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Inverse velocity dependence of vibrationally promoted elec-
tron emission from a metal surface
N. H. Nahler?, J. D. White?, J. LaRue?, D. J. Auerbach®, and A. M. Wodtke®"

2 Department of Chemistry and Biochemistry, University of California Santa Barbara,
Santa Barbara, California 93106-9510; ® GRT Inc., 861 Ward Drive, Santa Barbara, CA
93111-2920

All previous experimental and theoretical studies of molecular interactions at metal surfaces
show that electronically nonadiabatic influences increase with molecular velocity. Here, we re-
port the observation of a nonadiabatic electronic effect that follows the opposite trend: the proba-
bility for electron emission from a low work function surface — Au(111) capped by half a mono-
layer of Cs — increases as the velocity of the incident NO molecule decreases in the course of col-
lisions with highly vibrationally excited NO(X?ITy, V=18), reaching 0.1 at the lowest velocity
studied. We show these results are consistent with a vibrational auto-detachment mechanism,
where electron emission is only possible beyond a certain critical distance from the surface. This
outcome implies that important energy dissipation pathways involving nonadiabatic electronic
excitations and furthermore not captured by present theoretical methods, may influence reaction

rates at surfaces.
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Chemical processes are generally described in terms of the Born-Oppenheimer (BO) ap-
proximation where electrons move sufficiently rapidly to adjust adiabatically as the system
evolves and nuclear motion is governed by an effective electronic ground-state potential energy
surface (1). This approach, particularly in combination with density functional theory (2), has
contributed significantly to our understanding of surface chemistry and heterogeneous catalysis
(3,4). Use of the BO approximation, however, neglects electronic excitation induced by nuclear
motion, which might be expected for interactions on metal surfaces where there is a continuum of
low lying electronic states. If for example chemical reactions at metal surfaces were accompanied
by ubiquitous electronic excitations, important energy dissipation pathways would be neglected
by present theoretical approaches. This could have important consequences for predicting reac-
tion rates — for example overemphasizing re-crossing of transition states or underestimating the
importance of rapid irreversible relaxation into product wells.

There are now many well documented examples of the breakdown of the BO approximation
in molecular processes at metal surfaces (5-17). These include electron emission during strong-
ly exothermic chemisorption, a process referred to as “exoelectron emission” (5, 6); vibrational
energy transfer at metal surfaces (7-11); the observation of currents (termed “chemicurrents”) as-
sociated with adsorption and reactions in Schottky diode and metal-insulator-metal (MIM) struc-
tures (12-14); and the emission of electrons when highly vibrationally excited NO molecules im-
pinge on a low work function Cs(sub-ML)/Au(111) surface (16, 17)(18). This last phenomenon,
dubbed “vibrationally promoted electron emission”, is a particularly direct observation of BO
approximation breakdown.

Despite evidence of BO approximation breakdown, its impact on chemical reactions at sur-
faces remains unclear. On the one hand, it is clear that the rate of energy loss to the solid is cru-

cial to accurately characterizing reaction conditions; however, some of the clearest examples of



BO approximation breakdown occur so improbably — for example, exoelectron emission exhibits
a per-collision-probability or 107 to 10 (19) — that it is hard to know if the electronically
nonadiabatic events they reveal are minor side channels or if they have an important influence on
reactivity.

Even for processes with significant probabilities, there are reasons to question their influence
on surface chemical reactions.  All observations and theories of the nonadiabatic processes cited
above show a decrease in excitation probability as the velocity of the molecules relative to the
surface decreases. This trend toward decreasing nonadiabatic transition probability with de-
creasing velocity is also seen in the gas phase, for example, in the well known Landau, Zener,
Stuckelberg theory and numerous experimental results on nonadiabatic transitions at curve cross-
ings (20). Furthermore, the trend is expected because breakdown of the BO approximation de-
pends on the nuclear motion being too rapid for the electrons to independently adjust. For ad-
sorbed molecules, where the velocity relative to the surface is zero, it is thus reasonable to ques-
tion the relevance of nonadiabatic processes altogether.

