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AffiI'RACI'

This paper provides an exhaustive and explici[ description of the set
of Nash equilibría in the n-player, first príce sealed bid, all pay
auction under complete information. Both the cases of homogeneous and
heterogeneous valuations are analyzed. For the common values case with
more than two players we show there is a unique symmetric equilibrium
and a continuum of asymmetric equilibria. All of the equilibria, how-
ever, are payoff and revenue equivalent. Wíth heterogeneous valua-
tions, two new situations can arise. First, if the three highest
valuations are strictly unequal then there ís a unique asymmetric
equilíbrlum. Second, with a single híghest valuation and more than
one player with the second highest valuation, there is a con[inuum of
asymmetric equilibria. In both of these latter cases, the expected
sum of the bids is below the second highest valuatíon, and depends on
the strategies of the agents with the second híghest valuation.
Hence, while the equilibria are payoff equivalent, they are not re-
venue equivalent. The continua of asymmetric equilíbria were missed
by both the theoretical literature, and the applied literature on e.g.
rent seekíng and rent díssipation.
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Katholieke Universiteit Leuven
E. Van Evenstraat 2B
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1. II'TI'RODLK.TIOti

Consider the public auction of a dollar, ín which each of n-bidders
places money in an envelope. The money ín the envelopes ís collected
and kept by the seller, and the dollar ís awarded to the bídder who
placed the highest amount of money in his envelope (ties are broken in
an arbitrary fashion). This auction, whích is called an all-pay
auction [cf. Moulin (1986 a.b) and Weber (1985)], is important because
many economic problems under complete information have a similar
structure. For example, Hillman and Samet (1987) and Hillman (1988)
model lobbying as an all-pay auction, where the lobbying parties
sweeten the decisionmaker by making a bribe, and the prize (a
polítical favor) is awarded to the party having given the highest
bribe. Similarly, much of the contest and principal agent literature
under complete informatíon is isomorphic to the all-pay auction; cf.
lvalebuff and Stiglitz (1983) and Baye. Kovenock, and de Vries (1989b).
Essentially, contests are an all-pay auction in effort : the person
putting forth the greatest effort wins the prize, while the effort of
other contestants goes unrewarded.

Thís paper completely characterizes the set of IVash equílíbria in the
all-pay auction with complete informatíon. We show that the set of
equilibria is much larger than had originally been thought. Moreover.
in some economícally interesting cases, the equilibria are not revenue
equivalent.

Before we present a more specific statement of our results and their

proofs, it is useful to describe our results vís à vis the existíng

literature on the all-pay auction. Two cases have been considered in

the literature- (1) the case where all players value identically [he

prize, and (2) the case where some players value the prize more than

others. For the case of homogeneous valuations, Hillman and Samet

have shown that, in addition to a symmetric Wash equilibrium, there

also exist a finite number of asymmetric equilibria. We extend this

result by showing that there is actually a continuum of asymmetríc
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equilibria. In each equilibrium. at least two players randomize

continuously over the union of the supports of the players'

equilibrium mixed-strategies, while up to n- 2 players may have a

mass point at zero and only randomize over a strlct subset of the

union of other players' supports. The exístence of these a,ddítional

equilibria has obvious empirical implications. However, for the case

oE homogeneous valuations, all of these equllíbria are payoff and

revenue equívalent- The expected sum of the bids equals the value of

the prize, and the net expected pay-off to each bidder is zero for all

equílibría.

The second case is when several players have heterogeneous valuations
of the prize. For the case where the second highest valuation of the

prize ís strictly greater than the third highest valuation~, Hillman
and Riley (1989) have shown that there is a unique equílibrium and

that only the two players with the highest valuations bid a positive
amount withe positive probability. Furthermore, they show that if the

highest valuation is strictly greater than the second híghest, the
expected sum of bids is less than the second-híghest valuatíon.

We extend Hillman and Riley's analysis of the heterogeneous valuations

case by considering other configuratíons of individual valuations.

One of the more important confígurations of valuations is where a

single player values most the prize, while all other players value the

prize at some common, lower value. This case is economícally

ínteresting, because in much of the literature on regulation [cf.
Rogerson (1982)] and politícal contests [cf. Snyder (1989)], one
player (usually an incumbent) !s modeled as having an advantage over
ldentical challengers. For this case, we show not only that there ís

a contlnuum of equilibria, but that the equilibria are not revenue

equivalent- the expected sum of bids differs across equilíbria.

