−i > 2

(

φ
−iX0

i

φiX0
−i

)
1
2

. Q.E.D.

Proposition 2. Suppose (X0
1 , X

0
2 ) satisfies the conditions of Case 3. Then a self–enforcing

alliance without commitment exists in which player −i transfers a net positive level of re-

sources to player i if and only if

1−
X0

i

X0
−i

> 2

(

φ−iX
0
i

φiX
0
−i

)
1
2

No self–enforcing alliance exists in which player i transfers a positive net level of resources.

Proof. With the initial endowments satisfying the conditions of Case 3, player A’s optimal

allocation of forces between the two Blotto games is determined by
φiX

0
i

2(XAi)
2 =

φ
−iX

0
−i

2(XA(−i))
2 , and

thus XA1 =
(φ1X0

1)
1
2

(φ1X0
1)

1
2 +(φ2X0

2)
1
2
and XA2 =

(φ2X0
2)

1
2

(φ1X0
1)

1
2+(φ2X0

2)
1
2
. Given player A’s optimal stage 2

allocation of forces between the two Colonel Blotto games player i’s, i = 1, 2, payoff with a

zero transfer is

π0
i

(

X0
i , XAi

(

X0
1 , X

0
2

))

=
φi

2

(

X0
i +

(

φ−iX
0
i X

0
−i

φi

)

1
2

)

.

If a positive net transfer, τ > 0, of resources from player −i to player i takes place, it is

feasible that the resulting allocation may remain in Case 3 or may switch to Case 2.

First looking at transfers within Case 3, player A’s optimal allocation of resources between

the two Blotto games is determined by the marginal condition
φi(X0

i −τ)
2(XAi)

2 =
φ
−i(X0

−i+τ)
2(XA(−i))

2 . Hence,

player −i’s payoff is given by

πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

=

φ
−i

2

(

X0
−i − τ +

(

φi(X0
−i−τ)(X0

i +τ)
φ
−i

)
1
2

)
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and player i’s payoff follows directly. Clearly if
∂πτ

−i

∂τ
|τ=0 > 0 a sufficiently small positive

transfer would benefit −i, and if
∂πτ

i

∂τ
|τ=0 > 0 a sufficiently small transfer would benefit i.

Moreover, it is straightforward to show that if
∂πτ

−i

∂τ
|τ=0 ≤ 0 then

∂πτ
−i

∂τ
will remain nonpositive

for all τ > 0 such that τ < X0
−i. In addition, for all τ ,

∂πτ
i

∂τ
>

∂πτ
−i

∂τ
. Hence within the range of

transfers that remain in Case 3, both players 1 and 2 will strictly benefit from a net positive

transfer from player −i to player i if and only if
∂πτ

−i

∂τ
|τ=0 > 0.

It is straightforward to show that

∂πτ
−i

∂τ
=

φ−i

2



−1 +
1

2

(

φi

φ−i

)
1
2 X0

−i −X0
i − 2τ

((

X0
−i − τ

)

(X0
i + τ)

)
1
2



 .

Thus, there exists a strictly Pareto improving transfer τ > 0, from −i to i, that remains in

the range of allocations covered by Case 3 if and only if
X0

−i−X0
i

(X0
i X

0
−i)

1
2
> 2

(

φ
−i

φi

)
1
2

. We claim that

this is also a necessary condition for the existence of a strictly Pareto improving transfer

from −i to i that switches to Case 2. This results from the fact that the subset of Case

2 allocations where
∂πτ

−i

∂τ
|τ=0 > 0 (delineated in Proposition 1) may be reached through a

transfer from −i to i only if the initial Case 3 allocation satisfies the condition of Proposition

2.

A similar condition holds for player i. In examining transfers τ > 0 from i to −i,

∂πτ
i

∂τ
|τ=0 > 0 is equivalent to

X0
i −X0

−i

(X0
i X

0
−i)

1
2
> 2

(

φi

φ
−i

)
1
2
. However, no initial endowment in which

φi

φ
−i

≥
X0

i

X0
−i

satisfies this constraint. Thus, player i never offers a positive net transfer to

player −i that results in an allocation in Case 3. As shown in Proposition 1, once in Case 2

player i also never offers a positive net transfer to player −i. It follows directly that given an

initial endowment in Case 3 there exists no strictly Pareto improving positive net transfer

from player i to player −i that crosses over into Case 2. Thus, player i never offers a positive

net transfer to player −i. Q.E.D.
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Propositions 1 and 2 demonstrate that there are several ranges of parameters in which

endogenous unilateral transfers take place. That is, a self–enforcing alliance without com-

mitment forms. The set of (X0
i , X

0
−i) pairs for which such an alliance forms is illustrated

in Figure 5 for the case in which XA = 1. The (X0
i , X

0
−i) pairs satisfying the conditions of

Cases 2 or 3 and lying in the region above and to the left of the bold lines are the initial

endowments for which these alliances arise.