We report here a surprising and seemingly paradoxical observation: the probability of electron
emission observed when highly vibrationally excited NO(X?IT, V=18) molecules strike a low
work function surface increases strongly as the velocity of the incident molecules decreases.
Such electron emission self evidently involves nonadiabatic electronic excitation. Yet, as we
have just discussed, the probability of nonadiabatic excitation should decrease with decreasing
velocity. We also present a simple model to resolve this apparent paradox. The model is based
on an extension of the vibrational auto-detachment mechanism previously proposed (17). The
model suggests that it is not the motion of the NO molecule relative to the surface but rather the

relative motion of the N and O that drives the nonadiabatic electronic excitation observed.



The experimental setup has been described in detail elsewhere (17). Briefly, seeded supersonic
pulsed molecular beams of NO in a variety of carrier gases are used to control the velocity (v) of the
NO molecules. The NO molecules are prepared in vibrationally excited states of the ground
X(?Iy,) electronic state by stimulated emission pumping (SEP) (8, 16) and then scattered, in ul-
trahigh vacuum, from a low work function surface prepared by adsorbing a fraction of a ML of Cs
on Au(111). The surface prepared in this way has a work function of 1.61 £ 0.08 eV (21). In-
dividual measurements of emitted electrons are carried out over only a few seconds, always within
20 minutes after surface preparation using a micro-channel plate assembly (MCP) (22), conditions
that ensure the cleanliness and stability of the low work function surface. The electron currents
are measured with a digital oscilloscope, which avoids saturation problems we had with the
counting electronics used in our earlier measurements.

The basic methodology for obtaining absolute quantum vyields for vibrationally promoted
electron emission has been previously reported (16, 17). Here, we used a new method to deter-
mine the flux of vibrationally excited molecules. Briefly, we used a laser induced fluorescence
(LIF) signal measured just after the molecular beam skimmer to derive the number density of
NO(V=0) and NO(V=18) molecules and converted the density to beam flux using the beam ve-
locity determined by time-of-flight methods. Finally, we used knowledge of the excitation ge-
ometry and the velocity dependent divergence of seeded beams (23) to determine the subsequent
transmission of the NO molecules through the apparatus to the surface. We also determine the
absolute flux of NO(V=0) from measurements of the NO partial pressure increase in the scattering
chamber and the pumping speed of the vacuum system. These NO(V=0) measurements were also
used to validate the LIF-transmission-function method used here. The transmission-function was

also verified by comparison with the measurement of transmission by White et al. (16, 17)



In the experiment, a ns-pulsed laser excites NO to a single ro-vibrational level of the A(°Z")
state, inducing fluorescence on a ~200 ns time-scale as the molecule radiatively relaxes back to the
ground electronic state (Fig. 1a). This LIF signal can be used to derive the flux of NO in V=0. In
Fig. 1b, a second ns-pulsed laser, spatially overlapped with the first and slightly delayed, transfers
population back to the ground electronic state in NO(V=18), depleting the LIF signal (dark shaded
region). The depletion signal can be used to derive the flux of NO(V=18) molecules. Figures 1c
and 1d show the electron signal — detected on the 100-us time-scale — corresponding to conditions
of Fig. 1aand 1b, respectively. The time dependence of the electron signal is a result of flight time
from excitation to impact on the surface and thus provides precise information on the velocity
distribution of the molecular beam. The electron signal of Fig. 1c is due to the impact on the
surface of vibrationally excited NO resulting from Franck-Condon Pumping (FCP), i.e. sponta-
neous emission from A(’Z*) into a Franck-Condon distribution of vibrationally excited levels.
The larger electron signal of Fig. 1d results primarily from NO(V=18) molecules populated by
stimulated emission. The signal of Fig. 1d also contains a small contribution from FCP. Using a
comparison of Fig 1a and 1b, the residual FCP signal can be accounted for in the analysis.