1 Kore precisely, i f the players can be ordered in such a way that
vl Z vy ~ v3 Z... ~ vn, where vi is the valuatíon of player 1.
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The results presented ín the present paper are important for two

independent reasons. First, and as noted above, our results reveal a

wider array of behavior consistent with equilibrium. Second, given
the existlnR líterature on the all-pay auction, one might be tempted

t.o take two-ness as a necessary implicatlon oC contests. In fact,

Hillman (198t3, p. 6fi) clalms that, if there are ties for the second

híghest valuation and a single highest valuatíon, only two agents wlll

be active. Our results reveal that this is incorrect, and indeed the

additional equilíbria imply dífferent expected revenues. The fact

that there are additional equilibria and that the revenues dlffer

across the equílibria serves as a caveat of Magee, Brock, and Young's

(1989, p. 217) argument that two-ness ís a general property of

political contests. Our results reveal that this is correct only if

two contenders value of prize more than all other contenders. This

may be why there are typically more than two challengers to an

incumbent ín, for example, presídential campaigns.

The paper is organized is follows. Section 2 considers the case of

homogeneous valuations, while Section 3 examines the situatlon where

some agents have heterogeneous valuations of [he prize. The full

characterization of the continuum of equilibrium strategies requires

several steps which are labelled as lemmas. The maín resulta are

collectcxi tn six theorems. Interestingly and importantly, we are able

to derive closed form expressions for all the equ111brfum strategies.

Therefore, the reader can easily obtain the intuition behind the maín

results, e.g. verifying that the strategies satísfy the Nash property,

by working out examples on the basis of these expressions. In fact, we

employ this strategy to derive Theorem 6 on revenue non equivalence.
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2. 110!(OGQi~OUS VALUATIOfiS

Stippose first that an object lmown to be worth v~ O dollars to each

of n bidders is to be auctioned. The n bidders símultaneously wríte

down a bid. If player 1 bids the most he wlns the object. All

players pay the seller the amount that they bíd.

Without loss of generality let the strategy set be X; -[O, B], where

B) v is some large number. The payoff function for player 1 ín this

game is

- xi if 3 ~ s. t. xj ~ xi ,
vui(x~,..., xn) -(m - x; if i ties for hígh bid with m-1 others,

v- x; íf x; ) xj V j~ 1.

Let s; and s; denote the lower and upper bound of player i's equili-

brium bid distribution G;. Also, let ai denote the size of a mass-
point in 1's distribution. Let ui be player i's equilibrium profit.
It is easily shoxn that with more than one bidder there does not exist
a Nash equilibrium in pure strategies. In order to construct the
mixed-strategy Nash equilibría, we first obtain the supports of the
mixed strategies in Lemmas 1-9.

Lemma 1- V í, v) si 2 si 2 O.

Prooj: By settínR x; - 0 each player can guarantee nt least O.
This rules out bids greater than v. Bids less than 0 are
ruled out a priorí.
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Lemma 2: If 3 i such that s; )~ and a;(~ )- 0, then sj - 0 and

Gj(0) - lim Gj(x). If, in addition, ai(s9) - 0, then
xisi -

Cj (0) - Cj (Si ) ~

Proof: Let uj(xj, G.j) denote j's payoff to bidding xj when strate-
gies G-j are employed by the other n-1 players. Now
uj (sj , G-j )--sj C 0 for sj ~ 0. Since the same holds for

uj (xj , G-j ) for xj C s; , and xj - s; if a; (s; )- O, the

claim follows.

Lemmn 3: If s~ -... - so ) sm~~ Z... Z sn for n 2 m 2 2, then

3 1 S m such that a;(sí) - 0.

Proof: Suppose not. Then any 1 S m has incentíve to raise sí by e

small.

Lemma 4: If s~ -... - sm ) sm~i Z... 2 sn, for n Z m Z 2, then

s; -0V i.

Proof : Immediate from Lemmas 2 and 3.

I.emma 5: T'here exists no player i such that s; ) sj d j~ 1.

Proof: Suppose such a player díd exist. If oc;(s;) - 0, from Lemma

2 Gj(0) - Cj(s9) V j~ 1, which implíes that u;(s;, G-;) C

lim u;(x;, G.;). If the claím held and aq(s;) ~ 0 then
x; !0 -
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V J~ i, aj (s; )- 0. so Gj (0) - lim Gj (xj ) leads to a si-
xj fsi

milar contradiction.

Lemma 6: s; - 0 V i.

Proof: Immediate from Lemmas 4 and 5.

. .
Lemma 7: u; - uj V i,J.

r .
ProoF: Without loss of generality suppose ui ~ uj. Let sj be the

. s
upper bound of J's support. ui ( uj - uj (sj , G-j ) S lim

x; lsj

u;(x;, C-t), a contradiction.

Lemma 8: u; - O V í.

Proof: If a;(s;) - 0, V í xe are through. If 3 J such that
.

aj (sj )) 0, then uj - 0 from Lemmas 3 and 6, and with play-
.

ers receiving equal utility from Lemma 7, ui - 0 V í.

Lemma 9: 3 i,J such that si - sj - v.

ProoF: Suppose not. Let s; be the second highest sj. The player
with the highest sj can bid slightly above si and earn

.
uj - v - si ) uj .