[Insert Figure 5 here]

As is evident from Figure 5 and the inequalities that determine this region in the state-

ments of the two propositions, self–enforcing alliances without commitment form only when

players 1 and 2 have sufficiently asymmetric endowments both in absolute terms and relative

to the corresponding values of their Blotto games. In particular, in the region of endowments

corresponding to Case 3, the boundary delineating the set of endowments for which these al-

liances form is linear (see Figure 5). Throughout this region, self–enforcing alliances without

commitment form if and only if the ratio of the initial endowments
X0

−i

X0
i

exceeds a constant

threshold, which is greater than max{1, φ
−i

φi
}. This insures that alliance transfers only flow

from player −i, the player with the higher endowment, to player i, the player with the lower

endowment and only if the ratio of their endowments
X0

−i

X0
i

exceeds the ratio of Blotto game

values φ
−i

φi
.

In the region of endowments corresponding to Case 2, the boundary of the set of endow-

ments for which these alliances form is concave in X0
i . Within this region, as the sum of

the endowments, X0
i +X0

−i, increases, the threshold value of
X0

−i

X0
i
above which alliances form

decreases. When φ
−i

φi
< 1, as in panel (a) of Figure 5, the boundary of the set of endowments

for which these alliances form intersects the boundary of the region corresponding to Case 1

along the 45◦ line. One consequence (as is illustrated in Figure 5, panel (a)) is that there exist
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parameter configurations for which self–enforcing alliances without commitment arise even

though the initial endowments are arbitrarily close to equality. When φ
−i

φi
> 1, as in panel

(b) of Figure 5, the boundary of this set intersects the line X t
−i =

φ
−i

φi
X t

i before it reaches the

boundary of the Case 1 region. Indeed, from the condition provided in Proposition 2, this

happens precisely when X0
i +X0

−i = 2. One consequence, (as is illustrated in Figure 5, panel

(b)) is that there exist parameter configurations for which self–enforcing alliances without

commitment arise even though the ratio of the initial endowments
X0

−i

X0
i
is arbitrarily close to

the ratio of Blotto game values φ
−i

φi
.12 Finally, as in the region of endowments corresponding

to Case 3, for Case 2 endowments alliance transfers always flow from player −i, the player

with the higher endowment, to player i, the player with the lower endowment, and only if

the ratio of their endowments
X0

−i

X0
i
exceeds the ratio of Blotto game values φ

−i

φi
.

In this sense, the nature of transfers in our model conform to a version of the “exploitation

hypothesis”. When self–enforcing alliances without commitment form, transfers flow from

the player who is resource rich to the player who is resource poor, both in absolute terms

and relative to the total value at stake in their respective Colonel Blotto games with player

A.

Moreover, when self–enforcing alliances without commitment form, it must be the case

that the combination of direct and strategic effects of the unilateral transfer benefits both

allies. Clearly, since the direct effect harms the player making the transfer and benefits

the player receiving the transfer, it must be the case that the strategic effect benefits the

transferring player and harms the receiving player (if player A moves resources away from the

game of the transferring player, these resources flow to the game with the receiving player).

In this context, it is interesting to identify the source of a breakdown of the existence of

self–enforcing alliances without commitment, that is, whether it is the relatively resource

12This holds for initial endowments which are (1) above the line Xt
−i = φ

−i

φi

Xt
i and (2) satisfy 2 ≤

X0

−i +X0

i ≤ 1 + φ
−i

φi

.
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poor ally who declines to receive a transfer or the relatively rich ally who declines to initiate

the transfer. The details of the proofs of these two Propositions indicate that it is always

the resource rich ally whose incentive constraint binds first. That is, the region where such

alliances form is bounded by the willingness of the player making the transfer.

These results can also be interpreted in light of Dresher’s “no soft-spot” principle which

implies that the alliance should transfer resources from the harder front to the softer front

up until the point that each front is equally attractive to the common opponent. In the

context of our multi-front Colonel Blotto game, the relevant measure of attractiveness or

softness — from the point of view of the common opponent — is the ratio of the value of

a front to the alliance’s post-transfer level of force on the front (henceforth, a front’s ratio

of value to alliance force). In any self-enforcing alliance without commitment, the alliance’s

equilibrium transfers flow from the harder front towards the softer front, thereby making the

soft spot less soft. In the next section we examine alliances with complete commitment. In

this case we explicitly solve for the alliance’s equilibrium transfer of resources and find that

these transfers result in no soft spots, or equivalently each front has the same ratio of value

to alliance force.

