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Abstract 

 

Gradual information diffusion model predicts that as private information travels across the 

population, pricing accuracy would improve and asset prices would exhibit momentum as a 

result. In laboratory markets I investigate the market’s aggregation capacity in response to 

varying proportions of informed traders as a consequence of information diffusion. The results 

demonstrate that pricing errors are high when private information is dispersed and that, as the 

information spreads, the market gradually revise the errors and manifest momentum. Analysis 

suggests that aggregation under dispersed information conditions is hampered by three factors: 

equilibrium multiplicity, slow arrival of myopic traders, and anonymous trading. 
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equilibrium multiplicity, slow arrival of myopic traders, and anonymous trading. 
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“It was six men of Indostan, to learning much inclined, who went to see the Elephant. Though all of them 

were blind, that each by observation might satisfy his mind. The first approached the Elephant, and, 

happening to fall against his broad and sturdy side, at once began to bawl: ‘God bless me, but the 

Elephant is very like a wall!’ ……. And so these men of Indostan, disputed loud and long, each in his own 

opinion, exceeding stiff and strong. Though each was partly in the right, they all were in the wrong!” 

- John Godfrey Saxe1, 1873 
 
Would the market price converge to wisdom when market participants are imperfectly 

(and differently) informed? While traditional theories emphasize the market’s capacity of 

correctly aggregating dispersed information regardless of how information is stored in the 

economy, recent empirical evidences suggest that mispricing would last for prolonged time 

under such conditions. In particular, asset price continuation has been repeatedly found to be 

responding to changes in information locality, commonly referred to as gradual information 

diffusion. 

Hong and Stein (1999) provide a seminal model of information diffusion in relation to 

changing pricing accuracy. The model assumes that when different investors hold different 

private information, they respond only to what they know and totally fail to infer from market 

activities about what others may know or not know. Asset prices, being the population weighted 

average of all information groups’ expectations, are thus biased. Investors would only revise 

their inaccurate evaluations after more information is passed along to them. When private 

information diffuses slowly across the investing public, asset prices will correct their previous 

errors and drift toward the intrinsic value. Hong and Stein (2007) goes further by incorporating 

the gradual-information-diffusion model into a general framework called “disagreement model”, 

where information diffusion, limited attention and heterogeneous priors can be combined to 

understand a broad range of stylized facts. Recent empirical findings have backed up this story. 

It is reported that the varying proportion of informed traders to the whole investor population can 

impact prices substantially, absent changes in the fundamental. 

This research is meant to investigate two questions: 1) Does information aggregation fail 

when information is dispersed in the economy, and the prices exhibit continuation as a 

                                                 
1 The Poems of John Godfrey Saxe, 1873, Boston: James R. Osgood and Company, pp: 77-78 
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consequence of information diffusion? 2) If yes, what micro-level factors might have hampered 

perfect rational equilibrium from emerging? 

The first question has been investigated by Bloomfield, Taylor and Zhou (2009). They 

run laboratory experiments on a single-asset market and find that: when pieces of new 

information regarding the dividend of the asset are disseminated across the subjects gradually, 

asset returns exhibit positive autocorrelation. While the results are encouraging, multiple joint 

hypotheses have been involved. The findings are also limited to macro-level price patterns 

without detailed reference to how private information and market prices are assimilated on an 

individual basis. The second question remains uninvestigated. 

The experiment test in this paper directly tests the linkage between gradual-information-

diffusion and momentum with no auxiliary hypothesis and brings the scope down to the 

individual investor level. The following innovations are made: (1) the design involves a market 

with two complementary assets and the market has no aggregate consumption risk, and hence 

assets should be priced at risk-neutral level conditional on strictly private information; (2) the 

realizations of information events are drawn from a rich set of paths and packed the underlying 

distribution completely, thus avoiding that “splashy results” get more attention (Fama, 1998); (3) 

the market as a whole hold complete information at all time, ensuring a stable fundamental; (4) 

each experiment is run for 5 times for the same group of subjects in addition of sufficient 

training and practice, thus controlling for learning effect; (5) return distribution and the 

information generating process are simplified and readily understandable; and (6) additional 

loans are given out to traders to enhance liquidity. 

The results confirm that information diffusion alone is sufficient to generate the asset 

price momentum. Subjects respond primarily to their own private information and behave in 

myopic fashion. Little evidence supports the success of investors using the market prices to 

update their beliefs under dispersed information conditions. 

The study generates three novel perspectives with regard to why the classical perfect 

aggregation equilibrium does not emerge (and consequently information diffusion generates 

momentum in prices):  

(1) Equilibrium Multiplicity 

There exist multiple equilibria given dispersed information, though only one equilibrium 

is correct; information diffusion reduces the number of false equilibria, forcing pricing accuracy 
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to improve. The multiple equilibria explanation is consistent with the equilibrium multiplicity 

models of Grossman and Stiglitz (1976) and Angeletos and Werning (2004), which are built 

under conditions where no individual party have perfect information on the fundamental. 

(2) The Relative Arrival Rate of Informed and Uninformed Traders 

Wile privately informed traders can quickly close out mis-priced offers given their 

private information, those who are not enlightened by the ongoing arbitrage activities do not 

arrive simultaneously – the scattered arrival of myopic traders leads to prolonged asset mis-

pricing. While the stochastic arrival of uninformed trades is consistent with the passive 

characterization of uninformed traders in early literatures, little literature has emphasized that the 

scattered arrival of preys poses a new limit of arbitrage. The relative arrival rate of informed and 

uninformed investors is accordance with the empirical findings of Vegas (2008). 

(3) Anonymous Trading  

Wile private information is dispersedly held by multiple parties, the market book does not 

reveal who offers what, thus making it difficult to track each party’s transaction history and to 

make correct inferences about their private information. Market transparency has informational 

value, a point that has been emphasized by Foerster and George (1992). 

The findings suggest that the market mechanism faces key micro-level challenges in 

aggregating diverse information that is not centrally stored, and the momentum and drift 

anomalies can solely be driven by gradual information diffusion process.  

The paper is organized as follows. The first section reviews empirical, theoretical and 

experimental literature related to the topic; the second section presents the experimental design; 

the third section presents the results; the fourth section analyzes the data and probes into the 

causing structural factors in asset mis-pricing. The last section concludes briefly and addresses 

relevant implications. 

 

I. Literature 

A. Empirical Studies 

Recent studies suggest that the relative proportion of informed traders to the whole 

investor population can impact prices substantially, absent changes in the fundamental. 
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A convincing example features Huberman and Regev’s (2001) case study2 of EntreMed’s 

stock performance. On May 3, 1998, New York Times carried a front-page story on recent 

breakthroughs in cancer study and reported extensively on a biotechnology firm, EntreMed. The 

next day, the stock price of EntreMed soared from $12 to $52. However, the report was no new 

news, because the scientific journal Nature carried the same substance of the report five months 

earlier. Though following the Nature report, the stock price of EntreMed experienced positive 

move, but not as in large magnitude as it did after the New York Times announcement. This 

episode seems to suggest that the proportion of investors receiving new information can affect 

how much the new information would be incorporated into price. 

Numerous recent cross-section studies that prices are biased when private information 

does not cover the whole population and the growing proportion of informed investors will result 

in the momentum phenomenon. 

Hong, Lim and Stein (2000) find that the profitability of momentum strategies declines 

sharply with firm size3 and, holding size fixed, momentum strategies work better with low 

analyst coverage. The paper contends that stocks followed by less analysts should, all else equal, 

be ones where firm specific information moves more slowly across the investing public4. The 

mispricings create profit space for momentum strategies to work. While the conclusion still rests 

on the assumption that analyst coverage is a proxy for the level of information publicity, Schmitz 

(2008) provides evidences that this may well be the truth. Based on an event study of a unique 

dataset of 300, 000 corporate news in the media in Germany, he finds that companies with lower 

abnormal media coverage indeed experience slower information transmission across different 

investor groups. 

Bolmatis and Sekeris (2007) sort portfolios other proxies of information publicity 

(proxies include the ages of stocks since IPO and number of non-trade days in a year) and find 

that portfolios that tend to be ‘neglected’ by the market experience higher momentum. They 

argue that assets plagued with information problems can be mis-priced for sustained periods of 

time.  

                                                 
2 Hong and Stein (2007) cites the same case. 
3 Bhushan (1989) find that analyst coverage is negatively correlated with firm size. 
4 Hong, Lim and Stein (2000) also find that the effect of analyst coverage is greater for stocks that are past losers 
than for past winners. 
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The proportion of informed investors is found to be relevant in post earning 

announcement drift (PEAD), too. Vega (2006) studies public news data in Dow Jones Interactive 

in combination with regular data in CRSP and TAQ, and find that public announcements that 

generate underreaction are associated with high rate of uninformed traders while public 

announcement that make markets more efficient are associated with high rate of informed traders. 

Vega concludes that whether information is public or private is irrelevant in PEAD studies; what 

matters is the arrival rate of informed and uninformed traders. 

Moreover, information diffusion has been used to explain lead-lag effect in cross-section 

returns. Hong, Torous and Valkanov (2007) and Hou (2007) both argue that industries that lead 

the market tend to carry more information regarding future economic climate and such 

information is only gradually picked up by other market segments. 

The above empirical findings are all pointing to the argument that the proportion of 

informed investors matters for pricing accuracy and the changing ratio due to information 

diffusion moves asset prices under the same fundamental. Yet, the concept is novel to 

microstructure classical theories and contradicts with early experimental studies. 