Fig. 2 shows the per-collision probability for electron emission (quantum yield) for NO(V=0) -
lower panel —and NO(V=18) — upper panel — plotted against the inverse velocity of the molecular
beam. The dashed line is a fit to the Brako-Newns model, where the positive velocity dependence

Vo lv

of the yield is given by e~ (24). The Brako-Newns model’s positive velocity dependence
issues from the following physical picture. As the NO molecule approaches the surface, its lowest
unoccupied molecular orbital (LUMO) is stabilized by an image charge interaction. The velocity at

which the LUMO of the NO molecule passes through the Fermi level governs the energy of the

LUMO at the instant it is filled by electron transfer from the surface. At high velocity the LUMO



moves far below the Fermi level before being filled creating an electronically excited state, i.e. an
unoccupied hole below the Fermi level. At low velocity, the LUMO is filled by an electron close to
the Fermi level and the system remains in the ground electronic state. The dashed line fit to the data
of Fig. 2 for NO(V=0) shows that our results for the ground vibrational state conform to the ve-
locity dependence previously reported on other systems and as such provides a validation of our
experimental method (24-26).

The results for NO(V=18) — upper panel — clearly follow a different mechanism. The quantum
yield of electron emission for NO(V=18) is many orders of magnitude larger (27) and has the
opposite trend with velocity than that for NO(V=0). Over the same velocity range where the V=0

results increase by a factor of ~10, the V=18 results decrease by a similar amount. The solid line

, where the best fit was found when

results from fitting the data to a function of the form c+ b "
V+

the fitting parameters ¢ and a are set to zero. Thus, the quantum yield for vibrationally promoted
electron emission for NO(V=18) appears to follow a 1/v or inverse velocity dependence. How
does this behavior arise?

Katz et al. have treated the problem of vibrationally promoted electron emission (26) by NO on
Cs/Ru. Though some aspects of the experimental observations are captured in that work — for
example, the positive dependence on initial vibrational excitation — like other theories of nonadi-
abatic interactions at surfaces, their theory predicts an increase of electron emission with increasing
velocity. Their model thus does not explain the results reported here.

We have previously suggested a vibrational auto-detachment mechanism for vibrationally
promoted electron emission (17) involving formation of a transient negative ion and au-
to-detachment of an electron from this transient species resulting in the transfer of vibrational en-

ergy to electronic excitation. The mechanism, illustrated in Fig. 3a, is based on the fact that the



vertical electron binding energy (VEBE) for NO varies strongly with internuclear distance; at the
outer turning point (ry) of vibrational motion for NO(V=18) the VEBE is about +2.2 eV - i.e. the
extra electron is strongly bound — whereas at the inner turning point (r2) it is about —2.6 eV — the
extra electron is strongly repelled.

Figure 3a shows two electronic potential curves: one for NO with an electron at the Fermi level
of the Cs/Au surface and one for the case where a Fermi-level electron has been transferred
forming NO~. The two curves are shifted in energy relative to their gas phase spacing by the work
function, @, to reflect the energetics of electron transfer from the metal to the molecule when the
molecule is far from the surface (28). For NO bond lengths, Rn.o > 1.38 A VEBE exceeds ®. Thus,
as the NO molecule approaches the surface, at a distance of about z~10 A (29), there is sufficient
overlap of the surface electron density and the LUMO of NO that it becomes possible for an
electron to be transferred to the ‘stretched” NO(V=18) molecule. For simplicity we consider only
the case where this initial electron transfer occurs precisely when Ry.o = 1.38 A, indicated by the
arrow of Fig. 3a (30). As NO bond compression in the anion progresses, electron release from the
NO may occur near the inner turning point of vibration, r2, where the molecule’s interaction with
the electron is strongly repulsive — i.e. VEBE < 0. In principle, the electron may be transferred back
to the surface, or it may possess sufficient kinetic energy, AE>, and be ejected in the proper direc-
tion that it entirely escapes the surface and can be detected in our experiment.

Nothing in the description of the vibrational auto-detachment mechanism given so far would
give rise to the 1/v velocity dependence we observe. However, a 1/v dependence could arise if
three additional conditions are met: First, there must be a defined region above the surface where
the electron capture step can take place, the extent of which is not dependent on the velocity of the

incident NO(V=18); Second, the NO molecule must move with approximately constant velocity in



this region; and third, the probability of the nonadiabatic event resulting in emission of an electron
must not depend on the velocity of the incident NO(V=18). We next discuss how these conditions
can be satisfied in the auto-detachment mechanism in connection with Fig 3.

