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ABSTRACT

This paper provides an exhaustive and explicit description of the set
of Nash equilibria in the n-player, first price sealed bid, all pay
auction under complete information. Both the cases of homogeneous and
heterogeneous valuations are analyzed. For the common values case with
more than two players we show there is a unique symmetric equilibrium
and a continuum of asymmetric equilibria. All of the equilibria, how-
ever, are payoff and revenue equivalent. With heterogeneous valua-
tions, two new situations can arise. First, if the three highest
valuations are strictly unequal then there is a unique asymmetric
equilibrium. Second, with a single highest valuation and more than
one player with the second highest valuation, there is a continuum of
asymmetric equilibria. In both of these latter cases, the expected
sum of the bids is below the second highest valuation. and depends on
the strategies of the agents with the second highest valuation.
Hence, while the equilibria are payoff equivalent, they are not re-
venue equivalent. The continua of asymmetric equilibria were missed
by both the theoretical literature, and the applied literature on e.g.
rent seeking and rent dissipation.
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E. Van Evenstraat 2B
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* We are grateful to Chuangyin Dang, Chaim Fershtman, Arthur Robson,
Heinrich Ursprung and Ton Vorst for helpful conversations. The paper
was completed while Baye was visiting the CentER for Economic Re-
search at Tilburg University.



1. INTRODUCTION

Consider the public auction of a dollar, in which each of n-bidders
places money in an envelope. The money in the envelopes is collected
and kept by the seller, and the dollar is awarded to the bidder who
placed the highest amount of money in his envelope (ties are broken in
an arbitrary fashion). This auction, which 1is called an all-pay
auction [cf. Moulin (1986 a,b) and Weber (1985)], is important because
many economic problems under complete information have a similar
structure. For example, Hillman and Samet (1987) and Hillman (1988)
model lobbying as an all-pay auction, where the lobbying parties
sweeten the decisionmaker by making a bribe, and the prize (a
political favor) is awarded to the party having given the highest
bribe. Similarly, much of the contest and principal agent literature
under complete information is isomorphic to the all-pay auction; cf.
Nalebuff and Stiglitz (1983) and Baye. Kovenock, and de Vries (1989b).
Essentially, contests are an all-pay auction in effort : the person
putting forth the greatest effort wins the prize, while the effort of

other contestants goes unrewarded.

This paper completely characterizes the set of Nash equilibria in the
all-pay auction with complete information. We show that the set of
equilibria is much larger than had originally been thought. Moreover,
in some economically interesting cases, the equilibria are not revenue

equivalent .

Before we present a more specific statement of our results and their
proofs, it is useful to describe our results vis a vis the existing
literature on the all-pay auction. Two cases have been considered in
the literature: (1) the case where all players value identically the
prize, and (2) the case where some players value the prize more than
others. For the case of homogeneous valuations, Hillman and Samet
have shown that, in addition to a symmetric Nash equilibrium, there
also exist a finite number of asymmetric equilibria. We extend this

result by showing that there is actually a continuum of asymmetric



equilibria. In each equilibrium, at least two players randomize
continuously over the union of the supports of the players’
equilibrium mixed-strategies, while up to n - 2 players may have a
mass point at zero and only randomize over a strict subset of the
union of other players’ supports. The existence of these additional
equilibria has obvious empirical implications. However, for the case
of homogeneous valuations, all of these equilibria are payoff and
revenue equivalent: The expected sum of the bids equals the value of
the prize, and the net expected pay-off to each bidder is zero for all
equilibria.

The second case is when several players have heterogeneous valuations
of the prize. For the case where the second highest valuation of the
prize is strictly greater than the third highest valuation!, Hillman
and Riley (1989) have shown that there is a unique equilibrium and
that only the two players with the highest valuations bid a positive
amount withe positive probability. Furthermore, they show that if the
highest valuation is strictly greater than the second highest, the
expected sum of bids is less than the second-highest valuation.

We extend Hillman and Riley's analysis of the heterogeneous valuations
case by considering other configurations of individual valuations.
One of the more important configurations of valuations is where a
single player values most the prize, while all other players value the
prize at some common, lower value. This case 1is economically
interesting, because in much of the literature on regulation [ct.
Rogerson (1982)] and political contests [cf. Snyder (1989)]. one
player (usually an incumbent) is modeled as having an advantage over
identical challengers. For this case, we show not only that there is
a continuum of equilibria, but that the equilibria are not revenue

equivalent: the expected sum of bids differs across equilibria.

{ More precisely, if the players can be ordered in such a way that
Vi 2 V2 > V3 2 ... 2 vn, where vi is the valuation of player 1.