B. Classical Theories and Experimental Studies 

Informational research in microstructure study is concerned with how private information 

is impounded in the trading process. The general logic is that when the informed traders move to 

arbitrage on their private information, the price will move in the direction that eliminates this 

opportunity. The conventional wisdom states that the competition among insiders would 

accelerate the process. The movement would enable the uninformed traders to infer from an 

observed price increase that some traders in the market have favorable information (Kyle, 1985). 

The notion of rational expectation theory predicts that, in equilibrium, asset price will reflect all 

of the information held by market participants (Muth, 1961; Lucas, 1972). Dissemination of 

information, from informed to the uninformed, and aggregation of individual traders’ diverse bits 

of information through the market process have received consistent support. (Hayek, 1945; 

Grossman 1976; Fama, 1970; Radner 1979). 

Early experimental studies of informational efficiency in asset markets address two 

questions: the dissemination of information held by insiders to uninformed traders, and the more 

difficult task of market aggregation of diverse information in possession of individual traders. 
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Results are more consistent in former case. Plott and Sunder (1982) and others have 

demonstrated that information held by a group of identically informed insiders is disseminated to 

a group of identically uninformed traders. In the latter case, results are more mixed. Plott and 

Sunder (1988) find that a market that trades a single three-state asset is able to aggregate 

information5. Follow-up experiments suggest that aggregation of information in markets depend 

on features of markets, including rules, common knowledge, experience of traders and the 

number of states. (Forsythe and Lundhom, 1990; O’Brien and Srivastava, 1991; Kruse and 

Sunder, 1988; Eberwein, 1990; Ang and Schwarz, 1985; Hanson, Oprea and Porter, 2004). 

Despite of those experimental findings, a majority of theories continue to vote for frictionless 

markets and the informational efficiency in prices. 

Unlike the early experiments that involve a limited number of states and concentrate 

information in one group or two, Bloomfield, Taylor and Zhou (2009) run laboratory 

experiments specified by Hong and Stein (1999) model where information is dispersed and the 

number of states are large. In their single-asset market, they find that: when news information 

regarding the dividend of the asset is disseminated across the subjects only gradually, momentum 

is a robust phenomenon. While the results confirm the theory, they could have been weakened by 

several issues: (1) In the single-asset market, aggregate consumption varies under different states 

and it is unclear how aggregate consumption risk might have changed the prices. (2) The market 

participants at all time except the end do not have complete information regarding the liquidating 

dividend, making it hard to define aggregation failure. (3) The experimental design deliberately 

involves 95% positive autocorrelation of news surprise over time, which could have magnified 

the momentum effect; the caveat is that when prices exhibit momentum, it could have been 

driven by the same change in the fundamental and does not necessarily suggest price inefficiency. 

In addition, the findings are limited to macro-level price patterns without detailed reference to 

what causes aggregation failure. 

The purpose of the experiment test here is to test the gradual-information-diffusion and 

momentum relationship with no joint hypothesis that Bloomfield et al (2009) involve. Equally 

importantly, the analysis attempts to provide micro-level accounts for aggregation failure that 

bugs the whole related literature and market efficiency believers. 

                                                 
5 The dividends of the asset depend on which of the three states (X, Y, or Z) is realized; if the realized state is X, 
half of the participants will be privately informed that the state is “not Y”, and the others were similarly informed 
“not Z”. 
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II. Experimental Design 

A. The Model 

I develop a simplified information diffusion model originally introduced by Hong and 

Stein (1999). In their model, there are z  equal-sized groups of differently informed investors and 

a single risky asset that pays a liquidating dividend of TD at the terminal time. The dividend 

starts with unconditional mean of 0D  and is subject to a series of disturbances over its lifetime. 

The disturbances follow the same equal-variance zero-mean normal distribution and are 

independently identically distributed.  

 

 DIINDDED j

T

j j

T

j jTT ..),,0(~,)( 2

101
  

 . (1)

  
Each disturbance j  is further decomposed into z equal-variance surprise terms: 

z
jjjj   21 . At time t , each group knows only one surprise term of 1zt and the 

market as a whole knows all the components of 1zt . Each surprise term of 1zt  will be 

distributed to an additional group in the next period. Therefore, over time, each information 

group has an incomplete yet increasingly refined knowledge of 1zt . The information diffusion 

follows a strictly one-way “rotation mechanism”. In Hong and Stein (1999) model, the informed 

traders behave in a myopic fashion and are assumed to have identical constant relative risk 

aversion; as a result, the market price at time z is be represented by the average of each 

investors’ independent expectation of the liquidating dividend, adjusted by aggregate risk 

aversion and the supply of the security. At time t , the market price for the asset will equal to the 

expected value of the asset plus the population-weighted average value of all disturbances in the 

market, adjusted by a risk aversion term: 

 
 DIINQzzzDP iztttt ..),,0(~,/])2()1[( 2

1210     . (2)
  
  is the market’s aggregate risk aversion parameter, and Q  is the aggregate supply of the 

security. As t  moves forward, the surprise terms spread across the population via the “rotation” 

ordering. Hong and Stein (1999) assumed that investors make decisions purely on their private 

information, without reference to the market prices, and the average of all the individual 



 10

expectations conditional on each investor’s private information, is therefore affected by 

population weight of each disturbance. 

In the experimental design, a simplified version of this model is used, but the essences of 

the model are kept: (1) Information is held dispersedly by multiple groups, in contrast to the one 

group concentration in most traditional models; (2) each piece of information is a valid and 

equally valuable component in determining the true value—they are not noisy signals; and (3) 

information travels among investors and the proportion of informed traders with regard to each 

piece of information grows over time. A deviation from Hong and Stein (1999) is that this paper 

ensures full information in the market at all time such that the fundamental is ascertained. 

The design reported here involves only one disturbance consisting of four surprise 

terms, SURs , each independently and identically following a zero-mean uniform distribution: 

 
 DIIuuuUDSURsDD izT ..},,,,{,)( 3212100     (3)
  

The investor population is divided into z  groups. At Period 1, each group knows one of 

the surprises, and the market as a whole possesses all needed information to determine the value 

of surprises and the liquidating dividend at the very beginning. Starting from Period 2, each 

group will get to know an additional surprise per period, and the information diffuses in the same 

fashion as the “rotation mechanism” specified by Hong and Stein (1999). Gradually, each 

individual group will hold an increasingly accurate knowledge of the dividend, and each will 

hold some information that some other groups do not have. 

B. Experimental Parameterization 

In what follows, I present a simple three-period market that serves as a theoretical 

baseline for the experimental results. Let there be a finite number of investors; two risky assets, 

Security A and Security B; a riskless bond; and numerous states of the world. The bonds are 

infused into subjects’ cash holdings at zero interest rate and need to be paid back at the end of 

experiment. The interest rate for holding cash is normalized to zero. Each asset pays a liquidating 

dividend at the end of Period 3. All payoffs are denominated in a currency called Francs (₣). 

Market participants are sorted into two types of six investors, with one type having more 

Security A than B and the other type having more Security B than A. 
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Table I: Market with Two Risky Assets 
The market consists of two complementary assets with equal supply. Security A pays an uncertain dividend of ₣ X and Security B 
pays ₣ (120- X). The aggregate consumption is constant in any state. 6 subjects of type I are richer in security A holdings, while 6 
subjects of type II are richer in security B holdings. To enhance liquidity, 800-Franc loans are provided to all subjects at no cost. Only 
security A is traded in the market. 

 

 Dividend Holding 
Type I  (6 subjects):  24 units 

Security A X 
Type II (6 subjects):  3 units 
Type I  (6 subjects):  3 units 

Security B 120 – X 
Type II (6 subjects):  24 units 

Cash 1 ₣ 1500 (800 loan) 
 

The design of a market with two complementary assets is initiated by Bossaerts (2007). 

The payoffs of Security A and Security B are perfectly complementary to each other; that is, 

holding a unit of Security A and a unit of Security B will yield a fixed payoff of 120 Francs.  

Initial allocation of the risk securities varies across groups, but the total supplies of the 

risk securities are equal; hence there is no aggregate consumption risk.  Risk-averse subjects who 

hold more of A than of B would be willing to sell A at risk-neutral prices; the presence of an 

equal number of subjects with more of B than of A allows the market to clear. In principle, risk-

averse subjects can neutralize risk by balancing their holdings of the complementary securities. 

Since the total endowments of Securities A and B summed over across all subjects are the same, 

everyone, in theory, can balance his or her holdings. Prices should converge to levels that equal 

expected payoffs and risk-neutral pricing should arise.  

Absent aggregate consumption risk, the risk aversion adjustment term in Equation (2) is 

now removed. Bossaerts (2007) has confirmed in experiments that when aggregate consumption 

is constant, prices converged to expected payoffs of the securities. Similar to Bossaerts (2007), 

Security B is not traded in the market and thus balancing on portfolio must be carried through 

buying or selling Security A.  

Security A pays an unconditional expected dividend of 60 Francs. The true value for 

security A is the sum of expected payoff plus several surprise terms 

 
 SURsX  60 . (4)
  
The experiment has three treatments: Treatment A, Treatment B, and Treatment C. The 

treatments differ from each other in the number of surprise terms and the distribution of surprise 

terms. 

