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ARTICLE

A Surface Femtosecond Two-Photon Photoemission Spectrometer for
Excited Electron Dynamics and Time-Dependent Photochemical Kinetics

Ze-feng Rena†, Chuan-yao Zhoua†, Zhi-bo Maa, Chun-lei Xiaoa, Xin-chun Maoa, Dong-xu Daia,
Jerry LaRueb, Russell Cooperb, Alec M. Wodtkeb, Xue-ming Yanga∗

a. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian
116023, China
b. Department of Chemistry and Biochemistry, University of California at Santa Barbara, CA 93106,
USA

(Dated: Received on March 31, 2010; Accepted on May 5, 2010)

A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study
of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide
surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri-
cal electron energy analyzer with an imaging detector that allows us to detect the energy and
the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom-
eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface
excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for
measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies
of surface photochemistry. This technique has been applied to a preliminary study on the
photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dy-
namics of photoinduced surface excited resonances can be investigated in a reliable way by
combining the TR-2PPE and TD-2PPE techniques.

Key words: Femtosecond two-photon photoemission spectropy, Time-resolved, Ultrafast
excited electron dynamics, Surface photochemical kinetics

I. INTRODUCTION

The discovery of photoelectric effect by Heinrich
Hertz in 1887 has made a tremendous impact on modern
physics. Single photon photoemission spectroscopy has
been widely used in investigating the electronic struc-
tures of atoms, molecules, solid materials, and their
surfaces [1]. For solid surfaces, the vast majority of re-
cent single-photon photoemission (1PPE) studies were
focused on the valence electronic structures. The two-
photon photoemission (2PPE) technique was developed
about three decades ago when strong pulse lasers had
just became widely available [2−7]. Recent research
developments using 2PPE have been described in sev-
eral related reviews [8−11]. Various versions of 2PPE
have been developed for applications in different sur-
face related studies. Fauster and co-workers employed
this technique to study the structure and dynamics of
image potential states on metal surfaces [12, 13]. This
method has also been used for the study of hot electron
dynamics of metals [14] and semiconductors [15], and
to probe the electronically excited states and the dy-

∗Author to whom correspondence should be addressed. E-mail:
xmyang@dicp.ac.cn.
†Who made similar contribution to this work.

namics of atoms and molecules adsorbed metal surfaces
[16−23]. In recent years, 2PPE has been applied to
investigate the surface electron dynamics of molecular
adsorbed metal oxide surfaces [24, 25]. These develop-
ments clearly show that 2PPE is a uniquely powerful
tool in studying the excited electron dynamics of vari-
ous materials. However, the ability of this technique to
study surface chemical reaction kinetics has not been
realized thoroughly.

The key for the surface 2PPE technique is the ap-
plication of the high peak-power and high repetition
rate ultrafast Ti:Sappire oscillator. This laser gives a
sufficiently high two-photon excitation probability and
low single pulse energy which would avoid the dam-
age of the surface samples and space charge effect. In
addition, considerable technological progress has been
made for the electron energy analyzers. It is now possi-
ble to measure simultaneously the energy and angular
distributions of the photoelectrons from surfaces using
an electron imaging detector [26]. Such photoelectron
imaging technique enables us to measure surface pho-
toemission spectrum changes due to surface chemical or
photochemical reactions in real time. More recently, a
time-of-flight spectrometer has also been developed for
angle and energy resolved photoelectron measurements
using a microchannel plate stack in coupling with a po-
sition sensitive delay-line detector [27].
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In this report, we describe a femtosecond two-
photon surface photoemission spectrometer recently
constructed in our laboratory for studies of excited
surface electron dynamics using a Mach-Zehnder in-
terferometer [28] and surface photochemical kinetics
for metal and metal oxides surfaces dosed with vari-
ous molecules. This report first describes the structure
and basic functions of the instrument. Preliminary re-
sults from Cu(111) and C2H5OH/TiO2(110) surfaces
are then presented in order to demonstrate the abil-
ity of the instrument to measure the surface photo-
electron spectroscopy, excited electron dynamics and
surface photochemical kinetics. The combination of
interferometric and time-dependent 2PPE (TD-2PPE)
measurements is demonstrated for investigating surface
photochemical processes and the ultrafast dynamics of
photoinduced surface excited states. Finally, possible
applications in future surface reaction kinetics studies
using 2PPE are discussed.