The results presented in the present paper are important for two
independent reasons. First, and as noted above, our results reveal a
wider array of behavior consistent with equilibrium. Second, given
the existing literature on the all-pay auction, one might be tempted
to take two-ness as a necessary implication of contests. In fact,
Hillman (1988, p. 66) claims that, if there are ties for the second
highest valuation and a single highest valuation, only two agents will
be active. Our results reveal that this is incorrect, and indeed the
additional equilibria imply different expected revenues. The fact
that there are additional equilibria and that the revenues differ
across the equilibria serves as a caveat of Magee, Brock, and Young's
(1989, p. 217) argument that two-ness is a general property of
political contests. Our results reveal that this is correct only if
two contenders value of prize more than all other contenders. This
may be why there are typically more than two challengers to an
incumbent in, for example, presidential campaigns.

The paper is organized is follows. Section 2 considers the case of
homogeneous valuations, while Section 3 examines the situation where
some agents have heterogeneous valuations of the prize. The full
characterization of the continuum of equilibrium strategies requires
several steps which are labelled as lemmas. The main results are
collected in six theorems. Interestingly and importantly. we are able
to derive closed form expressions for all the equilibrium strategies.
Therefore, the reader can easily obtain the intuition behind the main
results, e.g. verifying that the strategies satisfy the Nash property,
by working out examples on the basis of these expressions. In fact, we

employ this strategy to derive Theorem 6 on revenue non equivalence.



2. HOMOGENEOUS VALUATIONS

Suppose first that an object known to be worth v > O dollars to each
of n bidders is to be auctioned. The n bidders simultaneously write
down a bid. If player i bids the most he wins the object. All
players pay the seller the amount that they bid.

Without loss of generality let the strategy set be X; = [0, B], where
B > v is some large number. The payoff function for player i in this

game is
- xj 1f 3 3 8.8 x5 Y X,

B30T o5 s 50 Xy = (‘!n - Xj if i ties for high bid with m-1 others,
v - Xi 1F %3 D% ¥V §# 4

Let sj and s; denote the lower and upper bound of player i's equili-

brium bid distribution Gj. Also, let aj denote the size of a mass-
point in i's distribution. Let u; be player i’s equilibrium profit.
It is easily shown that with more than one bidder there does not exist
a Nash equilibrium in pure strategies. In order to construct the
mixed-strategy Nash equilibria, we first obtain the supports of the
mixed strategies in Lemmas 1-9.

Lemma 1: V i, v > si 2 si 2 O.

Proof : By setting xij = O each player can guarantee at least O.
This rules out bids greater than v. Bids less than O are
ruled out a priori.



Lemma 2:

Proof:

Lemma 3:

Proof :

Proof:

Lemma 5:

Proof :

If 3 i such that sij 2> sj and aj(sj) = O, then s; = O and

Gj(0) = lim Gj(x). If. in addition, aj(si) = O, then
xtsj

Gj (si)-

Gj (0)

Let uj(xj., G-j) denote j's payoff to bidding xj when strate-
gies G.j are employed by the other n-1 players. Now
uj(sj, G-j) = -sj < O for sj > 0. Since the same holds for

uj(xj. G.j) for xj < sj, and xj = s;j 1f aj(si) = O, the

claim follows.

If 84 = ... =8m > Sm4y 2 --- 2 8p forn 2 m 2 2, then

3 i { m such that a;(sj) = 0.

Suppose not. Then any i { m has incentive to raise sij by e

If sy = ... =Sm > Smyt1 2 --- 2 Sn, for n 2 m 2 2, then

Immediate from Lemmas 2 and 3.

There exists no player i such that sj > sj Y J# 1.

Suppose such a player did exist. If aj(si) = O, from Lemma
2 Gj(0) =Gj(si) V j # i. which implies that uj(si. G-i) <

lim uj(xj. G-i). If the claim held and aj(sj) > O then
xj 40



Vij# i, aj(si) =0, s0Gj(0) =1lim Gj(x;) leads to a si-

xj Tsi
milar contradiction.
Lemma 6: sij =0 V i
Proof: Immediate from Lemmas 4 and 5.
* *
Lemma 7: uj =uj V i,j.
Proof: Without loss of generality suppose u; < u;. Let §j be the
* -
upper bound of j's support. uj < uj' =uj(sj. G-j) € lim_
xi 4sj
uj(xij. G.i). a contradiction.
Lemma 8: u; =0 Vi.
Proof : If aij(si) =0, V i we are through. If 3 j such that

aj(sj) > O, then u; = 0 from Lemmas 3 and 6, and with play-

ers receiving equal utility from Lemma 7, u; =0 ¥ 4.

Lemma 9: 3 i,j such that si = sj = v.

Proof: Suppose not. Let si be the second highest Ej . The player
with the highest §j can bid slightly above s; and earn
*

Uj=V-‘gi>Uj.