The nine lemmas above establish that s; - 0 V í: there exist two i's,

say i- 1.2, such that s; - sy - v: nnd u9 - 0 V 1. We now pin down



the equilibrium distributions. Let W(xi) - v- xi, L(xi) --xi,
n n n

Gh.Ai - ff Gj . Aij - II Gk. and Aije - II
j-1 k-1 h-1
j~i k;Ej,i h;`j.i,m

Lemma 10: There are no point masses on the half open inverval (0, v].

ProoF S~ppose one of the cumulative distribution functions
(c.d.f.s), say Gi, has a mass point at xi e(O, v]. By Lemma

6, V x e(0, v] AijGi ) O, and hence AijGi has an upward
jump at xi, bj ~ i. This follows directly from the mono-
tonicity of the c.d.f.'s. For xi ( v thís implies that it
is worthwhile for j to transfer mass from an e-neighborhood
below xi to some b neighborhood above x;. AC xi - v it
pays for j to transfer mass from an e-neíghborhood below xi
to zero. Thus, there xould be an e-nelghborhood below xi
in which no other player j would put mass. But then it is
not an equílibrium strategy for player 1 to put mass at x;.

Lemma 11- The Sntegrand
Bi (xi ) a W(xi )Ai (xi ) } 1-(xi )(1 - Ai (xi )) (1)

is constant and equal to zero at the points of increase of

Gi in the half-open in[erval (0, v] for all i.

ProoF By Lemma 10, there are no poínt masses in (0, v]. Thus,

B;(xi) is the expected payoff to player i from bidding

xie(0, v]. If x9 is a point of increase of Gi, then player

i must make its equilibrium payoff at xi.
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Lemma 12: Suppose x is a point of increase of G; and Gj in (0, v].
Then G; - Gj at x.

Proof By Lemma 8, B;(x) - Bj(x) - 0. From (1) we have

W(x) Gj (x) A;j (x) t L(x)[1 - Gj (x)A;j (x)] - 0.

This implies Gj(x)Aij(x) - W xL~L)x - G;(x)Aj;(x).
( ) ( ) -

Division by A;j(x) - Aj;(x) ) O gives Gj(x) - G;(x).
(Note: L(x) is negative in the half-open interval).

Lemma 13: For every í and every point of increase x of Gi ín (0, v],
there is at least one Gj, j~i, such that Gj is increasíng
at x.

Proof : Because B;(x) is constant in a neíghborhood about x by
Lemma 11, dB;(x) - 0. Suppose contrary to the hypothesis
that dA;(x) - 0. Totally differentíating B;(x) then gives

AidW t (1-A;)dL - O.
However, both dW and dL are negative and A;(x) e(0, 1].
Hence, for dB; to be zero, dA; is necessarily posítive. By
the monotonicity of the Gj's, at least one has to increase.

Lemma 14: If G; is strictly increasing on some open interval (a,b),
O C a C b C v, then G; is strictly íncreasíng on (a, v].

Proof : Without loss of generalíty, suppose, to the contrary, that
Gq were constant on (b,c), b C c S v. Then from Lemma 10,
G;(b) - G;(c). It i s evídent that there exists an e) O
such that on the interval ( b, bte) there exist at least two
players, say h and k, with strictly increasing c.d.f.'s
over the interval (otherwise mass would be moved down to b
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by some player). Thus, for every xe(b, bte). Bh(x) - Bk(x)
- 0. Furthermore, since there are no mass points in the
interval (0, v]. Bh(b) - Bk(b) - B;(b) - O which, from ar-
guments similar to those used in proving Lemma 12, implies
that Gb(b) - Gk(b) - G;(b) ) 0. But with B;(b) - Bh(b) -
Bh(x) V xe(b, bfe), ii mus[ be that B;(x) S Bh(x)
d xe(b, bte), since such values of x do not lie in i's sup-
port. But this implies that A;(x) S Ah(x), and hence that
Gh(x) S Gí(x), a contradictíon to the fact that G;(b) -
Gh(b), Gh(x) ís increasíng on (b, bte), and G;(x) is con-
stant on (b, bte).

Lemmn 15: At least two players randomize continuously on [0, v].

Proof . Three cases are possible at 0: (í) all players allocate all
mass at 0, (11) all players have G;(xí) - O at some x; ) 0.
or (íii) there is at least one player with G;(x;) ) O for
all x; ) O and G;(O) C 1. Cases (i) and (11) are easily
ruled out by previous lemmas. For the third case, by Lemmas
3 and 6 at least one of the players has G;(0) - 0. Lemmas
12, 13, and 14 then imply that there are at least two
players that randomize contínuously over [O, v].

Lemma 16: Once G; is constant on a subset (a,b), 0 C a C b S v, it is
constant on [O,b) and has a mass point at O.

Proof The fírst part follows immediately from Lemma 14. The se-

cond part follows from Lemma 6.