5 Alliances with Complete Commitment

As a benchmark for the analysis of self–enforcing alliances without commitment, it is useful to

examine the nature of ex ante transfers that would arise between players 1 and 2 if complete

and binding commitments could be made concerning the ex post division of payoffs. We call

alliances in which such commitment can be made alliances with complete commitment.

In the presence of complete and binding commitments an optimal ex ante transfer solves

max
t

πt
1

(

X t
1, XA1

(

X t
1, X

t
2

))

+ πt
2

(

X t
2, XA2

(

X t
1, X

t
2

))
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Note that although Propositions 1 and 2 identify the parameter ranges in which there exist

Pareto-improving alliance transfers, this optimization problem identifies the Pareto optimal

transfers for the alliance. In Proposition 3 we show that an optimal transfer leads to the

no soft-spot outcome in which X t
−i =

φ
−i

φi
X t

i . Hence, unless the initial endowments satisfy

X0
−i =

φ
−i

φi
X0

i nonzero transfers of resource endowments will always take place.13

Proposition 3. Let X̂ = X0
1+X0

2 . In any alliance with complete commitment, the allocation

of the alliance budget to the two Colonel Blotto games is X t
i = X̂φi

φi+φ
−i

and X t
−i =

X̂φ
−i

φi+φ
−i
.

Thus, the alliance transfers result in φi

φ
−i

=
Xt

i

Xt
−i
. If X0

−i =
φ
−i

φi
X0

i , then no transfers take

place.

Proof. We begin with the case that X̂ ≥ 1. Thus, in the alliance with complete commit-

ment, the allocation of the alliance budget to the two Colonel Blotto games may satisfy the

conditions for Case 1, Case 2, or Case 4 (see Figure 4). Clearly, any allocation by the alliance

that satisfies the conditions for Case 1 is not an equilibrium strategy. In Case 1 the alliance

wins all of the battlefields in Blotto game −i and player A allocates zero resources to Blotto

game −i. Thus, the alliance can strictly increase its payoff by diverting resources from the

Blotto game −i to the Blotto game i up until the point at which φi

φ
−i

=
Xt

i

Xt
−i
, as in Case 4, or

0 < 1− (
φiX

t
iX

t
−i

φ
−i

)
1
2 , as in Case 2.

Similarly, any allocation by the alliance that satisfies the conditions for Case 2 is not

an equilibrium strategy. In particular note that in Case 2 the joint payoff of the alliance,

πτ
12 ≡ πτ

1 + πτ
2 , given any allocation, (X0

i , X
0
−i) in Case 2 and any transfer τ > 0 such that

X0
i +τ

φi
<

X0
−i−τ

φ
−i

, is given by

πτ
12

(

X0
i + τ,X0

−i − τ
)

=

πτ
i

(

X0
i + τ,XAi

(

X0
i + τ,X0

−i − τ
))

+ πτ
−i

(

X0
−i − τ,XA(−i)

(

X0
i + τ,X0

−i − τ
))

.

13We abstract away from issues concerning the precise ex post division of the alliance’s joint payoff. For
cooperative game theoretic approaches to the theory of alliance costs and benefits see Sandler (1999) and
Arce M. and Sandler (2001).
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In Case 2 this equals φ−i−
φ
−i

2(X0
−i−τ)

+
(

φiφ−i(X0
i +τ)

X0
−i−τ

)
1
2

. It follows directly that
∂πτ

12

∂τ
> 0 for all

τ > 0 such that
X0

i +τ

φi
<

X0
−i−τ

φ
−i

. Thus, the alliance can strictly increase its payoff by diverting

resources from Blotto game −i to Blotto game i up until the point at which φi

φ
−i

=
Xt

i

Xt
−i
, as

in Case 4.

In Case 4, the payoff to the alliance is (φ1 + φ2)
(

1− 1
2X̂

)

. Given the arguments given

above concerning Cases 1 and 2, it is clear that their are no profitable deviations for the

alliance.