II. DESCRIPTION OF THE EXPERIMENTAL
APPARATUS

Figure 1 shows a schematic diagram of the femtosec-
ond 2PPE spectrometer. The 2PPE experimental ap-
paratus is comprised of an ultrahigh vacuum system,
which includes a sample preparation and characteri-
zation chamber and a main probing chamber with a
hemispherical electron energy analyzer, as well as a
Ti:Sapphire femtosecond laser system with a frequency
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FIG. 1 The schematic diagram of the femtosecond two-
photon surface photoemission spectrometer.

doubling setup and a home built Mach-Zehnder inter-
ferometer that allows for ultrafast excited electron dy-
namics studies. In the following sections, the vacuum
system, the detection system and the laser optical sys-
tem will be described respectively in details.

A. Vacuum and detection system

The vacuum system consists of a main chamber for
2PPE measurement, a sample preparation and charac-
terization chamber and a load-lock system. A schematic
of the vacuum system is shown in Fig.2. The load-lock
system is used for loading samples under atmospheric
conditions onto the sample holder without breaking the
ultrahigh vacuum condition, which makes the replace-
ment of the samples very easy. A gate valve separates
the load-lock system pumped by a 60 L/s turbo pump
(Pfeiffer) from the upper chamber. The whole Ultra-
high vacuum (UHV) chamber is pumped by a 1200 L/s
turbo pump (Pfeiffer), a 500 L/s ion pump (Varian)
and a titanium sublimation pump (Varian). The base
pressure of the whole vacuum system is maintained at
5 nPa.

The upper chamber is designed for sample prepara-
tion and characterization. It is equipped with an Ar-
gon ion gun (IQE 11/35, SPECS) for sample clean-
ing and a LEED detector (ErLEED 150, SPECS) for
LEED pattern check to ensure that samples are con-
tamination free and well ordered before experimental
measurements. A residual gas analyzer (RGA200, SRS
Systems) is also mounted on this chamber for residual
gas analysis, adsorbate purity check, and leak test. The
sample holder has the capability of moving the sample
in x, y, and z directions, as well as rotating it around
the z-axis and the surface normal. Sample temperature
can be varied between 100 and 1200 K.

The main measurement chamber is below the prepa-
ration and characterization chamber. The key element
of this apparatus is the hemispherical electron energy

Surface
manupilator

Load lock
system

RGAGate valve

LEED-Auger

Turbo pump
Gas doser

VUV lamp
Imaging detector

Hemisphere
electron energy
analyzer

Laser windows

FIG. 2 The vacuum system of the 2PPE apparatus. The up-
per chamber is the sample preparation and characterization
chamber, while the lower one is the measurement chamber.
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analyzer (PHOIBOS 100, SPECS, Ultimate analyzer
resolution 2.8 meV) for low energy photoelectron de-
tection from the sample surface. A µ-metal shield
was mounted inside the main vacuum chamber, which
shields the earth magnetic field. This allows to measure
the surface photoelectrons at energy well below 1 eV
without applying a small voltage on the surface. It is
important to do that in studies of surface photochem-
istry because adding a voltage could alter the dynamics
of charged carriers on the surface. At the end of the
hemispherical electron energy analyzer, a two dimen-
sional electron imaging detector is utilized for simulta-
neous detection of the kinetic energy and angular distri-
butions of the photoelectrons. An experimental scheme
is also developed using the imaging detector for time-
dependent 2PPE measurement over the energy range
from the work function edge to twice of the photon en-
ergy relative to the Fermi level. The electron signal
received was amplified by Chevron microchannel plate
(MCP) detector. The amplified electrons are acceler-
ated to a phosphor screen detector. The 2D imaging sig-
nals on the phosphor screen are then recorded by a CCD
camera system. Because of the high repetition rate of
the femtosecond laser system (75 MHz), the CCD cam-
era has to be used in a “long time exposure mode”,
which also continuously counts background. There-
fore, it is crucial to use a cooled semiconductor CCD
camera (SensiCam, PCO), which is cooled down to
−12 ◦C reducing the background noise to a very low
level. The signal-to-noise ratio of the present setup can
reach about 1500, which is sufficiently high for most
2PPE studies. A minor disadvantage of the electron
imaging detector is that the data readout time is consid-
erably slower than the delay-line detector [27]. Electron
imaging detector is, however, ideal for 2PPE measure-
ment using very high repetition rate laser (∼80 MHz);
while delay-line detector with TOF measurement can
only work with lower repetition rate laser (several hun-
dred kHz). An electron gun (EQ 22/35, SPECS) is also
mounted on this chamber for Auger spectroscopy using
the hemispherical electron analyzer detector.