The nine lemmas above establish that s;j = 0 V i; there exist two i's,

say 1 = 1.2, such that sy = ;2 = v: and u; =0 V i. We now pin down



the equilibrium distributions. Let W(xij) = v - xj, L(xj) = —xi,
n n n
Ai = I Gj, Ajj = @M Gg, and Ajjm = I Gp.
3=1 k=1 h=1
J#i k#j.1 h#j.i,m
Lemma 10: There are no point masses on the half open inverval (0, v].
Proof : Suppose one of the cumulative distribution functions
(c.d.f.s), say Gj, has a mass point at x; €(0, v]. By Lemma
6, V x €(0, v] AjjGi > O, and hence AijGi has an upward
jump at xi, Vj # i. This follows directly from the mono-
tonicity of the c.d.f.’'s. For xj < v this implies that it
is worthwhile for j to transfer mass from an e-neighborhood
below x; to some & neighborhood above x;. At xj = v it
pays for j to transfer mass from an e-neighborhood below x;
to zero. Thus, there would be an e-neighborhood below xj
in which no other player j would put mass. But then it is
not an equilibrium strategy for player i to put mass at xj.
Lemma 11: The integrand
Bi(xi) = W(xi)Ai(xi) + L(xi)(1 - Ai(xi)) (1)
is constant and equal to zero at the points of increase of
Gi in the half-open interval (0, v] for all i.
Proof : By Lemma 10, there are no point masses in (O, v]. Thus,

Bj(xi) is the expected payoff to player i from bidding
xje(0, v]. If x; is a point of increase of Gj, then player

i must make its equilibrium payoff at xj.



Lemma 12:

Proof

Lemma 13:

Proof

Lemma 14:

Proof

Suppose x is a point of increase of Gj and Gj in (0, v].
Then G; = Gj at x.

: By Lemma 8, Bj(x) = Bj(x) = 0. From (1) we have

W(x) Gj(x) Aij(x) + L(x)[1 - Gj (x)A;;(x)] = 0.
This implies Gj (x)Ajj(x) = wfi%éf%;j = Gi (x)Aji(x).

Division by Ajj(x) = Aji(x) > O gives Gj(x) = Gj(x).
(Note: L(x) is negative in the half-open interval).

For every i and every point of increase x of Gj in (0, v].
there is at least one Gj . j#1i. such that Gj is increasing

at x.

: Because Bj(x) is constant in a neighborhood about x by

Lemma 11, dBj(x) = O. Suppose contrary to the hypothesis

that dAj(x) = 0. Totally differentiating Bj(x) then gives
AjdW + (1-A;)dL = O.

However, both dW and dL are negative and A;j(x) e (0. 1].

Hence, for dB;j to be zero, dA; is necessarily positive. By

the monotonicity of the Gj's, at least one has to increase.

If Gj is strictly increasing on some open interval (a.,b),

0 <a<b v, then Gj is strictly increasing on (a, v].

: Without loss of generality, suppose, to the contrary, that

Gj were constant on (b,c), b < c { v. Then from Lemma 10,
Gi(b) = Gi(c). It is evident that there exists an € > 0
such that on the interval (b, b+e) there exist at least two
players, say h and k, with strictly increasing c.d.f.’s

over the interval (otherwise mass would be moved down to b



Lemma 15:

Proof

Lemma 16:

Proof

by some player). Thus, for every xe(b, b+e), Bh(x) = Byx(x)
= 0. Furthermore, since there are no mass points in the
interval (0, v], Bhp(b) = Bx(b) = Bij(b) = O which, from ar-
guments similar to those used in proving Lemma 12, implies
that Gp(b) = Gk(b) = Gij(b) > 0. But with Bj(b) = By(b) =
Bh(x) V xe(b, b+e), it must be that Bj(x) < Bnp(x)

V xe(b. b+e). since such values of x do not lie in i’'s sup-
port. But this implies that Aj(x) € An(x). and hence that
Gh(x) € Gi(x). a contradiction to the fact that Gj(b) =
Gh(b). Gn(x) is increasing on (b, b+e). and Gj(x) is con-
stant on (b, b+e).

At least two players randomize continuously on [0, v].

: Three cases are possible at 0: (i) all players allocate all

mass at O, (ii) all players have Gj(xj) = O at some x; > O,
or (iii) there is at least one player with Gj(xj) > O for
all xi; > O and G;(0) < 1. Cases (i) and (ii) are easily
ruled out by previous lemmas. For the third case, by Lemmas
3 and 6 at least one of the players has G;j(0) = 0. Lemmas
12, 13, and 14 then imply that there are at least two
players that randomize continuously over [0, v].