The above lemmas ímply the followinQ result:
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Theorem 1: The fírst price sealed bid all pay common values suction

with complete information possesses two types of equili-

bria. Either all players use the same continuous mixed

strategy with support [0, v], or at least two players

randomize over [0, v] with each other player i randomizing

over (bi, v], bi ) O,a and having a masspoint at 0 equal to

G;(bi). When two or more players have a posítíve density

over a common interval they play the same continuous mixed

strategy over that ínterval.

'1'heorem 1 allows one to construct all of the equílibrium strategíes
explicitly. S~ppose, without loss of generalíty, that players 1-
1,2..,h, h 2 2, randomlze continuously over [O, v] with players i-

h f 1. ...n randomizing continuously over (bi,v], with bh,t C bh.2

C... ~ bn S v. The equilibrium strategles are:

1
V xe[bn, v]~ Gi(x) - f y ln-1

1 1
V xe[bj. bj.t)~ Gi(x) -[ X] j-1 [ II Gk(bk)]- j-1
je{htl,..,n-1} v k~j

Gk(x) - Gk(bk)

i - 1. ..., n;

k - jtl, .. , n;

1 - 1
V xe[0. bh.t)- Gi(x) -( y lh-1 [ R Gk(bk)]h-1 1- 1. .... h

L f k)h

Gk(x) - Gk(bk) k - htl.

2 We could have bi ) v, in which case player í places all mass at O.
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The equilíbría wíth bh,~ - v are gíven in Moulín (1986b) For h- n.

Somewhat more general is the case bh,i - v, but 2 S h C n, i.e. some

agents can be inactive, which is discussed in Hillman and Samet
(ibid., p. 72), Hillman (íbíd., p. 66) and Hillman and Ríley (ibid.,
ft. 12). Hillman and Samet (ibid., p. 72) claim there are no other
equílibria. Also, Proposition Ic in Hillman and Riley which claims
that at mos[ one agent spends zero with positive probability is
erroneous. The analysis above shows there exists a continuum of
asymmetric equilibria. Moreover, with more than two agents, a
multitude of different point masses at zero are possible. Important-
ly, however, it turns out that all of the equilíbria are revenue
equivalent.

Theorem 2: (Reuenue Equiualence) In the all-pay common value auc-
tion, the expected sum of the bids in ~ Nash equili-
brium equals the value of the prize v.

n
Proof: By Lemma 8 E[u;] - O, and hence E[ E ui] - O.

1-t
As u; equals the expected revenue to player 1 minus the bid x;,
and total expected revenues are v, ít follows that

n
v- E[ E x; ]- O.

i-1

Remark. The same result can be obtained through integration, see
Baye, Kovenock and de Vries (1989b) for the n-player case with bh,~ -

v. For the other cases one has to evaluate the sum of integrals of
the form

(.1-1 ) Jb~ . í x dCi (x)

In this sum all terms except the first (equal to v) and the last
(equal to 0) cancel.
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From the bidders' point of view, all the equflibria are also payoff

equivalent. This result was established in Lemma 7 above. Apart from

these equivalences, all the equilibria share another interesting pro-
perty. As is shown in Lemma 15, at least two agents have to randomize

continuously over the support and have equal c.d.f.'s. Thus ít takes
at least two players to hold each contender down to the equilibrium

payoCf of zero. Trivíally, with only one contender, he gets everything
for nothing. Two seems enough to induce the perfectly competitive

outcome, where all rents are competed away. The role of the other n-2
is less important in this sense. Also note the c.d.f.'s of the players

who randomize over the entire support strictly first order stochasti-
cally dominate the other players' strategies. Whether the perfectly

competitive outcome arises generally if there are at least two con-
tenders, ís now investigated by considering the case of heterogeneous

valuations.

3. i1F.TEROGE7~i~0US VALUATIONS

Suppose now that the bidders have heterogeneous valuations. Let v; be
the valuation of player i.

A. Unique Híghest and Second Híghest Valuations

We deal fírst with the case where vi ) vp ) v~ Z... 2 v„ 2 0. Cases
where one of the strict inequalíties adjacent to vy is weak requíre a
separate analysis.

Lemmn 1': V i ví ~ sí ~ sí Z 0.

ProoF . Insert vi in place of v in the proof of Lemma 1.
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Lemma 2': Same as Lemma 2.

Lemmn 3': If s~ -... - sm ~ sm~~,

such that a;(s;) - 0.

s~ for n Z m Z 2 then 3 i S m

Proof- Suppose not. Then any i S m has incentíve to raise the bid
s9 by e small, unless s; - v;, in which case i has an in-

centive to reduce the bid v; to 0.

Lemma 4': Same as Lemma 4.

l.emma 5' - Same as I.emma 5.

Lemma 6': Same as Lemma 6.

In the analysis that follows let s be the upper bound of the union of
the supports of the players' equilibrium bid dístributions.

Lemma 7': s S vy.