B. Laser and optical system

The laser system used in the 2PPE system is
a Ti:Sapphire femtosecond oscillator (Synergy PRO,
FEMTOLASERS), pumped by a Verdi V6 diode laser
(Coherent Co.). The center wavelength of the femtosec-
ond laser is near 800 nm. The whole laser system is sta-
tioned in a clean room with temperature control. The
temperature of the clean room is maintained at 20 ◦C
with an error of ±0.2 ◦C. The repetition rate of the
laser is 75 MHz, while the laser pulse width is about
10 fs. The short pulse width of the femtosecond laser is
crucial for measuring the ultrafast excited electron dy-
namics on surfaces and interfaces. The 800 nm output
light was frequency doubled to 400 nm using a thin β-
barium borate (BBO) crystal (10 mm×3 mm×0.1 mm,

CASTECH). The 800 nm light was focused to the BBO
crystal using a concave mirror with a focal length of 25
mm (Fig.3). The 400 nm light was then sent to a Mach-
Zehnder interferometer (MZI). The output beam of the
MZI was directed to a pair of chirp compensation mir-
rors before it was reflected and focused onto the sample
surface in the vacuum chamber through a lens window,
which is differentially pumped. Chirp compensation
can be made using various passive and active compen-
sators [29]. Prism pairs are often used for chirp com-
pensation because they can generate a small amount of
negative group velocity dispersion (GVD) dependent on
the wavelength, while a pair of chirp compensation mir-
rors produce nearly constant negative GVD over a wide
spectral range required to achieve ultra short pulses.
With this optical setup, we have performed interfero-
metric autocorrelation of the 400 nm excitation pulses
on a polycrystalline molybdenum surface. The pulse
width was extracted to be 28 fs using a fitting process
developed previously [30]. The interferometric autocor-
relation trace serves as an excellent diagnostic method
of the 400 nm laser pulses.

Figure 4 shows the picture of the home built MZI.
The doubled light at 400 nm first passes through a beam
splitter (50:50), and the two split beams go through
two separate arms that have two reflection mirrors
and recombine on another beam splitter. One of the
beam path lengths is fixed, the other beam path length
is varied by a preloaded closed-loop piezo translator

FIG. 3 The frequency doubling setup using a thin BBO
crystal.

Beamsplitter 2 To vacuum chamber

Piezo
translator

Beamsplitter 1

From Ti: safire laser

To Monochromator

FIG. 4 The home built Mach-Zehnder interferometer in the
2PPE apparatus.
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FIG. 5 The optical interference signal of the 400 nm light at
the exit of monochromator when scanning the piezo trans-
lator position.

(P841.40, Physik Instrumente GmbH). The maximum
displacement of the piezo translator is smaller than
60 µm. Since optical path length change is twice the
piezo translator movement, this would cause a maxi-
mum 400 fs time difference between the two split pulses.