In Treatment A, there are four surprise terms: 
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 )(6060 4321   SURsX . (5)
  
Each surprise independently and identically follows a zero-mean discrete uniform distribution: 
 
 4,3,2,1},10,0,10{  jj . (6)
  
Therefore X  can take on the value of 20, 30, 40, 50, 60, 70, 80, 90 and 100, with a mean of 60 

and a central tendency toward the mean. There are a total of 34 = 81 states for the realizations of 

X . 

Treatment A markets last for 3 periods, and information diffusion follows the Hong and 

Stein (1999) rotation mechanism. In Period 1, each j  is known by 25% of the population. In 

Period 2, each j  reaches an additional 25% of the population, with each surprise covering 50% 

of the population. In Period 3, each j  reaches 75% of the population. The market is closed after 

Period 3, and the dividends are paid out afterward. 

When compared to the standard early experiments with states as few as 3, Treatment A 

raises the number of states to 81. Plott and Sunder (1982) run a treatment of 11 states and find 

that convergence to rational expectation equilibrium becomes more probabilistic. To control for 

the difference in the number of states between early experimental studies and Hong and Stein 

(1999) study, two additional treatments are introduced: Treatment B has 16 states and Treatment 

C has 4 states. Treatment C uses an example model of Hong and Stein (2007), and its simplicity 

is comparable to Plott and Sunder (1988) design. The comparison across treatments would 

examine whether the increase in the number of states leads to higher pricing errors and 

contributes to stronger momentum. 

More specifically, Treatment B only differs from Treatment A in that the surprise terms 

are drawn from a discrete uniform set of two possible numbers: 

 
 4,3,2,1},10,10{  jj . (7)
  
Therefore X  can take on the value of 20, 40, 60, 80 and 100, with a mean of 60 and a central 

tendency toward the mean. There are a total of 24 = 16 states for the realizations of X . 

In Treatment C, there is only two surprise terms, with each surprise drawn independently 

and identically distributed from a discrete uniform set: 
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 2,1},20,20{  jj . (8)
  
Therefore X  can take on the value of 20, 60, and 100, with a mean of 60 and a central tendency 

toward the mean. There are a total of 22 = 4 states for the realizations of X . Subjects in 

Treatment C are divided into two groups and the treatment lasts only one period. One group 

knows one surprise and the other group knows the other surprise. Treatment C is taken from 

Hong and Stein (2007) and is the closest to the early experiment studies.  In Plott and Sunder 

(1988), there are 3 states X, Y and Z, with one group knowing “not X” and the other group “not 

Y”, thus combining the two pieces of information guarantees the state being Z. In Treatment C, 

combining the two  ’s will determine a unique value for the asset value. 

The three treatments will investigate the full spectrum of the number of states in affecting 

information aggregation. Six experiments of Treatment A, two experiments of Treatment B, and 

two experiments of Treatment C were run in the laboratory. Each experiment was repeated for 

five independent sessions, thus generating a total of 10 × 5 = 50 sessions of market datasets. See 

Table II. 

 
Table II: Experimental Treatments 

The disturbance for the dividend is the sum of a number of surprises. Each surprise is drawn from a discrete uniform set; consequently, 
each treatment corresponds to a different number of possible states for the security. Treatments A and B last for three periods for each 
market, and information diffuses over time. Treatment C has only one period and information is static. Six experiments are run for 
Treatment A, two are run for Treatment B, and two are run for Treatment C. In each treatment, the market session is repeated five times 
for the same subjects, with a new set of information realizations each time.  

 
# Surprise 

Terms 
Uniform Set # States # Periods 

# 
Experiments

Treatment A 4 {–10, 0, 10} 81 3 6 

Treatment B 4 {–10, 10} 16 3 2 

Treatment C 2 {–20, 20} 4 1 2 
 

C. Predictions of Experimental Results 

The market for security B is not open, and the investigation focuses on the price 

formation in the Security A market only. However, Security B offers a hedge against holdings on 

Security A and the structure arrangement eliminates aggregate consumption risk. In principle, 

Security A must be priced at risk-neutral levels conditional on private information and enables 

private information to be clearly expressed at the expected prices. This market structure offers 
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the advantage of circumventing risk preference complications and focusing on information 

referring on the part of investors. 

Hong and Stein (1999) predicted that investors will value Security A at the expected 

mean of the dividend, conditional on their respective private information, and investors’ 

valuations are not affected by the information embedded in the market prices. As a result, market 

price would be set within the confines of each party’s respective valuation. For simplicity, Hong 

and Stein (1999) assumed that the average of all individual valuations will prevail as the market 

price. 

In Treatment A, each surprise is known by 25%, 50%, and 75% of the population for the 

three periods respectively. On the basis of the Hong and Stein (1999) model, the price in period 

t  in Treatment A should be 

 

 3,2,1,
4

604/)(60 4321  tSURs
t

tPt  . (9)

  
The risk adjustment term is dropped because in the experimental environment, the absence of 

aggregate risk ensures risk-neutral pricing. If the surprise term is nonzero, the market price 

would always be deviant from the true value. The deviation decreases over the periods, resulting 

in momentum (drift) in prices of Security A. The possible price path for each possible surprise 

term is plotted in Figure 1. The price paths show clear patterns of drift and momentum. This is 

the major prediction of the Hong and Stein (1999) model. 

Given Equation (9), the change in market price from the previous period is: 

 

 3,2,
4

1
1   tSURsPP ttt . (10)

  
Therefore, if the surprise term is positive, price should exhibit positive momentum; if the 

surprise term is negative, price should exhibit negative momentum; and if the surprise term is 

zero, price should not exhibit any momentum. 

Treatment B and Treatment C are compared to Treatment A to test how the number of 

states can potentially impact pricing accuracy. The two treatments are necessary because 

traditional experiments on information markets have much fewer states than this simple design, 
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not to mention the original Hong and Stein (1999) model. If the factor matters, pricing error 

across in Treatment A and Treatment B should be ranked as follows: 

 
 3,2,1,  tB

t
A
t . (11)

  
Treatment C is unique, since there exist only two news surprises and the markets last only one 

single period. In Treatment C, each surprise term is known to 50% participants and the 

proportion of informed traders with regard to each news surprise is comparable to period 2 in 

Treatment A and Treatment B.  

 

D. Implementation 

Experiments were conducted in the Economic Science Institute laboratory at Chapman 

University. One hundred twenty students were recruited through an online recruiting system. A 

total of 10 experiments were conducted, with 6 experiments for Treatment A (81 states), 2 

experiments for Treatment B (16 states), and 2 experiments for Treatment C (3 states). Twelve 

subjects participated in one experiment. Recruited subjects had no previous experience with the 

Figure 1. Predicted price paths based upon myopic information averaging.   The path 
represents the average of all the individual expectations, predicted by Hong and Stein (1999). In period 1, each surprise term is known to 
25% population. In period 2, each surprise term is known to 50% population. In period 3, each surprise term is known to 75% population. 
The average of independent expectations would always deviate from true value. As the ratio of informed traders grows over time, the price 
converges to the true value. Whenever surprise is non-zero (and true value is above 60 or below 60), predicted price will display 
momentum. 

Average of Independent Expectations 

Informed: 
25% 

Informed:
50% Informed:

75% 
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experiment and were allowed to participate only once. Experiments were held between April 

2009 and September 2009, and each lasted approximately 2.5 hours including instruction, quiz, 

practice and actual experiment sessions.  

In each experiment, subjects participated repeatedly in 5 consecutive but independent 

market sessions. Their earnings were accumulated over the session and were converted to U.S. 

cents at a ratio of 5:2. 

In a typical experiment, subjects waited in a reception room until a sufficient number had 

arrived. Twelve subjects were then taken into the laboratory room and seated at computers 

behind partitions so that they could not see each other’s screens. A strict no-talking rule was 

enforced as soon as subjects entered the laboratory. Subjects were given identical instructions 

that gave detailed information on the environment and rules of the institution and provided 

experience with the interface. There was a single core of instructions common to all treatments. 

On completing the instructions, subjects were given a self-grading computerized quiz that 

consisted of six questions. When a subject submitted an incorrect answer, the computerized quiz 

automatically reminded the subject to try again. Once a correct answer was received, the logic 

behind the quiz was explained again. Subjects were allowed to ask questions for clarification 

throughout the instructions and quiz. Typically, instructions and quizzes lasted a total of 25 

minutes. Finally, subjects were given a practice session. The practice session lasted three periods, 

and each period lasted a prolonged duration of 5 minutes. Subjects were ensured understanding 

and familiarity with the trading interface. During the practice session, an exemplar information 

news rotation mechanism was also included. No earnings were accounted for in the practice 

session.  

During experiments, subjects are not told the exact dividend value until the trading 

session is over. Subjects can trade their holdings of Security A for cash in an anonymous, 

continuous, open-book exchange system. They can submit both market orders and limit orders. 

After the practice session, the experiment proceeded into the real market sessions, and at 

the end of a session, the four draws for the news item were revealed in public, dividends were 

paid out, and earnings were displayed. Subjects earned an average of $46.5 over five consecutive 

sessions, in addition to the $7 show-up fee. 
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III. Results 

In Figures 2a and 2b, price results from six experiments of Treatment A are exhibited 

(A1–A6). Each experiment runs for five repeated sessions, and three trading periods per session. 

Figure 3 plots the Treatment B results with two experiments (B1, B2), again five repeated 

sessions per experiment and three periods per session. Figure 4 plots the Treatment C results 

with two experiments (C1, C2), five repeated sessions per experiment and only one period per 

session6. 