Once G; is constant on a subset (a,b), 0 < a <b v, it is
constant on [0,b) and has a mass point at O.

: The first part follows immediately from Lemma 14. The se-

cond part follows from Lemma 6.

The above lemmas imply the following result:
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Theorem 1: The first price sealed bid all pay common values auction
with complete information possesses two types of equili-
bria. Either all players use the same continuous mixed
strategy with support [0, v]. or at least two players
randomize over [0, v] with each other player i randomizing
over (bj, v], bj > 0,2 and having a masspoint at O equal to
Gij(bj). When two or more players have a positive density
over a common interval they play the same continuous mixed

strategy over that interval.

Theorem 1 allows one to construct all of the equilibrium strategies
explicitly. Suppose, without loss of generality, that players i =

1.2..,h, h > 2, randomize continuously over [0, v] with players i =

h + 1, ...n randomizing continuously over (bj.v]. with by,; € bh,2
¢ ... by ¢ v. The equilibrium strategies are:
1
v xe[bn, v]: Gi (x) = [%‘]n'l = e
% el
-1 -1
V xe[bj, bj,1): Gi(x) = [%]J [ T Gk(bk)] J =8 vees d
je{h+1,...n-1} k>j
Gk (x) = Gx(bx) k = j+1, ..., n;
L -1
h-1 h-1
Voelo. bt G0 = [ XN LT aumn) s fe suas B
k>h
Gk (x) = Gk(bx) k = htl, ..., n.

2 We could have b;j > v, in which case player i places all mass at O.



L

The equilibria with by,; = v are given in Moulin (1986b) for h = n.
Somewhat more general is the case by,; = v, but 2 { h { n, i.e. some

agents can be inactive, which is discussed in Hillman and Samet
(ibid., p. 72), Hillman (ibid., p. 66) and Hillman and Riley (ibid.,
ft. 12). Hillman and Samet (ibid., p. 72) claim there are no other
equilibria. Also, Proposition lc in Hillman and Riley which claims
that at most one agent spends zero with positive probability is
erroneous. The analysis above shows there exists a continuum of
asymmetric equilibria. Moreover, with more than two agents, a
multitude of different point masses at zero are possible. Important-
ly. however, it turns out that all of the equilibria are revenue
equivalent.

Theorem 2: (Revenue Equivalence) In the all-pay common value auc—
tion, the expected sum of the bids in any Nash equili-

brium equals the value of the prize v.

n
Proof: By Lemma 8 E[uj] = O. and hence E[ £ uj] = O.
i=1

As uj equals the expected revenue to player i minus the bid xj,

and total expected revenues are v, it follows that

n
v=E[ ¥ x]=0:
1~1

Remark. The same result can be obtained through integration, see

Baye, Kovenock and de Vries (1989b) for the n-player case with bp,; =

v. For the other cases one has to evaluate the sum of integrals of

the form
bj +1
(1) [, x dGi(x)
i]

In this sum all terms except the first (equal to v) and the last

(equal to O) cancel.
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From the bidders’ point of view, all the equilibria are also payoff
equivalent. This result was established in Lemma 7 above. Apart from
these equivalences, all the equilibria share another interesting pro-
perty. As is shown in Lemma 15, at least two agents have to randomize
continuously over the support and have equal c.d.f.’'s. Thus it takes
at least two players to hold each contender down to the equilibrium
payoff of zero. Trivially, with only one contender, he gets everything
for nothing. Two seems enough to induce the perfectly competitive
outcome, where all rents are competed away. The role of the other n-2
is less important in this sense. Also note the c.d.f.'s of the players
who randomize over the entire support strictly first order stochasti-
cally dominate the other players’ strategies. Whether the perfectly
competitive outcome arises generally if there are at least two con-
tenders, is now investigated by considering the case of heterogeneous

valuations.

3. HETEROGENEOUS VALUATIONS

Suppose now that the bidders have heterogeneous valuations. Let vj be

the valuation of player i.

A. Unique Highest and Second Highest Valuations

We deal first with the case where vy > va > vy 2 ... 2 v, 2 0. Cases
where one of the strict inequalities adjacent to vy is weak require a

separate analysis.

Lemma 1°: Vivizgiz§i20.

Proof ¢ Insert vi in place of v in the proof of Lemma 1.



Lemma 2':

Lemma 3’ :

Proof:

Lemma &4’ :

Lemma 5" :

Lemma 6':

13

Same as Lemma 2.

If 81 = vow. =85 ¥ Sipls »so Sn FOPR I M 2 2 then3 4 K m

such that aj(si) = O.

Suppose not. Then any i { m has incentive to raise the bid

si by € small, unless s; = vi, in which case i has an in-

centive to reduce the bid vi to O.