The stability of the interferometer is crucial for the
measurement of the surface electron interference spec-
troscopy. The movement of 150 nm by the piezo trans-
lator will cause a difference of time of 1 fs. Such insta-
bility will cause difficulties in measuring the interference
pattern of the photoelectrons. Therefore a stable base
plate is essential. We have used Invar steel as the base
plate that has a very low thermal expansion coefficient,
<1×10−6 K−1 and is about one tenth of that of nor-
mal steel. The base plate used for the MZI is 4 cm
thick. The two optical arms of the MZI were also made
symmetric relative to the fixing point, so the thermal
induced change between the two optical paths cancel
one another. The two beam splitters are mounted on
vertically driven Gimbal optical mounts (VGM-1BHC,
Newport). In order to increase the stability, the MZI
setup is covered by an anodized aluminum box during
operation.

For stability testing, the output of the MZI was sent
to a monochromator for optical interference signal mea-
surement first. Figure 5 shows the interference pattern
with the monochromator set at 400 nm when the piezo
translator position is scanned. The optical interference
signal easily shows a peak-to-peak time difference of an
individual optical cycle at 400 nm, corresponding to a
time duration of 1.33 fs. And then the piezo position
was set to the middle position where the interference
signal gradient is the biggest (arrow position in Fig.5).
The result shows that the optical path length differ-
ence between the two optical arms of the MZI is stable
within ±12 nm over a 20 min period. This corresponds
to a time delay stability of ±40 as between the two split
pulses.
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FIG. 6 The two photon photoelectron image from the
Cu(111) surface at the center wavelength of 400 nm with
angle and energy resolved. The horizontal axis is the energy
of the photoelectrons relative to the Fermi level, while the
vertical axis is the electron scattering angle.

III. PRELIMINARY RESULTS

A. Normal 2PPE and TR-2PPE Study on Cu(111) surface

2PPE from a clean Cu(111) surface were detected
using the 2PPE system described above, with the cen-
ter wavelength of the frequency doubled Ti:Sapphire
femtosecond laser tuned to 400 nm, which has a band-
width of about 16 nm (FWHM). Figure 6 shows a typ-
ical image measured at an angle of about 13◦ from the
surface normal with a collection angle of ±13◦, which
was arranged to detect the Fermi edge structure of the
Cu(111) surface state. This image was measured with
one beam path in the MZI blocked, which was consid-
ered to be a normal 2PPE measurement. Such measure-
ment is exactly the same as that with a zero time-delay
between the two optical paths in the MZI. The incident
angle of the femtosecond laser beam is about 46◦, rel-
ative to the surface normal. A normal 2PPE spectrum
can thus be obtained by integrating the imaging signals
over a certain angle-range at different energies. In such
measurements, the spectrum of the 400 nm doubled out-
put of the femtosecond laser was monitored to ensure
its Gaussian distribution around the center wavelength.
The 2PPE image for Cu(111) clearly shows a single
feature, which comes from the Cu(111) surface state
(n=0).

We have also performed time-resolved 2PPE mea-
surements for the Cu(111) surface using MZI. By in-
tegrating the image signals at different time delays be-
tween the two optical paths in the MZI over different
angles and different electron energies, TR-2PPE spec-
trum can be acquired for the Cu(111) surface state fea-
ture. Figure 7(a) shows the TR-2PPE spectrum for the
Cu(111) surface, which has two small bumps at about
±50 fs time-delay in the spectrum. This is due to a
slightly chirped pulse that is not fully compensated by
the chirp compensation mirrors at this wavelength. The
shape of the TR-2PPE spectrum contains important
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FIG. 7 (a) Time resolved scan of the photoelectron signal of
the Cu(111) surface state in Fig.6 using the Mach Zehnder
interferometer. The signal shown in this figure was inte-
grated from 12◦ to 14◦ in the imaging signal. (b) The 2PPE
spectra at five different time delays between two beams in
the MZI.

information about the excited electron dynamics (ex-
cited state lifetime, dephasing time etc.) that can be
extracted using model simulations [9]. Such dynamics
measurements are valid for static surface excited states.

Figure 7(b) shows photoelectron spectra at five dif-
ferent time-delays between the two laser beam paths in
the MZI. The optical spectrum was monitored using a
monochromator at these time-delays. The changes in
the photoelectron spectra at different time delays are
attributed to changes in the optical spectrum of the
combined laser beams from the MZI. This demonstrates
that the MZI can be used to control the optical spectra
of the femtosecond laser in a convenient way. Since the
MZI combines two coherent femtosecond laser pulses
into one with a controllable time-delay, this can be re-
garded as a simple pulse shaping method to control the
time-structure and thus optical spectra of the femtosec-
ond laser pulse (two equal pulses with a variable delay).