Proof- Player i would never put mass above v; since setting the
bid equal to 0 strictly dominates such a strategy. Player 1
clearly has no incentíve to put mass ín the interval
(~2.v~7.

Lemma 8': All players other than player 1 must place a mass point at
0.
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Proof: By Lemma 6', sf - 0 d i. Since s( v~ C v~ player 1 must
.

have an equilibrium payoff uf of at least vi - vp ) 0.

Thus, player 1 cannot have a mass polnt at 0. This follows
from Lemma 3', i.e. some player must put no mass at 0, in
which case player 1 with probabílity 1 would not submit the

high bid at 0, and would have payoff u~ - O there. Since
u~ ) O, in every neighborhood above 0 player 1 must outbid
every other player with a probability that is bounded away
from zero. Thus, every player but player 1 must put a mass
point at O.

.
Lemma 9': V i~ 1 uí - 0.

Proof: Immedíate from Lemmas 3' and 8'.

Lemma 10': s- vp and s~ - sy - v2.

Proof: From Lemma 7' s S v~. Suppose s~ vZ. By bidding above s
by an arbitrarily small amount player 2 can earn arbitrari-

i
ly close to v2 - s~ 0- uy, a contradiction. Thus, s- v2.
The second part of the claim is straightforward.

Lemma 11': There are no point masses on the half open interval (O,vZ].

Proof Similar to the proof of l,emma 10, insertíng vz for v the
fírst cwo tlmes that v appears 1n the proof, and vj for v

the last two times it appears.
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Lemma 12': B;(x;) e ( v; - x;) A;(xi) - xi(1-A;(xi)) is constant and
equal to u; at the points of increase of G; in (0, vy] for
all 1. B;(xi) S u; íf x; is not a point of increase in
(0, v2]-

Proof: Similar to Lemma 11.

Lemmn 13': V xe(O, vz] 3 ír, ly such that `d e) O: G;(x}e) - G;(x-e)
~ 0, i - 1;, iy.

Proof: Immedíate.

Lemma 14': s; - O V i~ 2.

Pr-oof- Without loss of generalíty assume s3 - max si. Slippose
iZ3

s3 ~ O. Then there exists an interval of increase ( s3-e,sg]
in which B3(x) - ug - 0-(vg-x)A3(x) - x(1-A3(x)). Thus,
V3 - A3~x) d xe(s3-e, s3]. But as G1 and G2 are increasing

53
on (s3,v2], vp - . Since for s3 ~ 0, Az(s3) -

As(ss)
ff Gj(s3) ) II Gj(s3) - A3(s3), we have a contradiction
J~2 J~3
to the fact that v, ~ vy. Thus, s3 - O.

The above analysis establishes rigorously the following result origi-
nally formulated by Hillman (ibid.), and Hillman and Ríley (ibíd.):

Theorem 3: (Htllman and Rt1ey) If v~ ) v2 ) v3 2--- 2 vn. then play-

ers 1 and 2 will randomize continuously over (O,vz], wíth

player l having a mass poínt at 0 and all other players
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bidding 0 with probability one. The c.d.f.'s used by play-
ers 1 and 2 over the interval [O,vp] are G~(x) - X and

va
vi-v~

Gy(x) - t X-, respectively. Players 2 through n earn
v~ vi

a payoff of O and player 1 earns a payoff u~ - v~ - vz.

Through integration Corollary 1 of Hillman and Riley (ibid., p. 25) on

the expected sum of bíds ís easíly verifíed.

Theorem 4: If vl ~ v~ ) v3 2..- 2 vn. the expected sum of the bids in
the all-pay auction is

vz
E[xl f xs] - 2 vy t,1-2 vy (y~).

Note that the average sum of bids is now below the second híghest

valuation vp. The íntuítion behind this result ís as follows. Wíth

equal valuatlons, í.e. (vZlv~) - 1, each player bíds half the príze on

average. With unequal valua[ions, player 2 still bids v2I2 conditíonal

upon bidding actively. This happens with probability vplvi.

B. Unique Highest but Multiple Second-Highest Valuations

We now deal with the case where vy - vs -... - vm, m S n. These
cases again lead to multiple equilibria. Ne fírst deal with the case
where v~ ) v2 - v3 -... - vm ) vo,i 2... Z v~ for some 3 S m S n.

It is easily seen that for this case Lerm~as 1' through 9' hold.
Lemmas 11' through 13' also continue to hold (wíth an obvious
alteration in the labeling of players in the proof of Lemma 11').
Lemmas 10' and 14' must be slightly altered as follows; the proofs
require only a minor change in the labeling of players-
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Lemma 10": s- vy. There exists at least one player í. 2 S 1 S m,
such thac s; - v2.

Lemma 14": si - 0 d i~ m.

If n) m we may set si - s; - O for í ~ m and proceed with the

analysis of the game as if we had an m player game with v~ ) vg - v3 -
... - vm. Suppose then that n- m, so that vl ~ v2 - v3 -... - Vn.
The following versions of Lemmas 12 and 14 hold for players 2,..., n.