In what follows, Result 1 studies whether prices exhibit momentum, and if so, whether it 

is driven by information diffusion. Result 2 studies whether pricing accuracy across treatments is 

affected by the increased number of states. Result 3 measures the accuracy of inference about the 

true value on the individual basis and presents evidence on whether investors fail to extract 

significant information from market prices. 

 
  

                                                 
6 All experimental data are available at: http://esi2.chapman.edu/data/ 
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Figure 2a.Transaction prices for Experiment A1, A2 and A3.   Experiment A1, A2 and A3 from Treatment A 
are reported. Each experiment has 5 market sessions, divided by vertical solid lines in the figure. The realizations of the surprised terms are 
marked on the appropriate session. Each market session has 3 periods in which information diffuses gradually. A unpaid practice session in each 
experiment to help subjects familiarize with the trading program is not reported. The solid horizontal line indicates the true dividend value for the 
period. The dashed stepstair lines represent the myopic average pricing predicted by Hong and Stein (1999). All transactions are reported. Each 
dot represents a unit of trade. The shaded area represents equilibrium range (See section 4A for definition). 

A1 

A2 

A3 

10,0, 0,0 -10,-10,-10,0 10,10,-10,-10 0,-10,-10,-10 10,-10,-10,-10

10,10,0,-10 10,0,0,-10 0,0,0,-10 10,10,10,10 0,0,-10,-10 

10,10,0,0 -10,-10,-10,-10 0,0,0,0 10,10,10,-10 10,0,-10,-10 
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Figure 2b.Transaction prices for Experiment A4, A5, and A6.   Experiment A4, A5 and A6 from Treatment 
A are reported. Each experiment has 5 market sessions, divided by vertical solid lines in the figure. The realizations of the surprised terms are 
marked on the appropriate session. Each market session has 3 periods in which information diffuses gradually. A unpaid practice session in each 
experiment to help subjects familiarize with the trading program is not reported. The solid horizontal line indicates the true dividend value for the 
period. The dashed stepstair lines represent the myopic average pricing predicted by Hong and Stein (1999). All transactions are reported. Each 
dot represents a unit of trade. The shaded area represents the equilibrium interval. (See section 4A for definition). 

A4 

A5 

A6 

 

-10,-10,-10,10 -10,0,-10,-10 -10,0,10, 0 10,0,10,10 0,10,0,0

0,-10,0,-10 10,10,10,10 0,-10,0,0 -10,10,0,0 -10,0,10,10 

-10,-10,10,0 10,-10,10,10 0,0,0,0 -10,-10, -10,-10 0,10,10,0 
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Figure 3.Transaction prices for Experiment B1 and B2.   Experiment B1 and B2 from treatment B are reported. 
Each experiment has 5 market sessions, divided by vertical solid lines in the figure. The realizations of the surprised terms are marked on the 
appropriate session. Each market session has 3 periods in which information diffuses gradually. A unpaid practice session in each experiment to 
help subjects familiarize with the trading program is not reported. The solid horizontal line indicates the true dividend value for the period. The 
dashed stepstair lines represent the myopic average pricing predicted by Hong and Stein (1999). All transactions are reported. Each dot represents 
a unit of trade. The shaded area represents the equilibrium interval. (See section 4A for definition). 
 

B1 

B2 

10,-10,-10,-10 10,10,10,-10 10,10,-10,-10 -10,-10,-10,-10 -10,10,10,10 

10,-10,-10,-10 10,10,10,10 10,-10,10,10 -10,10,-10,10 10,-10,-10,-10
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Figure 4.Transaction prices for Experiment C1 and C2.   Experiment C1 and C2 from Treatment C are reported. 
Each experiment has 5 market sessions, divided by vertical solid lines in the figure. The realizations of the surprised terms are marked on the 
appropriate session. Each market session has only 1 period in which information location is static. A practice session in each experiment to help 
subjects familiarize with the trading program is not reported. The solid horizontal line indicates the true dividend value for the period. The dashed 
horizontal lines represent the myopic average pricing predicted by Hong and Stein (1999). All transactions are reported. Each dot represents a 
unit of trade. The shaded area represents the equilibrium interval. (See section 4A for definition). 
 

C1 

C2 

-20,20 20,20 -20,-20 20,-20 20,20

-20,-20 20,20 -20,20 -20,-20 20,-20 
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A. Result 1: Price time series exhibit momentum toward intrinsic value as a 

consequence of information diffusion. 

A major prediction laid out in Section II is that when the sum of surprises is smaller than 

zero, prices would converge to the true value from above and exhibit negative momentum; when 

the sum of surprises is greater than zero, prices would converge to the true value from below and 

exhibit positive momentum; and when the sum of surprises is zero, prices would exhibit no drift. 

The prediction is confirmed exactly in Figure 5. The average deviations from true value across 3 

periods are plotted for each of the 40 market sessions, with 30 sessions from Treatment A (six 

experiments × five sessions) and 10 sessions from Treatment B(two experiments × five sessions). 

Seventeen sessions have a realization of positive surprise, and prices in these sessions exhibit 

strong negative momentum. Fifteen sessions have a realization of negative surprise, and prices in 

these sessions exhibit strong positive momentum. Eight sessions have a realization of zero 

surprise, and prices in these sessions manifest no momentum. The systematic distinctions across 

3 cases are readily visible. 

To look at the deviation from true value in a unified way, an indicator for pricing error is 

defined as the absolute percentage price deviation from true value for a period: 

 

 3,2,1,/,,  tDDP TTtktk  (12)

  
 Table III summarizes the pricing errors for the three periods in both Treatment A and 

Treatment B. The average pricing error is 39% for Period 1, 32% for Period 2, and 18% for 

Period 3. The pricing errors across two adjacent periods are significantly different from each 

other, suggesting a sizable improvement of pricing accuracy over time. The improvement 

perfectly coincides with the information diffusion in each period. For any two adjacent periods in 

a market session, the only change that occurred is that each surprise term reaches more audience, 

all other factors unchanged. Therefore information diffusion is the only driving factor for the 

improvement in pricing accuracy and, consequently, price momentum. Since information is 

complete at all time,  it is clearly established in the results here that higher information “density” 

is associated with higher pricing accuracy. 
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Table III: Errors across periods in Treatment A and Treatment B 

Error for a transaction is computed as the percentage deviation from the true value in the period. Treatment A and B have 3 periods for each 
session. Two adjacent periods have the same sets of private information in the economy and only differ in who knows what. Treatment C has 
only one period and the pricing errors are not included in this table.  

 
Ratio of 
informed 
traders 

Mean Observations Std. dev. Mean comparison 

Period 1 25% 0.39 2279 0.43  
Period 2 50% 0.32 2210 0.34 

t = 5.4, 
p < 0.0001 

Period 3 75% 0.18 2305 0.20  
t = 16.9, 

p < 0.0001 
 

 

 

B. Result 2: Pricing accuracy does not improve as the number of states is reduced. 

Treatment A differs from Treatment B in the number of states for the liquidating dividend. 

Plott and Sunder (1982) show that, when the number of states is increased from 3 to 11, 

information aggregation in the market becomes unstable.  It is naturally conjectured that 

Treatment A should have a higher pricing error than Treatment B. However, Table IV suggests 

no such evidence and indicates some sign of the opposite conclusion. For the same period, a 

market in Treatment A experienced less average errors than a market in Treatment B, though the 

differences are not statistically significant. Treatment C experiences higher errors than both 

Treatment A and Treatment B. Figure 6 provides box plots for the average errors in the three 

Figure 5. Average deviation from true value for a trading period.   The deviation of mean price in a period 
from its true value is reported for a total of 40 market sessions in treatment A and treatment B. 17 sessions experience negative surprise, 15 
sessions experience positive surprises and 8 experience no surprise. The average price deviations from true value for each period are linked by a 
dashed line and displays the directional movement. Unlike risk-averse based explanations, underpricing and overpricing both exisit. 

Surprises >0 
15 Sessions 

Surprises =0 
8 Sessions 

Surprises <0 
17 Sessions 
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periods for each treatment and confirms that Treatment B experiences slightly higher error. 

Treatment A and Treatment B differ only in the numbers of states and consequently the possible 

realizations of true value, as the boundaries of possible true value are both 20 and 100. 

Periods in Treatment C differ from periods in Treatments A and B in two ways: First, it 

only has four realizations of the states determined by two surprise terms; second, the surprises 

are given out to two groups, rather than four groups, in the very beginning. As a result, 

Treatment C lasts for only a single period. It is similar to Period 2 in Treatments A and B in the 

sense that each surprise term has reaches 50% population. However, the pricing errors in 

Treatment C seem to be the largest among the three treatments. This evidence suggests that the 

determinacy of pricing accuracy is hardly related to the number of states or the level of 

complexity in the environment. This puzzle will be addressed in Section IVA. 

 
 

Table IV: Comparison of Pricing Errors across Treatments 
The average pricing errors in a trading period of treatments A and B are listed on the left; the average pricing error of Treatment C 
is listed on the right. Wilcoxon Rank Sum test is used to compare the statistical difference of pricing errors in Treatment A and 
Treatment B. 

 Treatment A Treatment B 
Mean 

comparison
Treatment C 

 Mean Obs. 
Std. 
dev. 

Mean Obs.
Std. 
dev. 

Two-sample 
Wilcoxon 
rank sum 

test 

Mean Obs. 
Std. 
dev. 