B. 2PPE spectroscopic study on the ethanol/TiO2(110)
Surface

We have also performed a preliminary 2PPE study on
the ethanol/TiO2(110) surface using the instrument de-

FIG. 8 2PPE spectra for the bare and CH3CH2OH adsorbed
TiO2(110) surface. For the ethanol adsorbed surface, 2PPE
spectra were measured for the both P-polarization (P) and
S-polarizations (S) after the surface was illuminated by the
P-polarized femtosecond probing laser for more than 15 min.
The excited resonance spectrum (P-NS) peaked at 5.5 eV is
obtained by subtracting the normalized S-polarization (NS)
data from the P-polarization (P) data. The spectra were
obtained by integrating the image signals between −5◦ and
+5◦. The lower x-axis indicates the final energy of the elec-
tron emitted to the vacuum relative to the Fermi level. The
upper x-axis shows the intermediate state energy before an-
other photon was absorbed.

scribed above. The experiments on ethanol/TiO2(110)
described here were carried out on a TiO2(110) surface,
which was prepared by several cycles of Argon ion sput-
tering and annealing with 10 µPa of oxygen at 850 K
for 60 min [24]. The surface quality was confirmed by
Auger electron spectroscopy (AES) and low energy elec-
tron diffraction (LEED). This procedure allows us to
prepare a nearly stoichiometric TiO2(110) surface with
a work function of 5.5−5.8 eV. On such surface, few
bridge bonded oxygen defects are present. For the study
of the ethanol/TiO2(110) surface, we have prepared one
monolayer of ethanol molecules on this nearly stoichio-
metric TiO2 surface.

Normal 2PPE spectra for the bare TiO2(110) surface
and the ethanol adsorbed surface prepared using the
above procedure were taken and are shown in Fig.8.
The 2PPE spectrum for the bare TiO2(110) surface
is also shown in Fig.8. The spectrum on the bare
TiO2(110) surface is helpful in qualitatively character-
izing the presence (or absence) of bridge-bonded oxygen
vacancies. The signal from the bare surface is consider-
ably smaller than that from a surface with an ethanol
adlayer. The small 2PPE signal along with the appar-
ent high work function from the 2PPE spectrum shows
that the bare TiO2(110) surface prepared here is nearly
stoichiometric [24].

2PPE spectra of the ethanol adsorbed TiO2(110)
surface were measured with both P-polarized and S-
polarized light, which approach the surface with an in-
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FIG. 9 The TD-2PPE spectra were measured for the
ethanol adsorbed stoichiometric TiO2(110) surface after it
had been exposed for different time durations. This plot
shows the time evolution of the 2PPE spectra after the sur-
face was exposed to the 400 nm light. The exited resonance
feature is clearly not present initially and rises as the laser
illumination time increases.

cidence angle of 33◦ relative to the surface normal, af-
ter the surface had been exposed to P-polarized fem-
tosecond light for more than 15 min. These two
spectra are clearly polarization dependent. In the P-
polarized 2PPE spectrum, there is an additional fea-
ture at 5.5 eV in comparison to that obtained with S-
polarization. This feature arises from an electronically
excited surface state, present only when ethanol is ad-
sorbed on TiO2(110), which can only be observed using
P-polarized light. This implies that the excited state
has symmetry along the surface normal [31].

C. Time-dependent 2PPE of photochemical kinetics on
ethanol/TiO2(110)

The 2PPE spectra on the ethanol/TiO2(110) sur-
face in this work were seen to change slowly over a
period of seconds to several minutes due to laser il-
lumination. This suggests that 2PPE can be used to
monitor changes in the electronic structure of the sur-
face in real time, which requires 2PPE images to be
measured in a very short time window (∼1 s or less).
This time-dependent 2PPE (TD-2PPE) measurement
requires rather highly sensitive 2PPE detection. On this
apparatus, we have developed a data acquisition pro-
gram for 2PPE imaging with a real time measurement
window of 0.1 s. This means that 2PPE spectra can be
obtained in less than 0.1 s. The TD-2PPE technique
allows us to measure kinetics of surface photochemical
and chemical reactions that induce considerable excited
electronic structure changes. The TD-2PPE technique
developed clearly has sub-monolayer detection sensitiv-
ity.