Same as Lemma 4.
Same as lLemma 5.

Same as Lemma 6.

In the analysis that follows let s be the upper bound of the union of

the supports of the players' equilibrium bid distributions.

Lemma 7’ :

Proof:

Lemma 8':

;SVQ.

Player i would never put mass above vi since setting the
bid equal to O strictly dominates such a strategy. Player 1
clearly has no incentive to put mass in the interval

(v2.v1].

All players other than player 1 must place a mass point at
0.



Proof :

Lemma 9':

Proof:

Lemma 10°:

Proof:

Lemma 11':

Proof

14

By Lenmma 6', s; = OV i. Since s ¢ vy < v; player 1 must

have an equilibrium payoff u; of at least vy - vz > O.
Thus, player 1 cannot have a mass point at O. This follows
from Lemma 3', i.e. some player must put no mass at 0, in
which case player 1 with probability 1 would not submit the
high bid at 0, and would have payoff u; = O there. Since
u: > 0, in every neighborhood above O player 1 must outbid
every other player with a probability that is bounded away
from zero. Thus, every player but player 1 must put a mass

point at O.

*
YVigl vy =0

Immediate from Lemmas 3 and 8°.

s = vy and ;1 Sy = V.

From Lemma 7' s < v3. Suppose s < vj. By bidding above s
by an arbitrarily small amount player 2 can earn arbitrari-
ly close to vy - s > 0 = u;. a contradiction. Thus, s = vj.

The second part of the claim is straightforward.

There are no point masses on the half open interval (0,v:].

: Similar to the proof of Lemma 10, inserting v; for v the

first two times that v appears in the proof, and vj for v

the last two times it appears.



Lemma 12':

Proof :

Lemma 13':

Proof :

Lemma 14L':

Proof :

15

Bi(xi) = (vi - xi) Ai(xi) - xi(1-Aj(xj)) is constant and
equal to u; at the points of increase of Gj in (O, va] for

all 1. Bi(xi) < u; if x;j is not a point of increase in
(0. v2].

Similar to Lemma 11.

V xe(0, v2] 3 1y, 12 such that V e > O: Gj(x+e) - Gij(x-€)
50, & = 4y, g

Immediate.

si=0 Vi>2.

Without loss of generality assume ;; = max sj. Suppose
153

s3 # 0. Then there exists an interval of increase (§3.e.§3]

in which B3(x) = u; =0 = (v3—x)A3(x) - x(1-A3(x)). Thus,

vy = Ag?x) VY xe(s3-e, s3]. But as G; and Gy are increasing

_ s3 _ _
on (s3.v2]. v2 = ——. Since for s3 > 0, A2(s3) =
Az(s3)
I Gj(s3) > M Gj(s3) = As(s3). we have a contradiction
Jj#2 j#3

to the fact that vy < v. Thus, s3 = O.

The above analysis establishes rigorously the following result origi-
nally formulated by Hillman (ibid.)., and Hillman and Riley (ibid.):

Theorem 3:

(Hillman and Riley) If vy > v2 > v3 2 ... 2 Vn. then play-
ers 1 and 2 will randomize continuously over (O,vz], with

player 2 having a mass point at O and all other players



16

bidding O with probability one. The c.d.f.’s used by play-
ers 1 and 2 over the interval [0,v2] are G;(x) = ::—2 and

vi=V2

+ X respectively. Players 2 through n earn

Gz2(x) = - ¥

a payoff of O and player 1 earns a payoff u: =Vvy - V3.

Through integration Corollary 1 of Hillman and Riley (ibid.. p. 25) on
the expected sum of bids is easily verified.

Theorem 4: If vi > v > vy 2 ... 2 vy, the expected sum of the bids in
the all-pay auction is

V2
V2 (‘7")-

NI=

E[x,+x2]=%vz+

Note that the average sum of bids is now below the second highest
valuation vy. The intuition behind this result is as follows. With
equal valuations, i.e. (v2/v;) = 1, each player bids half the prize on
average. With unequal valuations, player 2 still bids v2/2 conditional
upon bidding actively. This happens with probability va/vy.

B. Unique Highest but Multiple Second-Highest Valuations

We now deal with the case where vy = v3 = ... = vy, m { n. These
cases again lead to multiple equilibria. We first deal with the case

where vi > v2 = Vv3 = ... = Vg > Vgy1 2 ... 2 Vy for some 3 { m { n.

It is easily seen that for this case Lemmas 1' through 9' hold.
Lemmas 11° through 13’ also continue to hold (with an obvious
alteration in the labeling of players in the proof of Lemma 11°).
Lemmas 10' and 14’ must be slightly altered as follows; the proofs
require only a minor change in the labeling of players:
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Lemma 10": s = vy. There exists at least one player i, 2 { i { m,

such that ;i = V.