Period 1 0.35 30 0.37 0.48 10 0.56 
z = –0.69,  
p = 0.49 

Period 2 0.30 30 0.31 0.35 10 0.44 
z = –0.56,  
p = 0.57 

Period 3 0.15 30 0.14 0.21 10 0.25 
z = –0.59,  
p = 0.55 

0.64 10 0.79 
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C. Result 3: Individual investors fail to decipher market activities and behave in a 

myopic fashion. 

The previous two results addressed aggregate market pricing accuracy. Result 3 examines 

how well each individual is informed by the market price. To do so, a subject’s valuation of the 

security has to be identified. While no direct subjective measurement exists, a subject’s valuation 

can be approximated. A proxy mechanism called separating price method, introduced by 

Rockenback (2004), is used next. 

From the experimental data, it is impossible to directly tell what a subject’s exact 

valuation is, but buying and selling activities should reveal their preference. An investor who 

follows his or her own valuation iV  buys the security whenever the security price is lower than 

iV , and sells the security whenever its price is higher than iV . For price iV , the investor is 

indifferent between buying and selling the security. From these observations, a separating price 

can be identified that best explains the investment decision of a subject in a trading period by 

applying the following procedure: consider that subject i  made K  transactions within a period, 

and denote the transacted prices as kJ . Suppose that }100,...,21,20{iV  is the  candidate 

Figure 6. Box plots for pricing error across treatments.   Pricing error for a period is plotted, sorted on period 
number and treatment identity. Treatment C is listed in the Period 2 category, because each piece of private information is revealed to 50% 
population, equivalent to period 2 of treatment A and B. 
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separating price. The investment decision of investor i  in the period violates the assumption of 

the separating price if he or she buys the security ik VJ   or sells the security ik VJ  . In case of 

violation ( 1k ), I calculate the squared deviation as the magnitude of violations: 

 
 }1,0{,,,2,1,)( 2  kkikk KkVJ   . (13)
  
The candidate price iV  that best separates between buying and selling activities for investor i  is 

the price that minimizes the sum of squared deviations: 

 

  
k ikii VVV )(}100,,21,20{minarg  . (14)

  
It is possible that more than one price has the smallest sum of squared deviations. As one can 

easily verify, this can only happen for a connected price range. Because there is no good reason 

to assume that the “true” separating price is at a specific location in that range, iV is defined as 

the middle point of the range. The examination here is restricted to Treatment A and Treatment 

B, and uses 682 observations of individual separating prices iV  out of a total of 960 observations 

(= 12 subjects × 8 experiments × 5 sessions × 3 periods), with the rest irretrievable for the reason 

that subject either buys only or sells only in a period. 

Once iV  is derived, the valuation is compared to the true value TD  and one’s private 

information projected mean, imeansubj_ . To evaluate how much an individual improve one’s 

valuation over his own private information, an indicator of inference accuracy is generated: 

 

 
iT

ii
i meansubjD

meansubjV

_

_




 . (15)

  
If Ti DV  and i  is 1, that means the subject obtains perfect foresight; if ii meansubjV _ and i  

is zero, that means the subject is completely myopic; if i  is greater than 1, that means the 

subject over extrapolates; and if i  is smaller than zero, that means the subject is not informed by 

the market price at all and is too conservative. 

Table V summarize the inference accuracy for Treatment A and B. In Period 1, subjects 

were extremely cautious with an average inference accuracy ratio less than 0. In Period 2, 
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inference effectiveness is significantly improved yet the average ratio is close to 0. Only in 

Period 3 can some positive sign of correct inference be observed. Again, there are significant 

improvements from Period 2 to Period 3. Across all three periods, the average inference 

effectiveness ratio is 0.12, which is much closer to total ignorance of market price than to perfect 

information extraction. 

Figure 7 plots a histogram for the inference accuracy and the distribution almost centers 

around myopic zero inference sampling over all trading periods. 

 
 

Table V: Price inference accuracy across periods in Treatment A and B 
Note: Inference accuracy is measured on subjects’ valuations relative to the position of one’s own private information projected mean and 
the true dividend value. A ratio of zero indicates complete myopic, and a ratio of 1 indicates perfect foresight. 
 Mean Observations Std. dev. Mean comparison 
Period 1 –0.21 259 0.93 t = 2.93,  
Period 2 0.05 206 0.97 p = 0.002 t = 5.62, 
Period 3 0.59 217 1.13  p < 0.001 
Pooled 0.12 682 1.06   

 
 

 

IV. Analysis 

The preceding results clearly suggest failure of information aggregation, a fact that 

contrasts with the conventional notions of perfect information revelation and findings in some of 

the early experimental literature. The results pose puzzles: What factors are relevant in 

determining the accuracy of aggregation? Result 1 clearly suggests that when information is 

Figure 7. Inference accuracy distribution for Treatment A and B.   The histogram for inference accuracy 

indicates a relative symmetric distribution centering around a mean of 0.11. The level is closer to compete myopic ( =0) than perfect (revealing 

 =1).  
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highly dispersed, aggregation fails; and when information diffuses, pricing accuracy improves. 

Why would information “density” per capita matter for market price efficiency? 

In what follows, I will present three explanations: (1) multiple equilibria exist given 

dispersed information, and information diffusion reduces the number of false equilibria and 

pricing accuracy naturally improves; (2) though competition among insiders can quickly close 

out mispriced offers, these mispriced offers do not arrive simultaneously, the dispersed arrival of 

uninformed traders leads to prolonged asset mispricing; and (3) the market book does not reveal 

who offers what, thus making it difficult to track an informed party’s activities and to make 

inferences. 

A. Equilibrium multiplicity and the stability of false equilibria 

Multiple equilibriums in dynamic expectations models have been ubiquitous in 

macroeconomic studies, in which how people coordinate their beliefs affects real production 

(Black, 1974). The existence of nonunique equilibria dominates a wide range of theories 

including currency crises, bank runs, and financial bubbles and crashes; rather, the debate 

focuses on what causes the market to select one equilibrium over another. Driskill (2006) offers 

the literature survey on such selection criteria.  

With regard to financial market information aggregation, Grossman and Stiglitz (1976) 

first endogenize public information by allowing individuals to observe financial prices and show 

that equilibrium can be established where the prices do not reflect true worth of the assets due to 

noisy supply shocks. Angeletos and Werning (2006) use a similar framework where agents can 

observe the endogenous public information, aka, the financial prices and demonstrate that 

equilibria multiplicity is ensured when individuals observe fundamentals with small idiosyncratic 

noises. 

Multiple rational expectation equilibria are relatively new to the classical theories on 

information aggregation. As will be discussed, market prices can settle down on any candidate 

equilibrium that is compatible with the information distribution in the economy, and a selection 

criterion may exist in favor of some equilibria over the fully revealing equilibrium. 

In the experimental environment, multiple equilibria are defined as prices that are 

compatible with all individuals’ private information. Under such equilibria, no individual will 

have absolute confidence to attack the status quo prices. Only one equilibria reflects the true 
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value of the asset, while the rest of equilibria reflect situations where each individual hold 

mistaken beliefs about the information held by others and the mistaken beliefs are mutually 

compatible. This occurs when different parties are differently informed, similar to the 

idiosyncratic noises in individual parties’ private information in the model of Angeletos and 

Werning (2006). The experiment design here, based upon Hong and Stein (1999), is an exact 

example of the scenario. 

In Treatment A, the news surprise has four terms, each held by one group (25% of the 

population). The first group with the knowledge of 1  can ascertain that the dividend is within 

the interval ]90,30[ 11   . Define the intersection of individual groups’ intervals as 

equilibrium interval. It can easily be noted that the equilibrium interval can cover more than one 

equilibrium. In fact, any possible state within the intersection can be an equilibrium. Following is 

a simple example: Suppose that the four surprises are 10, 10, 10, and -10, and thus the true value 

is 80. The three groups with the knowledge of 10 can ascertain that the dividend is within [40, 

100], whereas the group with the knowledge of -10 can ascertain that the dividend is within [20, 

80]. Thus the equilibrium interval is [40, 80]. Now any price at 40, 50, 60, 70, or 80 does not 

contradict with any information group’s private information and can sustain all groups’ beliefs. If 

the market initially assumes the dividend to be 40, the groups with the knowledge of 10 will 

assume that all the rest of the realizations are -10, whereas the group with the knowledge of -10 

will assume that the other three realizations have a sum of -10. Once the price of 40 established, 

there is no trigger that induces any party to change its belief. Indeed, Experiment A6 Session 2 

Period 1 confirms for this example that most transaction prices falls between the boundaries of 

possible equilibriums (See Figure 2b.). The patterns can be observed in the price time series plots 

of all treatments, where the intersections are marked out in the shaded area (See Figure 3, Figure 

4 and Figure 5); 70.2% of transactions are within the range. Note that prices falling out of the 

boundary range are not rare, which will be explained in the next. 
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Table VI: Feasible GLS regressions on pricing error 
The mean pricing error for a trading period is regressed on the equilibrium range for 130 periods, after controlling for 
experimental treatment dummy and information coverage ratio proxy. The trading periods in Treatment C are considered as 
“Period 2”, since each piece of information is also known by 50% population 

Independent 
variable 

Pricing error 

Equilibrium range 0.018 (6.85***) 
Treatment(=B) 0.16 (2.32**) 
Treatment(=C) 0.37 (3.21***) 
Period(=2) 0.36 (3.76***) 
Period(=3) 0.53 (4.06***) 
Constant –0.54 (–3.75***) 

 
 
 

 
 

If the above logic is at play, then the number of possible equilibria will be positively 

correlated with pricing errors. Define the length of the equilibrium interval as equilibrium range. 