Lemma 15": Suppose x is a point of increase of G1 and Gj in (O,vy],
i, je{2,..., n}. Then G; - Gj at x.

Proof: Same as proof of Le~ 12.

Lemma 16": If G~, ie{2.---. n}, ís strictly increasing on some open
subset (a,b), O( a ~ b( v2, then Gi 1s stríctly increas-
íng on the whole interval (a,vp].

Pr-oof: Similar to the proof of Lemma 14 where one of the players
h,k must be an element of {2,..., n} and this player is
used throughout the continuation of the proof.

Lemma 16" together with Lemmas 10" and 13' imply the following:

Lemma 17": At least one of the players 2,..., n must randomize on the
interval [O,v2].
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Lemma 18": si - vz, and for every bid O( x( vz in the support of G~,
G~(x) C G;(x), i e{2. ..., n}.

Proo(: From Lemm~ 17" at least one of the players 2, ..., n has
support [O, vy]. Without loss of generality, suppose that
player 2 is such a player. From Lemmas 3' and 8' player 1
does not have a mass poínt at O, and from Lemma 11" no
player has a mass point in (0, vz]. Thus, there exists some
point x e(0, va) at whích G~(x) is increasing. At any
such point B~(x) Z v~ - vy, since the right hand side is
what player 1 can obtaín by bidding vy. Rearrangíng this
expression we obtaín

From Lemmas 9' and 12'

Az(x) - Xvy.

Subtracting A~ from AZ gives

v~
(vs-x)(1 - ~a)

A2(x) - Ai(x) S vl ( 0.

where the strict right hand ínequality follows from the
assumption that v2 ~ x and v~ ~ vy. Thus, at any poínt of
increase of G~ in (O, vz), Ai ~ Az. This dírectly implies
[hat G2 ) G~ for any such point.

But since Gy has support [0, v2] and G~ has no mass poínts,
this implies s~ - vp. Furthermore, since for any other
player i e{2, .. , n) and for any x e[0, v~], G~(x)
~ Gí(x), we have the claim.
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An immediate consequence of Lemma 18" and the fact that G~ has no mass
points is that G;(x) Z G~(x) for every x e[0, vz] i- 2, .. , n, with
strict inequality on the open interval. Thus, each G;(x) is stochas-
tically dominated by G~(x).

"fhe next Lemma uses the result that si - vy to show that the support
of G~(x) is [O, vy].

Lemmn 19": The support of Gi(x) is [O,v2].

Proof: We know that s~ - vq and s~ - O. Suppose there is a gap

(a,b) in which G~(x) is constant, O( a C b C vy.

X AC x- b this holds as well.

By Le~s 12' and 13' we know that at x- a there are at
least two players i,k e{2....,n} such that Ai(x) - Ak(x) -

v2-
b are ín the support of G~

v~-v2 aA1(a) - v~ t v~.

and

vi-vz bA~(b) - v~ t v~.

Thus, we have

(1) GI(a) Gk(a) Aiki(a) - ~~:

(2) Gt(b) Gk(b) Aik1(b) - bZ~

In addition, since a and

v~-vy
(3) Gi(a) Gk(a) Aikt(a) - f a: andvi vl
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v~-v2
(4) Gi(b) Gk(b) Aik~(b) - v~ t r~

Sfnce G~(a) - G~(b) by assumptíon, and by I.emma 15" G;(x) -
Gk(x) for xe[a,b], ( 1) and (2) ímply

Gk(a) Aikl(a) a

Gk(b) A;k~(b)
- b, xhile (3) and (4) ímply

[Gk(a)]2 Aik~(a) ~~-vgta

[Gk(b)]~ Aikt(b) - vl-vptb

Gk(a) a vl-vyta
Combiníng this gives b - . Hence,

Gk(b) v~-vytb

b v~-v~ta
Gk(a) - á ( ) Gk(b)

v~-vztb

~ta
- á(-) Gk(b), say, for ~) 0.

~tb

bf~ b(af~)
Since á~ at , this implies ~ 1. It follows that

a(b~~)
Gk(a) ) Gk(b), a contradiction to the fact that b) a.
Thus there cannot be an interval contained in (O,vz) over
which player 1 places no mass.

We have therefore established the followíng:

Theorem 5: If v~ ) vZ -... - vn, player I randomizes con[inuously

over the interval [O.v2] and at least one of the players

2. ..., n does the same. Each player i, ie{2...,n}, has a

strategy with support contained ín [O,vz]; each iE{2,...n}

places a mass poínt n;(0) at 0(the size of which may
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differ across players): and each 1E{2...n} can be characte-
rized by a number bi ~ 0 such that Gi(x) - Gi(0) - ai(0)
Vxe[O,bi] (where bi could be greater than vy, in which case
ai(O) - 1) and player i randomizes con[inuously on (bi,
vz]. Furthermore, when two or more players in the set
{2...,n} have a positive density over a common interval,
they play the same continuous mixed strategy over that
interval. Moreover, uj~ - vt - vz and uj - 0 for j~ 1.