Lemma 14”: si =0 V i > m.

If n >m we may set sj = si = O for 1 > m and proceed with the

analysis of the game as if we had an m player game with vy > vz = v3 =
... = Vm. Suppose then that n = m, so that vy > vy = vy = ... = Vvp.
The following versions of Lemmas 12 and 14 hold for players 2,..., n.

Lemma 15”: Suppose x is a point of increase of Gj and Gj in (0,v2].

i, je{2...., n}. Then Gij = Gj at x.
Proof : Same as proof of Lemma 12.
Lemma 16": If Gj, ie{2..... n}, is strictly increasing on some open

subset (a,b), 0 < a < b < vy, then Gj is strictly increas-

ing on the whole interval (a,va].

Proof: Similar to the proof of Lemma 14 where one of the players
h.k must be an element of {2,..., n} and this player is
used throughout the continuation of the proof.

Lemma 16" together with Lemmas 10" and 13’ imply the following:

Lemma 17”: At least one of the players 2,..., n must randomize on the

interval [O,v2].



Lemma 18":

Proof :

18

sy = vz, and for every bid 0 < x < v3 in the support of G,
Gi{x) € Gi(x), 4 /e {2, :ws MY,

From Lemma 17" at least one of the players 2, ..., n has
support [0, vz]. Without loss of generality, suppose that
player 2 is such a player. From Lemmas 3° and 8’ player 1
does not have a mass point at O, and from Lemma 11" no
player has a mass point in (0O, vz]. Thus, there exists some
point x € (0, vy) at which G;(x) is increasing. At any
such point By(x) 2 vi — vz, since the right hand side is
what player 1 can obtain by bidding vz. Rearranging this

expression we obtain

vi - v +x

Ar(x) 2 —

From Lemmas 9' and 12°'

Az (x) = ’:—2

Subtracting A; from A; gives

Vi
(v2=)(1 = )

Az(x) - Ar(x) < —_— < 0,

where the strict right hand inequality follows from the
assumption that v3 > x and v{ > v. Thus, at any point of
increase of G; in (0, v2). A; > A2. This directly implies
that G, > G; for any such point.

But since G; has support [0, v2] and G; has no mass points,
this implies El = vy. Furthermore, since for any other
player i e {2, ..., n} and for any x € [0, v2]. Ga(x)

< Gi(x), we have the claim.



19

An immediate consequence of Lemma 18" and the fact that G; has no mass
points is that Gj(x) 2 Gj(x) for every x € [0, v2] 1 =2, ..., n, with
strict inequality on the open interval. Thus, each Gj(x) is stochas-
tically dominated by Gi(x).

The next Lemma uses the result that s; = v; to show that the support
of Gy(x) is [0, v2].

Lemma 19”: The support of Gj(x) is [0,v2].

Proof : We know that s; = v; and sy = 0. Suppose there is a gap

(a.b) in which Gy(x) is constant, O < a < b < v3.

By Lemmas 12' and 13' we know that at x = a there are at

least two players i,k € {2,...,n} such that Aj(x) = Ax(x) =
%

‘72-. At x = b this holds as well. In addition, since a and

b are in the support of G;

Niy=v3
Ai(a) = ~aal
and
vi—Vv3
b
Ay (b) = = + %

Thus, we have

(1) Gi(a) Gk(a) Aixi(a) = 3_2:
(2)  Gi(b) Gk(b) Aiki(b) = 3—2;
¥i—=Vv3

(3) Gi(a) Gk(a) Aiki(a)
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vi=Va

(4 Gi(b) Gu(d) Aiki(b) = 7— + .

Since Gy(a) = G;(b) by assumption, and by Lemma 15" Gj(x) =
Gx(x) for xe[a.,b]. (1) and (2) imply
Gk(a) Aixi(a)

Gk (b) Aixi(b)

= %. while (3) and (4) imply

[Gk(a)]? Aixi(a) vi-va+a

[Ck(b)]? Aiki(b) vi-va+b |

Gk(a) A vi—vata
Combining this gives = . Hence,
Gk (b) vi—-va+b
b vi—vata
Gi(a) = 2 (—) Ck(b)
vi—-va+b
b b+a
= = (—) Gk(b), say, for ¢ > O.
2 “¢+b
b+¢ b(a+$)

> 1. It follows that

b
Since = > . this implies
a ’ atd a(b+d)

Gk(a) > Gk(b). a contradiction to the fact that b > a.
Thus there cannot be an interval contained in (0.v;) over

which player 1 places no mass.