As the NO molecule approaches the surface, the NO~ curve (dashed in Fig. 3a) moves down in
energy due to an image potential interaction and as a result, AE> decreases. Figure 3b shows this
reduction in AE; as a function of z. Below a critical value, zc ~ 4.8A, electron emission is no
longer possible because AE2 becomes smaller than the work function, @. This establishes the first
condition. Because z¢ is large, the neutral NO molecule will have only weak interaction with the
surface, justifying the constant velocity approximation. We take the third condition as an as-

sumption and use it to calculate the vibrationally promoted electron emission probability, P

vee *
To do so, we first model the probability of the initial electron transfer to NO. The electronic

coupling will depend on the overlap of the orbital of the incident NO molecule, |a> with the metal

-z/2

electronic states, |k> and has the form V ~e (31). Using Fermi’s golden rule, the rate of

electron transfer will depend on the square of V. To calculate P, we integrate the electron

vee

transfer rate over the trajectory of the NO molecule and multiply by the probability for a nonadi-

abatic transition P, back to neutral NO. The trajectory includes three pieces, (i) the incoming

trajectory up to the critical distance z, (ii) the trajectory proceeding inward and reflecting from the
surface, and (iii) the outgoing trajectory from zc outward. In principle electron emission can have
contributions from regions (i) and (iii), but because the probability of NO(V=18) surviving re-
flections is small (8), we ignore the contribution from (iii). Using the constant velocity condition,
z = — vt on the incoming trajectory

A

P ~ Pnon J‘dt[evtu]z :21_\/'3 g 2212 )

vee non



Equation (1) shows that the simple model just described does indeed reproduce the 1/v de-
pendence observed experimentally (32). The 1/v dependence arises essentially from the fact that
the time available for electron transfer scales as 1/v and the probability for a nonadiabatic transition
Pnon back to the neutral NO curve is independent of v. A more complete calculation would have to
take into account many details that are omitted from this description. For example the electron
capture might involve an electron originating at an energy, ¢, below the Fermi level. For all values
of ¢ that are energetically allowed, z¢ exists and changes very little from its value for ¢=0. Thus
summing over the contributions from different values of € will retain the 1/v dependence. Similar
arguments can be made for generalizing the model to include loss of some vibrational energy in the
inner region or transfer of the available energy to more than one electron.

The conclusions of this work strongly suggest that electronically nonadiabatic effects can
play a role in bond dissociation of surface adsorbates. First, the vibrational auto-detachment
mechanism described can be important whenever the LUMO is either bonding or anti-bonding. In
such cases, a significant structural change between the neutral molecule and its anion implies a
similar electronic-vibrational energy exchange as that represented in Fig. 3a. Only in the case
where the LUMO is a nonbonding orbital is this mechanism expected to be unimportant. Fur-
thermore, the 1/v dependence of Py in equation (1) requires that the nonadiabatic transition
probability, Pnon, be independent of v. This suggests rather directly that the motion of the center
of mass of the NO molecule relative to the surface cannot be the driver of the observed nonadi-
abatic electronic excitation. Rather, it is the rapid stretching and compression of the N — O bond
that drives the nonadiabatic dynamics. Thus the nonadiabatic couplings observed via electron
emission in this work and attributed to dynamics at z [1 5A and at finite velocities are expected to

persist to small values of z and in the limit of zero velocity, conditions describing surface adsorb-



ates. In fact, nonadiabatic electronic coupling will only increase with decreasing values of z.
More concretely, the underlying nonadiabatic excitation of electron-hole pairs represents a sig-
nificant energy dissipation mechanism not accounted for by theories that employ the BO ap-
proximation. As atoms or molecular fragments react on a surface and excited electron-hole
pairs are produced, the energy loss would help to rapidly stabilize the products. For example, as
two recombining surface ad-atoms form an adsorbed diatomic molecule, the neglect of elec-
tron-hole pair excitation may result in an underestimate of energy dissipation to the surface, and
lead to artificial re-dissociation of the diatomic in a calculation within the BO approximation.
Likewise, branching between two react ions with similar activation barriers might be influenced
by more efficient energy dissipation in one channel preferentially trapping a particular transition
state into one product channel versus another. Hence, both reaction rate and competitive reactive
branching might depend strongly on BO approximation breakdown.