Since more equilibria lead to larger equilibrium range, equilibrium range can be used as a proxy. 

To test this, pricing errors for a period are regressed on equilibrium range in a period. 

Table VI reports the regression results based on observations from all treatments and 

indicates that the pricing error in a period is significantly positively correlated with the 

equilibrium range, after controlling for experimental treatment and period effect. Figure 8 graphs 

the box plots of pricing error for each level equilibrium range. As is shown clearly, pricing error 

steadily increases when equilibrium range grows. 

Figure 8. Pricing Error across varying equilibrium ranges.   The box plot for pricing errors for each level of 
equilibrium range from all periods is presented. A range of zero means that only one equilibrium exists. 
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B. Scattered arrival of myopic traders and the persistence of out-of-equilibrium 

prices 

The analysis in Section IIIA offers an understandable explanation for how prices may not 

land on the true value due to equilibrium multiplicity. However, it remains a question why the 

out-of-equilibrium-range prices persist. Out-of-equilibrium prices pose obvious arbitrage 

opportunities. Why are such opportunities sustainable? As long as an out-of-equilibrium limit 

order exists, the party that knows for sure that it is a safe transaction should act immediately. In 

Kyle (1985), informed insiders should in theory instantly close out such opportunities.  However, 

the experimental results indicate broad violations of the theory, because 29.8% transactions7 are 

out of equilibrium range. (See Figure 2, 3, 4) 

To find out the cause, a microscopic view of price formations is necessary. In Figure 10, 

the trading activities in Experiment A3, Session 1, Period 3 are plotted as an example. Each 

buying or selling transaction is coupled with a range plot of the actor’s private information 

interval. The true value for the period is 80, as determined by four surprise terms of 10, 10, 0 and 

0.  

In period 3, the four information groups will each know 3 surprise terms as {10,10,0}, 

{10,0,0}, {0,0,10} and {0,10,10} respectively. Therefore, there are two different private 

information ranges for all subjects:  two groups with the interval [60, 80] and the remaining 

groups with the interval [70, 90]. According to Kyle (1985), the price should converge to 80 

quickly. The market prices hover around 63 and almost persist for the whole duration of the 

trading period. At the price of 63, it is a safe buy for the groups with interval [80, 100]. Indeed, 

they were buying the security throughout. No problem is found on the buy side. However, it is 

shown that subjects with the private information interval [60, 80] were continuously submitting 

limit orders around 63 throughout the first two-thirds of the period. Only in the end did some of 

these subjects become buyers for the same price level. In this case, the groups with interval [60, 

80] seemed to have learned little from the market at all and continuously submitted myopic 

transactions. As is shown, the reason why price lingers around an off-equilibrium level is not that 

arbitragers do not take away safe gains immediately, but because the myopic traders arrive in 

scattered and prolonged fashion.  

                                                 
7 About half of the out-of-equilibrium-range transactions occur when there is only one equilibrium for the trading 
period. 
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This finding is highly consistent with the PEAD study of Vegas (2008), who reports that 

public announcements that generate underreaction are associated with the higher arrival rate of 

noise traders, while public announcements that make markets more efficient are associated with 

higher arrival rate of informed traders. Vegas (2008) utilizes a proxy variable for the presence 

levels of informed traders in market activities, the probability of information-based trading 

(PIN) , a measurement initiated by Easley and O’Hara (1992). The example here directly exposes 

the market book and private information held by each information group, thus identifying that 

the continuing arrival of myopic traders as the reason for persistent disequilibrium prices.  

To identify the myopic traders in all periods, the following definition is made: If a trader 

made a selling (buying) transaction at a price that is within his own private information interval 

but below (above) the common interval of all groups, the transaction would count as a myopic 

trade. Figure 9 draws the frequency of myopic trades at each second of a 2-minute period, 

sampled from a total of 130 periods. The plot demonstrates that myopic trades arrive evenly over 

time, and there was no clear sign of declining in myopic trades over time. 

 

 
 

Figure 9. Buyers’ information, sellers’ information and market orders in period 3 of 
Experiment A3, Session 1.   The market orders in Experiment A3-Session 1-Period 3 are reported, together with the actor’s 
private information interval. Adjacent trades for the same subject are merged and only the average is shown. A total of 46 orders are reported 
here. All orders below price 60 are considered as noisy trading and are dropped for saving space. 
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One potential explanation for this observation is that myopic trades induce more myopic 

trades, as Grossman and Stiglitz (1976) emphases that wrong price itself can pass noise to 

observers. The mispricing created by myopic trades in the beginning might other traders to 

believe that the price is at a reasonable level and affirm their actions. Taking the example again, 

the groups with interval [60, 80], after seeing transactions at 63, may form belief that the 

dividend was 60, which is compatible with their own private information. 

 

C. Anonymous Trading and Market Transparency  

One assumption underlying classic theories of information aggregation is that the 

uninformed party can observe the activities of the informed parties (Kyle, 1985). In reality, 

market transparency is very limited.  Market transparency is defined (see O’Hara, 1995) as the 

ability of market participants to observe information about the trading process. Researches have 

suggested that it can affect the informativeness of the order flow and hence the process of price 

discovery. In most stock exchanges, information regarding prices, quotes, volumes and time is 

generally revealed to all participants. However, the open-book trading system does not expose 

the identities of traders. Forster and George (1992) show a model that once the anonymous 

trading assumption is relaxed, market makers can track the magnitude and direction of large 

Figure 10. Frequency of myopic transactions within the time of a trading period.   The vertical 
axis reports the frequency of myopic trades (not noisy trade) in each second of a period over a sample of 130 periods. Each period lasts 120 
seconds. If a trader made a selling (buying) transaction at a price that is within his own private information interval but below (above) the 
common interval of all groups, the transaction would count as a myopic trade. 
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trades (net buyer or net seller) and extract valuable information and reduce adverse selection 

costs. 

 Under Hong and Stein (1999) type environment, anonymity becomes particularly 

important. When different pieces of valid private information are located in the hands of multiple 

groups, it is challenging to differentiate who submitted what. In the anonymous experimental 

design laid out above, each group of investors are motivated to solve the task of accurately 

inferring three separated pieces of the private information held by three other groups. The market 

book does not list the identity of any of the three groups, not even one’s own group. The job of 

figuring out who is the buyer and who is the seller for the past transaction is almost impossible. 

While the experiment does not have an additional treatment of full transparency, the analysis 

below suggests this is a valid factor as well. 

Figure 10 presents all transactions in Experiment C1 Session 5 Period 1 in a Panel 1. 

Recall that the two news surprises can either take on values of -20 or 20 in Treatment C. The true 

value is 100 and the two surprises are: 20 and 20. Most transaction prices lie between 60 and 80. 

By observing merely the aggregate trading activities in Panel 1, an individual cannot be 

absolutely confident that the true value is 100. The logic is simple: the individual with the first 

signal of 20 can ascertain that the value is either 60 or 100, however, he cannot know whether 

the person who buy at a price, say 70, is having the same signal or the other signal; if the former 

is true, a price of 70 is plausible since the asset can pay either 60 or 100 condition on the buyer’s 

private information; if the latter is true, a price of 70 implies the buyer receives the other signal 

as 20 and the asset value must be 100.  The dilemma can easily be solved when one look at the 

buying histories for each information group as shown in Panel 2 and Panel 3 respectively. It is 

reasonable to assume all groups have positive private information, both being 20, because both 

groups are willing to consistently purchasing above 60. Without this breakdown perspective, it is 

difficult to conjecture that the true value is 100.  
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IV. Concluding Remarks 

 
This paper designs a two-asset laboratory market where the aggregate consumption is 

constant regardless of the realization of states. For the asset of interest, the information regarding 

its fundamental is split into multiple pieces and the pieces are initially revealed to multiple 

Figure 11. Transactions breakdown for each information group.   The true value is 100 and the two 
surprises are 20 and 20. The aggregate transaction history do not tell what information the other group holds. Breaking down to each group, the
transaction history tells more reliable information on what each group holds. 

Panel 1 

Panel 2 Panel 3 
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information groups. Over time, each piece of information travels across the investor public, 

which is commonly referred to as gradual-information-diffusion. 

In the experiments reported in this paper, gradual information diffusion in the market can 

move asset prices significantly, absent changes in the fundamentals. Price deviations from the 

true value are large when information is sparsely dispersed and errors are gradually corrected as 

information “density” grows. Over the course of error correction, market prices exhibit 

momentum.  

In complete accordance with Hong and Stein’s (1999) model on information diffusion 

and underreaction, the data indicate that prices exhibit positive momentum when news surprise is 

negative, negative momentum when news surprise is positive and no momentum when news 

surprise equals zero. The markets underestimate the size of news surprise in both positive and 

negative news cases. This is a vital difference from risk-based explanations, as risk aversion 

would only predict underpricing and thus positive momentum. 

Price momentum in the absence of change in fundamentals suggests that information 

aggregation in market prices fails. By analyzing each trader’s activities, I find that subjects are 

unsuccessful in inferring true value from market prices and behave almost in complete myopic 

fashion.  