We have therefore established the following:

Theorem 5: If vi > v3 = ... = v, player 1 randomizes continuously
over the interval [0,v;] and at least one of the players
2, ..., n does the same. Each player i, ie{2....n}, has a
strategy with support contained in [0,v2]; each ie{2,...n}
places a mass point a;j(0) at O (the size of which may
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differ across players): and each ie{2,..n} can be characte-
rized by a number b; > O such that Gj(x) = Gi(0) = a;(0)
Vxe[0,b;] (where b;j could be greater than vy, in which case
aj(0) = 1) and player i randomizes continuously on (bj,
vy]. Furthermore, when two or more players in the set
{2....n} have a positive density over a common interval,
they play the same continuous mixed strategy over that

»* %*
interval. Moreover, u; = vy - vy and uj = 0 for j # 1.

We are now able to provide exact expressions for the equilibrium dis-
tributions conditional on the (arbitrary) points, bj, ie{2,...n} at
which players start randomizing continuously. The distributions may

be obtained recursively over [0, v2].

Suppose without loss of generality that of the players {2,...,n}

players i = 2,.., h, h > 2 randomize continuously over (O,vz], with
players i = h+l,..,n randomizing continuously over (bj,v2], (where bj
= vy implies a;(0) = 1) with bh,; { bh,2 € ... { by { v2. Then
A
vi-va+x|n-1
V xe[bn.v2]:  Gi(x) = [—F— i=2,..,n
2-n
= vi-v2+x|n-1
Gi(x) = = I % ;
1 -
vi-ve+x|j-1 o1
V xe[b;j .b,,,) Gi(x) = = [ T Gx(bk)] i =2 cnql
je{h+1,. 1} 1 k>j
G (x) = Gk(bx) k = j+1,...n;
) =% [——P 1 am))
2 1 K>j
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=1
Vi-Va+X ﬁ =
V xe[0,bh,1): Gi(x) = |—F— [T Gx(bk)] i=2::::h
! k>h
Gk (x) = Gk(bx) k = h+l,..,n
Vi-Va+x 2-h =1
h-1 h-1
G il ey I Gg(b §
1t g ] [k)h x (bx)]

From Theorem 5 it is immediate that all equilibria are payoff equi-
valent, as before. Interestingly, in contradistinction with the case
of homogeneous valuations, c.f. Theorem 2, in case of heterogeneous

valuations the possibility of revenue non equivalence arises.

Lemma 20": If vi > v2 = ... = vp, then the expected revenue is

n vy (n-1)2
2 OE(a) = (va-(5; - 1 |(Dva - —— i)

h -1
vy (h-1)2 vy-vy h-1 n h-1
s =Wy —g— ( = T Gy(bx) }

k=h+1

n-1
1) =
=h

vi

|
—~
|

V2

G w1 (bj,l)[(l =~ sern i) = Ty bj.l].



n n
Proof: Evidently E ( £ xj) = Z E(xj) =
i=1 f=1
V2 vy
Ih x dG,(x) + (n-1) jh x dGj(x) + ... +
n "
bj +1 bj +1
lbj x dGy(x) + (j-1) ij x dGi(x) + ... +

bh,1 bh,1
]0 x dG;(x) + (b-1) [, x dGj (x) .

where the indices h, i, j. k, n have the same connotation as in
in the expressions for the distributions below Theorem 5.
Through integration by parts and using the fact that G;(x) =
x(j-1) v1v§1 dGij(x). i € {2,....n}, obtain the following ex-
pression for the contribution to the total expected efforts on

a particular interval [b;j. bj,;):3

bjol bj +1
loy 46100 + (1) [ x d6i(x) =

2=
_l —
= vi-va+bj 1| j-1
Lo e et 92 | ———
2 k>§ 3yl vi
2-j
vi-Vv2+bj _]_—l-
S ||
J Vi

3 The derivation is lengthy but straightforward, and analogous to the
case h = n as presented in Baye, Kovenock and De Vries [1989b].
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1 1
vi-va+bj .1]3-1 vi-va+b; | -1
- GrDvive) (bja |——— - b [
J J
J=1 v|—vg+bj,1 j——l J-1 vl—v2+bj F
mFNTs YT [wm | #®

To obtain the total expected effort, take the sum over j, where
j =h+l, ..., n-1, plus the first and last interval as well.
The resulting expression can be considerably simplified by
noting that consecutive terms in the sum do cancel or can be

combined, c.f. the Remark below Theorem 2. Note that

1 J-1
vi—va+bj [ 5
I G(bk) = |——F—— m Gk (bk) .
k>j 1 k> j+1

Use this to show that

-1 1-j
o vii—vatbj y1 —
-rr ekl i ———
K> j+1 i+ "
2-3
J%i Vl—V2+bj,l 3——1
+ [0 G(bx)]' b®? [———] =0
k>j j+l Vi