The TD-2PPE method has been applied to study

FIG. 10 Phase averaged TR-2PPE result for the photoin-
duced excited resonance on the ethanol/TiO2(110) surface
after it had been exposed for 15 min, and the interfero-
metric autocorrelation trace of the excitation pulses on the
polycrystalline molybdenum surface.

the photochemistry of ethanol on TiO2(110). Figure 9
shows a series of 2PPE spectra—using P-polarized
light—in 1 s steps over a period of several minutes.
One can clearly see that the resonance feature at 5.5 eV
grows to a maximum over a period of ∼1000 s. More-
over, the 2PPE spectra in Fig.9 show that the 5.5 eV
excited resonance feature is initially absent, when the
400 nm probing laser start to illuminate the surface.
This feature is obviously due to a photoinduced elec-
tronically excited state. Such measurements can cer-
tainly provide detailed kinetic information on the pho-
toinduced surface chemical reactions.

In order to understand the nature of the photoin-
duced excited resonance on ethanol/TiO2, TR-2PPE
measurement for the surface excited resonance can also
be carried out using the MZI. Since the surface excited
resonance is photoinduced, it is crucial that the TR-
2PPE measurement is made when the excited resonance
signal is not rising or changing significantly anymore.
If one is not aware of the rising or changing of the ex-
cited resonance signal, the TR-2PPE measurement re-
sult would be definitely seriously flawed. Therefore, in
studying the surface photochemical kinetics, it is impor-
tant to combine the TR-2PPE measurement with the
TD-2PPE measurement. The apparatus described in
this work offers this unique feature. Figure 10 shows the
phase averaged TR-2PPE result for the photoinduced
excited resonance on ethanol/TiO2 and the interfero-
metric autocorrelation trace of the 400 nm excitation
pulses on the polycrystalline molybdenum surface. The
lifetime of the photoinduced excited resonance state can
be extracted from such measurement using the model
described previously [32]. Such measurement could pro-
vide crucial information on the surface excited state.

The exact nature of the photoinduced surface reso-
nance, however, is not immediately clear at this point
and requires further detailed experimental and theo-
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retical studies. Nevertheless, the combined measure-
ments using both TR-2PPE and TD-2PPE techniques
can provide a unique way to investigate the kinetics of
photochemical reactions on chemisorbed surfaces. This
method can also be used to probe kinetics of gas-surface
reactions, since such reactions can also induce substan-
tial excited surface state changes.

IV. CONCLUSION

In this report, we have described a multifunctional,
surface femtosecond two-photon photoemission spec-
trometer that has been constructed in our laboratory
for the study of ultrafast excited electron dynamics
and time-dependent surface kinetics of photoinduced
processes. This apparatus utilized the frequency dou-
bled output of a high repetition rate femtosecond laser
for surface two-photon photoemission study. Ultrafast
TR-2PPE study using a Mach-Zehnder interferometer
has been demonstrated on the Cu(111) surface and
the ethanol/TiO2 surface. This method for ultrafast
electron dynamics studies can achieve a time resolu-
tion of about ten femtoseconds. In addition, TD-2PPE
technique is also developed for kinetics studies of pho-
toinduced surface chemistry. The method has been
demonstrated on the study of photochemistry on the
ethanol/TiO2(110) system. It is important to note that
the combination of TR-2PPE and TD-2PPE measure-
ments are very crucial for studying the ultrafast dynam-
ics of photoinduced excited surface resonances as well as
the photoinduced surface chemical kinetics, since pho-
toinduced excited state population could change during
the TR-2PPE measurement. The combination of TR-
2PPE and TD-2PPE techniques can also be potentially
applied to investigate kinetics of surface catalytic pro-
cesses.
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