The results presented here call for further work, both experimental and theoretical. The critical
distance model has important experimentally testable consequences: it constrains the energy dis-
tribution of emitted electrons and predicts that vibrational relaxation would not decrease as elec-
tron emission does. A more rigorous theory of the kinetic energy dependence of vibrationally
promoted electron emission is also called for. We note for example that, in the interest of sim-
plicity, the present model neglects the possibly important role of molecular orientation. While
beyond the scope of the qualitative analysis presented here, changing the charge state of a molecule
can dramatically alter the orientational forces it experiences in its interaction with the metal sur-
face. Thus, bond re-orientation of the NO molecule may play a crucial role in the vibrational au-
to-detachment mechanism. We hope such work will shed light more generally, on the nonadi-
abatic dynamics involved in dissociation, recombination, and reactions of molecules on metal

surfaces (33).
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Figure captions

FIGURE 1 Observed laser induced fluorescence (LIF) and electron emission signals. (a) The
LIF signal induced by the A(V=3) < X (V=0) excitation laser is shown as a dashed line. (b) A
second ,&(st) - X (V=18) de-excitation laser induces population transfer out of the fluo-

rescing ,&(V:B) state (shown as solid line). Note that the difference in the signals (dark shaded

area) is proportional to the number of laser-prepared vibrationally excited molecules. ¢) The elec-

tron signal observed with only the Z\(V:B) « X (V=0) excitation laser on (shown as dashed
curve). This signal arises from Franck-Condon pumping of the NO beam to a variety of excited
vibrational states predominantly below V=13 (17). d) The electron signal induced by the use of
both lasers (shown as a solid line). The increase in signal results from the preparation of NO

(X?[1y, V=18).

FIGURE 2 The velocity dependence of electron emission from NO(V) collisions with Cs/Au
surfaces: upper panel represent results for V=18, lower panel represent results for V=0. The
quantum vyield is plotted versus inverse velocity, Q vs. 1/v. The dashed line is a fit to the V=0 re-

)

sults using a function of the form e "'V, based on the Brako-Newns model (24) for chemical hole
diving, vo = 1375 m/s. The solid lines is a fit to the V=18 data with a function of the form vo/v with
Vo = 44.9 m/s. The goodness of fit is reflected in a reduced %2 value of 107. The error bars reflect
random errors and are 95% confidence limits based on the ‘student’s t-test’ using 4 independent

measurements at 1.65 ps/nm and 5 independent measurements at 0.403 ps/nm. While the shape of

the V=18 quantum yield is well determined (indicated by the error bars), its absolute scaling is

-13-



subject to larger systematic errors. We estimate these systematic errors to be less than about a

factor of three: e.g. 0.02<Q(2.32 ps/nm)<0.3.

FIGURE 3 The vibrational auto-detachment mechanism and the existence of a critical dis-
tance. (a) The potential energy curves for the NO and an electron at the Fermi level (solid curve)
and NO~ (dashed curve) at infinite separation from the Cs/Au surface. The relative energies are
adjusted by the work function to reflect charge transfer from the surface to the molecule and back.
A highly vibrationally excited molecule may capture an electron from the surface near the outer
turning point, r1, of vibration. Note the horizontal line indicates the energy of NO(V=18). After
NO bond compression to a bond length near 1.38 A, an energetically adiabatic transition to the
anion potential may take place, indicated by the curved arrow. The electron may then be lost from
the NO molecule near the inner turning point, ro, releasing AE>.  If AE2 exceeds the work func-
tion, the electron may be ejected from the molecule surface system and be detected by the ex-
perimentalist at a macroscopic distance from the surface. (b) The dependence of AE> on the mol-
ecule’s distance from the surface, z.  The downward-pointing arrow shows the critical distance,
Zc, below which AE; is less than the work function, ®. A detailed derivation of the potentials in
Figure 3 is presented in the supporting online material. A more detailed description of this mech-

anism has been presented in Ref. 17, especially see Fig. 10A and the discussion surrounding it.
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Supporting online material — Explanation of Fig. 3.