We are now able to provide exact expressions for the equilibrium dis-
tributions conditional on the (arbitrary) points, bi, ie{2,..,n} at
which players start randomizing continuously. The dístributions may
be obtained recursively over [0, vz].

Suppose without loss of generality that of the players {2..-.n}
players í- 2..-. h, h Z 2 randomíze continuously over (O,vz], with
players i- htl....n randomizing continuously over (b;.vz], (where b;
- vq implies aci(O) - 1) with bh.~ S bh.z S-.- S bn S ~z- Then

d xe[bn.v2]' Gi(x) -

1
rvt-vztxln-1

2-n
- Vz rvtV;ptxln-1

Gt(x) X IIL J

v -v tx j-1

i - 2, ,n

ti xe.[bj.bj.t)- Gi(x) -
I t z I [ R Gk(bk)]~-1 1- 2.....i

je{htl...,n-1} L ~t 1 k)j

Gk(x) - Gk(bk)

v~

k - ,Jtl, ..n;

rv~-vztxl~ - 1
Gt(x) - ~z I ~t J ~-1 [ II Gk(bk)]~-1

` k~j
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1 - 1rvt-v2tx
`d xe[O.bh,t)~ G;(x) - I ~t h-1 [ il Gk(bk)~h-I i- 2....h

l k)h

Gk(x) - Gk(bk) k - htl....n

vt-v2txl 2-h - 1

Gt(x) - ~z I ~t Ih-1 [ II Gk(bk)~h-1
k)h

From Theorem 5 ít is immedíate that all equílibria are payoff equi-
valent, as before. Interestingly, in contradístinctíon Nith the case
of homogeneous valuatíons, c.f. Theorem 2, in case of heterogeneous
valuations the possibility of revenue non equivalence aríses.

Lemma 20"- If vt ) vy -... - vn, then the expected revenue is

n vt r (n-1)~
E E(xi) -{v2 -( ~z - 1) I(n-1)vy - n vt }

1-1 L

h -1
vt (h-1)2 vt-vy h-1 f n lh-1

-(~~ - 1) {v~ h ( ~t ) I R Gk(bk) J }
` k-ht1

vt n-1
- (~a - 1) JEh Gi,t (bi.i) íl - .1(.1t1))(~t-~2) - .í(Jfl) bJ.t -
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n n
Proof: Evidently E( E x;) - E E(x;) -

1-1 1-1

~z ~,
ft~ x dCi(x) ~(~~ ~) fbn x dC~(x) a... t

fb~.~ x dCi(x) t(j-1) fb~.~ x dC;(x) t

bh,l bh.t
f~ x dG~(x) }(h-1) f~ x dG;(x) ,

where the indíces h, 1, j, k, n have the same connotation as in

in the expressions for the distributions below Theorem 5.

Through integration by parts and using the fact that G1(x) -

x(j-1) v~vjl dG;(x), i e{2....,n}, obtain the following ex-

pression for the contribution to the total expected efforts on

a particular interval [bj, bj~i):3

bj ~~ bj ~~
fbj x dG~(x) 4(j-1) fbj x dC;(x) -

2-j
V -1 rv~-vVtbj.~1J-1
12 [ II Gk (bk)]J-1 {b~.i IIL ~ Jk~j

- b~
j

2-j
rv;-vZfbjlj-1

v~

3 The derívatíon is lengthy but straíghtforward, and analogous to the
case h- n as presented in Baye, Kovenock and De Vríes [1989b].



24

- (j-1)(v~-vz) {bi.l

j-1- ~, -
j

1 1
rv~-vztbj,i1 j-1 ~v~-vztbj~ j-1
IL ~ J - bj

t

j j

vi

v~-vzfbj.t j-1 j-1 vl-vztbj j-1[ ~ ~ [ ~~ ))-
To obtain the total expected effort, take the sum over j, where
j- hfl. .. . n-1, plus the first and last interval as well.
The resulting escpression can be considerably simplified by
noting that consecutive terms in the sum do cancel or can be
combined. c.f. the Remark below Theorem 2. Note that

I j-1
v v tb-f i- z ~.i J j

R Gk(bk) - I ff Ck(bk) -.
k)j L v~ k)jtl

Use this to show that

-1 1-j
v~ -vz fbj . t

-[ iI Gk(bk)~ j b? ~ 7 j
k)jtl 1.i vt

-1
t [ II Gk(bkJ~j-1 bs

k)j j.t

2-j
v~-vztbj.i j-1

- O.~ v~

Which implies that the first element of the j-th summand can-
cels against the second element of the (jtl)-th summand. For
the third and fourth elements a simílar procedure gives terms