The reason for aggregation failure is not what is generally assumed - the increasing 

number of possible states hampers pricing accuracy. The results indicate that more states 

(uncertainty) does not necessarily correspond to higher pricing error. The analysis section 

suggests that the market mechanism faces subtle challenges in aggregating diverse information. 

Three important factors are identified to be relevant in the aggregation of dispersed 

information: 

(1) Equilibrium is not unique, though only one is correct; information diffusion reduces 

the number of false equilibria and pricing accuracy naturally improves. In the Hong and Stein 

(1999) structure, false equilibria are stable because agents can hold mistaken beliefs about what 

information is held by others. Angeletos and Werning (2006) present a model that when 

individuals know imperfectly (and differently) about the fundamental and the prices are revealed 

to all participants, multiple equilibria are an inevitable outcome. The results also confirm that the 

more equilibria there are, the higher the pricing errors emerge. 



 37

(2) Though competition among insiders can quickly close out mispriced offers, these 

mispriced offers do not arrive simultaneously—the scattered arrival of uninformed traders leads 

to prolonged asset mispricing. Consistent with Vegas’s (2008) study on PEAD, market price 

efficiency is largely depending upon the arrival rate of informed and uninformed traders. The 

slow death of myopic trades creates a new limit to arbitrage. 

(3) The market book does not reveal who offers what. Anonymous trading making it 

difficult to track an informed party’s activities and to make inferences, especially when 

information regarding the fundamental are dispersedly held by multiple information groups. If 

information group identify is known to subjects, the inference about the true value will become 

much easier.  

To sum up, this paper confirms Hong and Stein (1999) information diffusion model 

predictions and complement Bloomfield et al (2009) in providing more microscopic view of the 

information aggregation process. The experiments are carefully designed to allow maximum 

information expression. In addition, the results offer valuable insights for multiple equilibria 

literature and post earnings announcement drift studies, and refresh the experimental studies on 

information aggregation in markets with data uder environment of dispersed information. 

As Hong and Stein (2007) point out in the synthesis, gradual information diffusion (Hong 

and Stein, 1999), and limited attention (Hirshleifer and Teoh, 2003), and heterogeneous priors 

(Harris and Raviv, 1993)become the three pillars of the “disagreement model” and form a 

powerful framework whereby return predictability and volume  can be linked to differences in 

beliefs of investors. The “disagreement” model can connect to a wide spectrum of theories and 

empirical findings, without making stupidity assumption on the part of a single representative 

agent. The mere assumption is that investors have limited information processing capacity in 

making inferences about what information others hold, paying full attention to all information 

sources or forming unbiased ex ante beliefs. But investors remains boundedly rational (or 

reasonably savvy). The findings in this paper significantly uphold the gradual information 

diffusion model’s position in the “disagreement” model, because the tests are run absent no 

influence of the other two. Besides, the strength of experimental study lies with directly testing 

the hypothesis of concern with no auxiliary hypotheses – information diffusion can drive price 

momentum, absent issues related to changes in fundamental, risk aversion, short-selling 

constraint, liquidity constraint, etc. 
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Appendix: Experiment Instruction 

 

Thank you for participating in today's experiment. You've earned a $7 show-up bonus for 
participating. By carefully reading and following the instructions below, you have the potential 
to earn significantly more. 

For every 5 experimental Francs (₣) you earn in the experiment, you will be paid 2 cents 
in cash. What you earn depends on your decisions and the decisions of others. 
If you have any questions at any time raise your hand and a monitor will answer your question in 
private. 
 
1. The Situation 
 

The experiment consists of several separate market sessions. Each session has 3 periods.  
In a market session, there exist two types of Securities, Security A and Security B, valued at ₣X 
and ₣ (120-X) per unit respectively. At the beginning, each participant will receive an initial 
basket of Security A, Security B and Cash. For Example: 
 

  Holdings  Value 

Security A  18 units ₣ X / unit 

Security B 12 units ₣ (120-X) / unit 

Cash ₣ 1500 ( ₣ 800  Loan)   

 
Security A can be bought or sold in the market. You buy Security A with cash, and you 

get cash if you sell them. Your earnings for a session will be based on your final basket holdings 
at the end of the 3rd period: 
 

Total Value of the Securities you own + your final Cash – Loan 
  

Your holdings in a session cannot carry over to next session. When a new session starts, 
you will receive a new set of holdings. Your payment for the whole experiment will be the sum 
of your earnings from all sessions.  
 
2. The Value of the Securities 
  

Before a session starts, a computer draws four numbers: A, B, C and D. Each number can 
take on the value of -10, 0 or 10 with equal chances. The numbers are drawn independently. Say, 
if A is -10, B has 1/3 chance of being -10. 

The value of $X is the sum of these 4 numbers plus ₣ 60: 
₣ X = ₣ 60 + A + B + C + D 

 
Therefore, X may be as small as ₣20 (=60-10-10-10-10) or as large as ₣100 

(=60+10+10+10+10). Over four draws, X tends to be closer to its average value ₣60 than to the 
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extreme values. Security A is worth ₣ X per unit and Security B is worth ₣ (120-X) per unit. 
Security A and Security B are complementary to each other, since holding the two together will 
always yield a joint payoff of ₣ 120.  
 
 
3. Information update on the value of Security A 
  

Although the four numbers are determined before a session starts, the exact value of ₣ X 
is not revealed to anyone until a session is over. However, participants will get to know one out 
of the four numbers in every period.  

 In period 1, each participant will know ONE of the numbers. A, B, C and D will each be 
known by 25% of the population. 

 In period 2, each participant will get to know a second number. A, B, C and D will each 
be known by 50% of the population. 

 In period 3, each participant will get to know a third number. A, B, C and D will each be 
known by 75% of the population. 
No individual will be told all four numbers until a session is over. However, the 

population as a whole always have the complete knowledge of A, B, C and D.  
  

Here is an example:  
Assume A=10, B=0, C=-10, D=-10, and assume all participants are divided into four 

groups: I, II, III, IV.  
 In period 1, group I get to know 10, group II get to know 0, group III get to know -10, 

and group IV get to know -10. 
 In period 2, group I get to know 10 and 0, group II get to know 0 and -10, group III get to 

know -10 and -10, and group IV get to know -10 and 10. 
 In period 3, group I get to know 10, 0 and -10, group II get to know 0, -10 and -10, group 

III get to know -10, -10 and 10, and group IV get to know -10, 10 and 0. 
  
4. Market Trading 

You can trade Security A with other participants in the market. You buy Security A with 
cash, and you get cash if you sell Security A. You won't be able to buy Security A unless you 
have the cash. Security B is not traded throughout the experiment.  

You will be able to sell Security A, even if you do not own any. In this case your holding 
of Security A becomes negative. When you have negative holdings of Security A: 

 If you purchase Security A afterwards, you can close out the negative position; 
 If your holding of Security A remains negative at the end of a session, you will have to 

pay the value of Security A, instead of receiving it. 
As long as your overall holdings will not generate negative earnings in the end, the 

program allows you to sell as many units as possible. (When computing your tentative earnings, 
the program would judge a unit of Security A at ₣50 for each positive holding, and at -₣ 70 for 
each negative holding.) 
 
5. Market Interface 

After all have logged in, a market interface like the one below will appear. A larger view 
of the image is provided to you on the print-out on your desk. 
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 The interface is divided into several sections: 
 The upper-right corner shows a participant's Total Cash holding and the time remaining 

for the period. 
 The left section shows the trading market for Apple. (Orange is not traded.) 
 The right section consists of 3 parts: Price Chart, Orderbook, Earnings/Transaction 

History. 
 
 

 
 
 
6. How to make trades? 
  

The Active Markets panel has 3 columns. The columns correspond to Security A and 
Security B. At the top, you can find the numbers of units you hold. Currently, the image shows: 
24 A and 13 B. Only market A is open for trade. 

The A column consists of a number of price levels at which you and others enter offers to 
trade. Current proposals to buy are indicated in blue; proposals to sell are indicated in red.  
When you move your cursor to a particular price level box, you get specific information about 
the available offers. On top, at the left hand side, you'll see the number of units requested for 
purchase by participants in the market. Currently there is 1 proposal to buy at the price of ₣ 56. 
Each time you click on the letter "Buy", you propose to buy one unit. 
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On top, at the right hand side, the number of units offered for sale is given. Currently 

there is 1 proposal to sell at the price of $58. Each time you click on "Sell", you propose to sell 
one unit. 

 
At the bottom, you'll see how many units you offered, as indicated in "Your offers". Each 

time you hit "Cancel", you reduce your offer by one unit.  
If you click on the price level number, a small window appears that allows you to buy, sell, or 
cancel multiple units at once.  

 
 
7. History/Price Chart 

The History Panel shows a visual chart of past transaction prices in the period. 
 
8. Orderbook  
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The Orderbook panel lists current orders in the market and orders in the past periods. In 
the current period, YOUR orders are highlightened in gray. If you click on one of them, the 
corresponding price level box in the Active Markets panel is selected so that you can easily 
modify YOUR offer. 
 
9. Earning/Transaction History 

The Earning History panel shows, for each period, your final holdings for each of the 
Fruits and cash. Earnings are not reported until the end of a session. Your earnings accumulated 
over the sessions will be indicated in Cumulative Earnings. The Transaction History panel allows 
you to track all past occurred transactions. 
  
10. How Trade Takes Place  

If you want to buy A, click on , the price level of the lowest selling offer will 
be selected, and you may click on "Buy" to buy a unit at a time. (If you propose to buy above the 
lowest selling price, you will still get the lowest selling price.) 