The long range interactions of NO with Cs/Au are modeled in the following way. First of all,

a 2-D (r, z) coordinates system is defined, where.

r is the N-O inter-atomic distance measured in A and

z is the distance of the surface to the CM of NO also measured in A.

For the anion, a 2D potential (with energy units in eV) is constructed such that the
r-dependence matches the NO~ inter-atomic potential obtained from ab initio electronic structure

calculations. The plot below shows the quality of the fit to the ab initio points of Ref. S1.

UR,,) (V)

10 15 20 25
Ryo A

The solid line in the plot is the optimized fitting function. After shifting the origin of energy

to the potential minimum, this becomes:
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V, ., (r) = 4.917 - 41631.1e 5% (r —0.971816)(1.03617 + r(r —1.81663))

For the z-dependence of the anion potential an image potential with a repulsive wall is used.

Vi (2) =%— 7'1‘2109 . A plot of the z-dependence of the potential is shown below as a solid line.

Energy ineV

-8 T : T T T T T

z(A
Also shown is the 1/z part of the potential as a dashed line. One should note that the influence
of the repulsive contribution to the potential is not important at z>2 A. The z and r dependent
functions just described are combined as follows

0.5 7.15109

Vo (1,2) =V, (1) 4V, (2) = 4.917 — 4163118 %% (r —0.971816)(L.03617 + r(r —1.81663)) + — —
zZ

anion

The Neutral NO potential is modeled in a similar 2-D fashion. Here the r-dependence is based
on a Rydberg Function (somewhat more flexible than a Morse potential) and fitting constants de-
termined by Huxley and Murrell in Ref. S2.

V,, (r) =6.614—-15908.4 e *** (r — 0.895928)(0.749842 + r(r —1.09722))

The z-dependence is modeled with a repulsive wall and a shallow minimum

V,,(2) = %+ e**"(3.19824 — 2.59317r)
r
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Energy in eV

z(®

Likewise, the Neutral 2-D potential was constructed as for the anion.

Vo, (r.2) =V, (r) +V,, (2) = 6.614 —15908.4 & *** (r — 0.895928)(0.749842 + r(r —1.09722)) + % +67%°(3.19824 — 2.59317 7)
zZ

The two (anion vs. neutral) potentials are offset with respect to one another by the electron
transfer energetics, ®-EA. The anion potential has been adjusted upward by 0.24 eV to accurately
reproduce the O-atom electron affinity at large values of r. This is due to the ab initio calcula-
tions’ error in the dissociation energy of the anion. There is some ambiguity in this adjustment as
the accuracy of the NO electron affinity is thereby impacted. However, making adjustments to
this model to ensure accuracy of the EA of NO at the expense of the EA of O, does not signifi-
cantly change the outcome.

Next, we show a cut through the 2D potentials at large values of z. This is shown as Figure 3a
in the main text. We envision that at the outer turning point of vibration (1.6A) a vertical transi-
tion releases (wastes) a small (~0.4 eV) amount of energy, promoting an electron from 0.4 eV

below the Fermi Level to NO’s LUMO. At the inner turning point of vibration (1.089 A) the
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energy release, AE>, depends on distance from the surface and drops below the surface work

function at about z=5A. This result can be seen in the Figure below.

(b) 37

o

z(R)

This is the basis for invoking a critical distance zc.~5A. One might also imagine that the elec-
tron transfer at the outer turning point takes place adiabatically. This is the case described in the
paper. Thus no energy is “wasted” in the initial electron transfer. In this case the energy available
to eject the electron is somewhat larger and the approach to the surface can be somewhat closer
before the image charge interaction prevents charge ejection. This is shown by the dotted line in
the figure below. Thus there is an ‘outer turning point adiabatic’ (dotted lines in figure below)
critical distance and an ‘outer turning point nonadiabatic’ (solid lines in figure below) critical

distance. These differ however by little.
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According to Shenvi et al. (S3) the tunneling coupling matrix element can be modeled by the

function.

This shows that the tunneling coupling near the critical distance is significant. See Figure be-

low (dotted line).
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Here a work function of 1.6 eV was used and the energy of the Fermi level (¢=0) was used.
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