Which implies that the first element of the j-th summand can-
cels against the second element of the (j+1)-th summand. For

the third and fourth elements a similar procedure gives terms
= Gjs1 (bjs1) bjar.

and for the last two elements we get terms
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vi (1 = 5059)) Gt (o)

Taking care of what happens at O and vz, then gives

vy
i E(x3) = va - (E - 1) [(n-1)vz = Zj Gj,1 (bj,1)bj.1]

h =1
Vi = Vi=V3 T=9 h=1 =
- G - 1) v B (™! @ Ge(mi))P! - v, {212

vy - vz + bjyy

s vi % (1= gy Sier (i) ( )]

vi
Some further manipulations gives the expression stated in the
theorem. This expression consists of three terms. For given
n, the first term is fixed. The second and third terms, how-
ever, are generally nonzero and depend on h and bx. Therefore

total expected revenue varies with h and by for given n.

Theorem 5 and Lemma 20" generalize the two player heterogeneous
valuation case discussed in Theorems 3 and 4. Hillman (ibid., p. 66)
erroneously claims that the equilibrium bid distributions given in
Theorem 3 also constitute the unique equilibrium strategies if

Vi > v§ = ... = vy. Moreover, Hillman and Riley explicitly rule out a
tie between the second and third agent, c.f. their Proposition 4.
Hence, both the equilibrium where all 2,..,n players employ the
symmetric strategy and most of the asymmetric equilibrium strategies
are missed. This is not innocuous because of our Lemma 20". From the

expression for the expected sum of bids Theorem 2 immediately follows

as a special case by setting vi = vz. But revenue non equivalence
arises whenever v{ > v2 = ... = vi. To see this, consider the case
with 3 players such that v; = 2, v2 = v3 = 1 and calculate the

expected sum of bids. For the completely asymmetric equilibrium with
strategies G;(x) = x, Gz(x) = (1+x)/2 and G3(x) =1, 0 { x { 1, we get
that 3;E(xj) = 5/3 - 1/4 - 4/6 = 3/4. For the case where players 2
and 3 play symmetrically, the equilibrium strategies are
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{¥% =1/2 i 172
Gi(x) =x (5) . Gx) =Gk =(F) .
and hence
5 2
TE(xi) =3 -3V 2

For the case where players 2 and 3 employ identical strategies on
[172, 1]. but player 2 places probability mass of Yy (374) at 0, the
distributions are defined on [1/2, 1] as in the symmetric case. On
[0, 1/2) they are defined by

Gix) =x ¥ (#3),  Ga(x) =V (43).  Gi(x) =V (3/4).

®lw

5 13
V3=3-353¢3

In this case, I E(xi)=g—éJ3— 54

Thus we have shown :

Theorem 6: (Revenue Non Equivalence) : If vy > v = ... = vy, not all
Nash equilibria to the all-pay auction yield the same

revenue.

The conclusion is that with ties for second, the expected sum of bids
can be different from the value calculated in Theorem 4. Hence,
two-ness 1is an assumption rather than a property of heterogeneous
valuation all pay contests; c.f. Magee, Brock. and Young (ibid.,.
p. 217) who take two-ness as a general property in the setting of a

political context.

The final case to be covered is when vi = vy = ... =vg > Vg, 2 ... 2
vn for 2 { m { n-1. The analysis of this case is trivial, as it can
be shown that players 1 through m play an m-player equilibrium of the
type outlined in Theorem 1, while players m+l through n put all mass
at 0.
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4. OONCLUSION

Contrary to what has been conjectured in the literature and used in
applications, the n-person all-pay auction has an infinity of
equilibria. We examined both the case of homogeneous and heteroge-
neous valuations, and in each case we explicitly derived the equili-
brium strategies and the expected sum of bids. For the common values
case with more than two players, there is a unique symmetric equili-
brium, but a continuum of asymmetric equilibria. However, all of the
equilibria are payoff and revenue equilvalent. With heterogeneous va-
luations, a single agent with the highest valuation, and more than one
agent with the second highest valuation, there is a continuum of asym-

metric equilibria. These equilibria are not revenue equivalent.

Our results appear important since, in light of the rent-seeking and
tournament literature, which examine games with a structure isomorphic
to the all pay auction, one is tempted to take twoness as a general
property of a contest. Our results warn against this practice, not
only because larger numbers of players may actively participate in the
bidding process, but because the number of active bidders may affect

revenues.

Finally, our finding of a continuum of equilibria has important
ramifications for applications of the model. As in other contexts,
the multiplicity is troublesome. It is not clear how rational players
should play the game, let alone how real-life players do play the
game. An experimental investigation of the model remains a task for

future research.
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