If you want to sell A, click on , the price level of the highest selling offer will 
be selected, and you may click on "Sell" to sell a unit at a time. (If you propose to sell above the 
highest buying price, you will still get the highest buying price.) 
  
11. Restrictions On Offers 

Before you send in an offer, the program will check your ability to deliver on promises 
that you implicitly make by trading fruits. It may not allow you to trade to holdings that generate 
negative earnings in the end. A message appears if that is the case and your order will not go 
through.  
 
 
12. Summary 
  

 The experiment last multiple separate sessions. Each session is divided into 3 periods.  
 At the end of period 3 in a session, Security A pays ₣X, and Security B pays ₣ (120-X). 

The two securities are complementary in the sense that if Security A pays more, Security 
B would pay less; and vice versa.  

 The value of ₣X is the sum of 4 numbers drawn by a computer, each being either -10, 0 
or 10 and being equally likely to be chosen in every draw. 

 Each participant will get to know one new number in every period. However, all four 
numbers are always known by the entire population. 

 In each period, market is open for trading on Security A. (Security B is not traded.) 
 

If you are ready, you may click the link below to sign up. 
 
 
 
 
 
 



 43

References 

 
Ang, James S., and Thomas Schwarz, 1985, Risk aversion and information structure: An 
experimental study of price volatility in the security markets, Journal of Finance 40, 824-844. 
 
Angeletos, George-Marios, and Iván Werning, 2006, Crises and prices: information aggregation, 
multiplicity, and volatility, American Economic Review 96, 1720–1736. 
 
Bloomfield, Robert J., William B. Taylor,  and Flora Zhou, 2009,  Momentum, reversal, and 
uninformed traders in laboratory markets, Journal of Finance 64, 2535-2558. 
 
Bolmatis, Athanasios, and Evangelos G. Sekeris, 2007, Information diffusion based explanations 
of asset pricing anomalies, working paper QAU07-6, Quantitative Analysis Unit, Federal 
Reserve Bank of Boston. 
 
Bossaerts, Peter, Charles Plott, and William Zame, 2007, Prices and portfolio choices in financial 
markets: theory, econometrics, experiment, Econometrica 75, 993-1038. 
 
Driskill, Robert, 2006, Multiple equilibria in dynamic rational expectations models: A critical 
review, European Economic Review 50,171-210. 
 
Easley, D., and M. O’Hara,1992, Time and the process of security price adjustment, Journal of 
Finance 47, 577–604. 
Eberwein, Curtis J., 1990, Information aggregation under differing information structure: Some 
preliminary results, working paper, University of Pittsburgh. 
 
Fama, Eugene F., 1970, Efficient capital markets: A review of theory and empirical work, 
Journal of Finance 25, 383-417. 
 
Fama, Eugene F., 1998, Market efficiency, long-term returns and behavioral finance, Journal of 
Financial Economics 49, 283-306. 
 
Foerster, M., and T. George, 1992, Anonymity in securities markets, Journal of Financial 
Intermediation 2, 168 - 206. 
 
Forsythe, Robert, and Russell Lundholm, 1900, Information aggregation in an experimental 
market, Econometrica 50, 537-68. 
 
Grossman, Sanford J., 1976, On the efficiency of competitive stock markets where traders have 
diverse information, Journal of Finance 31, 573-85. 
 
Hanson, Robin, Ryan Oprea, and David Porter (2006), Information aggregation and 
manipulation in an experimental market, Journal of Economic Behavior and Organization 60, 
449 -459. 
 



 44

Hayek, F. A., (1945), The use of knowledge in society, American Economic Review 35, 519-530. 
 
Hong, H., W. Torous, and R. Valkanov, 2007, Do industries lead stock markets? Journal of 
Financial Economics 83, 367–396. 
 
Hong, Harrison, and Jeremy C. Stein, 2007, Disagreement and the Stock Market, Journal of 
Economic Perspectives 21: 109–128. 
 
Hong, Harrison, and Jeremy C. Stein, 1999, A unified theory of underreaction, momentum 
trading, and overreaction in asset markets, Journal of Finance 54, 2143–2184. 
 
Hong, Harrison, Terence Lim, and Jeremy C. Stein, 2000, Bad news travels slowly: size, analyst 
coverage, and the profitability of momentum strategies, Journal of Finance 55, 265–295. 
 
Hou, K., 2007, Industry information diffusion and the lead-lag effect in stock returns, Review of 
Financial Studies 20, 1113–1138. 
 
Huberman, Gur, and Tomer Regev, 2001, Contagious speculation and a cure for cancer: A non-
event that made stock prices soar, Journal of Finance 56, 387-396. 
 
Kruse, Jamie, and Shyam Sunder, 1988, Common knowledge and information dissemination, 
Carnegie Mellon University. 
 
Kyle, S. Albert, 1985, Continuous auctions and insider trading, Econometrica 53, 1315-1335. 
 
Lucas, Robert E., 1972, Expectations and the neutrality of money, Journal of Economic Theory 4, 
103-24. 
 
Muth, J.F., 1961, Rational expectations and the theory of price movements, Econometrica 29, 
315-335. 
 
O’Brien, John, and Sanjay Srivastava, 1991, Dynamic stock markets with multiple assets: an 
experimental analysis, Journal of Finance 46, 1811-38. 
 
Plott, Charles R., and Shyam Sunder, 1988, Rational expectations and the aggregation of diverse 
information in laboratory security markets, Econometrica 56, 1085-1118. 
 
Radner, Roy, 1979, Rational expectations equilibrium: generic existence and the information 
revealed by prices, Econometrica 47, 655-678. 
 
Rockenbach, B., 2004, The behavioral relevance of mental accounting for the pricing of financial 
options, Journal of Economic Behavioral and Organization 53, 513-527. 
Sanford J. Grossman and Joseph E. Stiglitz, 1976, Information and competitive price systems, 
American Economic Review 66, 246-253. 
 



 45

Schmitz, Philipp, 2008, The role of media coverage in the information diffusion process in the 
stock market, working paper. 
 
Vega, Clare., 2005, Stock price reaction to public and private information, Journal of Financial 
Economics 82, 103–133. 
 



Economic Science Institute Working Papers 

2010     

10-02 Gjerstad, S. and Smith, V. Household expenditure cycles and economic cycles, 1920 – 2010. 
  
10-01 Dickhaut, J., Lin, S., Porter, D. and Smith, V. Durability, Re-trading and Market Performance.  

2009 

09-11 Hazlett, T., Porter, D., Smith, V. Radio Spectrum and the Disruptive Clarity OF Ronald Coase. 
  
09-10 Sheremeta, R. Expenditures and Information Disclosure in Two-Stage Political Contests. 
  
09-09 Sheremeta, R. and Zhang, J. Can Groups Solve the Problem of Over-Bidding in Contests? 
  
09-08 Sheremeta, R. and Zhang, J. Multi-Level Trust Game with "Insider" Communication. 
  
09-07 Price, C. and Sheremeta, R. Endowment Effects in Contests.  
  
09-06 Cason, T., Savikhin, A. and Sheremeta, R. Cooperation Spillovers in Coordination Games. 
  
09-05 Sheremeta, R. Contest Design: An Experimental Investigation.  
  
09-04 Sheremeta, R. Experimental Comparison of Multi-Stage and One-Stage Contests. 
  
09-03 Smith, A., Skarbek, D., and Wilson, B. Anarchy, Groups, and Conflict: An Experiment on the 
Emergence of Protective Associations. 

09-02 Jaworski, T. and Wilson, B. Go West Young Man: Self-selection and Endogenous Property Rights. 

09-01 Gjerstad, S. Housing Market Price Tier Movements in an Expansion and Collapse. 

2008  

08-10 Dickhaut, J., Houser, D., Aimone, J., Tila, D. and Johnson, C. High Stakes Behavior with Low 
Payoffs: Inducing Preferences with Holt-Laury Gambles.  

08-09 Stecher, J., Shields, T. and Dickhaut, J. Generating Ambiguity in the Laboratory.  

08-08 Stecher, J., Lunawat, R., Pronin, K. and Dickhaut, J. Decision Making and Trade without 
Probabilities.   

08-07 Dickhaut, J., Lungu, O., Smith, V., Xin, B. and Rustichini, A. A Neuronal Mechanism of Choice. 

08-06 Anctil, R., Dickhaut, J., Johnson, K., and Kanodia, C. Does Information Transparency 
Decrease Coordination Failure? 



08-05 Tila, D. and Porter, D. Group Prediction in Information Markets With and Without Trading 
Information and Price Manipulation Incentives.  

08-04 Caginalp, G., Hao, L., Porter, D. and Smith, V. Asset Market Reactions to News: An Experimental 
Study.  

08-03 Thomas, C. and Wilson, B. Horizontal Product Differentiation in Auctions and Multilateral 
Negotiations.  

08-02 Oprea, R., Wilson, B. and Zillante, A. War of Attrition: Evidence from a Laboratory Experiment on 
Market Exit.  

08-01 Oprea, R., Porter, D., Hibbert, C., Hanson, R. and Tila, D. Can Manipulators Mislead Prediction 
Market Observers? 


	Gradual Information Diffusion and Asset Price Momentum
	Recommended Citation

	Gradual Information Diffusion and Asset Price Momentum
	Comments

	Microsoft Word - information diffusion and momentum-1.5space.doc