Lastly, in the case of an alliance with complete commitment and X̂ < 1, the allocation

of the alliance budget to the two Colonel Blotto games may satisfy the conditions for Case

2 or Case 3 (see Figure 4). Given the above arguments, any allocation by the alliance that

satisfies the conditions for Case 2 is not an equilibrium strategy. In Case 3 the payoff of the

alliance given any initial allocation,
(

X0
i , X

0
−i

)

in Case 3 and any transfer τ > 0 such that

X0
i +τ

φi
≤

X0
−i−τ

φ
−i

, is given by

πτ
12

(

X0
i + τ,X0

−i − τ
)

=

φi(X0
i +τ)

2
+

φ
−i(X0

−i−τ)

2
+
(

φiφ−i(X
0
−i − τ)(X0

i + τ)
)

1
2 .

It follows directly that

∂πτ
12

∂τ
=

φi

2
−

φ−i

2
+

1

2

(

φiφ−i(X
0
−i − τ)

X0
i + τ

)

1
2

−
1

2

(

φiφ−i(X
0
i + τ)

X0
−i − τ

)
1
2

.

Solving for τ yields φi

φ
−i

=
X0

i +τ

X0
−i−τ

, and thus X t
i =

X̂φi

φi+φ
−i

and X t
−i =

X̂φ
−i

φi+φ
−i
. Q.E.D.

In contrast to the restricted range of initial endowments for which transfers take place

in self–enforcing alliances without commitment, such transfers take place almost everywhere

under alliances with complete commitment. Only when X0
−i =

φ
−i

φi
X0

i does no transfer take

place. However, as shown in panel (b) of Figure 5, there exist initial endowments for which
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a self–enforcing alliance without commitment yields the same outcome as under complete

commitment, X t
−i =

φ
−i

φi
X t

i . This arises for a subset of the range of endowments in which

the alliance member (−i in the figure), with the higher Colonel Blotto game value (φ−i) has

an endowment, X0
−i, both larger than that of player A and larger than the product of the

ratio of game values and the alliance partner’s endowment (φ−i

φi
X0

i ).

Of course these two types of alliances form the two endpoints of the entire spectrum of

possible levels of commitment. However, one might conjecture that intermediate levels of

commitment generate regions of initial endowments where nonzero transfers take place that

are nested between the regions corresponding to these two extremes.

6 Conclusion

The literature on the economics of alliances, originating with Olson (1965) and Olson and

Zeckhauser (1966) focuses on the case where defense expenditures are a (possibly impure)

public good and the threat of attack is exogenous. This paper extends this literature by

examining the formation of self–enforcing alliances without commitment in a multi-player,

multi-front Colonel Blotto game. In this case, the payoff to each alliance member is com-

pletely excludable and rival. Moreover, the common opponent is able to observe and react

to the formation of the alliance and the resulting transfer of resources. Remarkably, we find

that self–enforcing alliances without commitment form for a wide range of parameters. With

ex ante asymmetry of resources — both in absolute terms and relative to the respective val-

ues at stake in the allies’ Colonel Blotto games — a unilateral transfer from the relatively

resource-rich ally to the relatively resource-poor ally causes a reallocation of the common

opponent’s resources that creates a strategic externality. The combination of the direct and

strategic effects of such a transfer benefits both allies. For the ally making the transfer, the

positive strategic effect of the opponent’s reallocation of resources away from their Blotto
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game makes up for the negative direct effect of the reduction in own resources. For the ally

receiving the transfer, the positive direct effect of greater resource availability dominates the

negative strategic effect of a higher opponent resource level.

Potential extensions of the model include the analysis of a more general network structure

of battlefield alignment in which players may be engaged in several conflicts with different

sets of adversaries, who may themselves be engaged in other conflicts. In this context, it is

possible to carry out a nontrivial examination of the nature of the alliances that form and the

composition of their membership. Our model also provides a useful tool for examining the

strategic effects of precommitment to budgetary transparency. Since the payoffs and strate-

gies in any Blotto game are parameterized by the players’ budgets, our model is a natural

framework for examining the costs and benefits of finer or coarser budgetary information

and the effects of budgetary aggregation and disaggregation in entities engaged in conflict.

It may also serve as a useful framework for the study of espionage.

Finally, although the analysis in this paper is framed in the context of defense or military

alliances between nations, it is readily adapted to other contexts. For instance, in the context

of multiple-product R&D races or patent races, it can be applied to explain research joint

ventures and silent cross-industry partnerships (“cash infusions”) between firms that do not

compete in the same market, but face a common conglomerate competitor.
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Gauthier-Villars: Paris; reprinted in Borel, E., and A. Chéron (1991) Théorie mathe-
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