- Gj . I ( bj . t) bj . 1~

~, }~~

and for the last two elements we get [erms
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v~ (1 - J(Jtl)) G~ .i (bi .t )~

Taking care of what happens at 0 and vy, then gives

vi 1

Zi E(xi ) - vY - (y~ - 1 ) [(n-I ) vy - i,j Cj .1 (bj .I )b1 . 1 J

h -1
vt h-1 ~ v~-v~ h-1 h-1 n-1 ~- (~~ - 1) [vt h ( vt ) (II Gk(bk)) - vt nk

vt - v2 t bj .t
t vt Ej (1 -

J(Jtl)) Gi.l (bi.t) ( vt )~~

Some further manipulatíons gives the expression stated in the
theorem. This expression consists of three terms. For given
n, the first term is fixed. The second and third [erms, how-
ever, are generally nonzero and depend on h and bk. Therefore
total expected revenue varies with h and bk Eor given n.

Theorem 5 and Lemma 20" generalíze the two player heterogeneous
valuation case discussed in Theorems 3 and 4. Hillman (ibid., p. 66)

erroneously claims that the equilibrium bid dístributíons given in
I'heorem 3 also constítute the unlque equilibrlum strategies if
v~ ~ v2 -... - v,,. Moreover, Hillman and Ríley explicitly rule out a
tie between the second and thírd agen[, c.f. theír Proposítion 4.
Hence, both the equilibrium where all 2....n players employ the
symmetríc strategy and most of the asymmetric equilibrium strategies
are missed. Thís ís not innocuous because of our Lemma 20". From the

expression for the expected sum of bids Theorem 2 immediately follows
as a special case by setting vt - v2. But revenue non equivalence
arises whenever v~ ) v~ -... - v~. To see this, consider the case
with 3 players such that vt - 2, v~ - v3 - 1 and calculate the

expected sum of bids. For the completely asymmetric equilibrium with

strategies Gt(x) - x, G2(x) -(lfx)~2 and G3(x) - 1. 0~ x S 1, we get
that E;E(x;) - 5~3 - 1~4 - 4I6 - 3~4. For the case where players 2
and 3 play symmetrically, the equilibrium strategies are
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-1~2 1~2
~i(x) - x (12x) . Gs(x) - Ga(x) - (12x) .

and hence

EiE(xi) -3-3J2.

Por the case where players 2 and 3 employ ldentical strategtes on
[lI'l, 1], but player 'L places probability mass of J (~I4) at O, the

distributions are defined on [1I2, 1] as in the symmetrlc case. On
[0, lI2) they are defined by

G~(x) - x J (4I3). Gs (x) - 12x J (~3) . G3(x) - J (3~4).

In thiscase, E; E(xi) -3-6J3-8J3-3-24J3.

Thus we have shown :

Theorem 6: (Revenue Non Equivalence) : If vt ~ vq -... - vn, not all
Nash equilibria to the all-pay auction yield the same
revenue.

1'he conclusíon is that wíth ties for second, the expected sum of bíds
can be dífferent from the vnlue calculated in Theorem 4. Hence,
lwo-nCSS is an assumptton rnther than a property of heterogeneous
valuation all pay contests; c.f. Magee, Brock, and Young (íbld.,

p. 217) who take [wo-ness as a general property in the setting of a
political context.

The final case to be covered i s when vt - vy -... - vm ~ vm.t 2... 2
vn for 2 S m C n-1. The analysis of this case is trivial, as it can
be shown tha[ players 1 through m play an m-player equilibrium of the
type outlined in Theorem 1, whíle players mtl through n put all mass
at O.



4. t~NQ.US ION

Contrary to what has been conjectured ín the líterature and used ín

applications, the n-person all-pay auction has an infinity of

equílibria. We examíned both the case of homogeneous and heteroge-

neous valuations, and ín each case we explicítly derived the equili-

brium strategies and the expected sum of bids. For the common values

case with more than two players, there is a unique symmetric equili-

brium, but a continuum of asymmetric equilibria. However, all of the

equilibría are payoff and revenue equilvalent. With heterogeneous va-

luations, a single agent with the highest valuation, and more than one

agent with the second highest valuation, there is a continuum of asym-

metrtc equílíbrfa. These equilíbría are not revenue equívalent.

Our results appear important since, in light of the rent-seeking and

tournament literature, which examine games with a structure ísomorphic

to the all pay auction, one is tempted to take twoness as a general
property of a contest. Our results warn against this practíce, not

only because larger numbers of players may actívely participate in the

bidding process, but because the number of active bídders may affect

revenues.

Finally, our finding of a continuum of equilibria has important
ramifications for applications of the model. As in other contexts,
the multiplicity is troublesome. It is not clear how ratíonal players
should play the game, let alone how real-life players do play the
game. An experimental ínvestigation of the model remains a task for
future research.
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