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Southern Economic Journal 2005, 72(1), 119-137 

Free Riding in Noncooperative Entry 
Deterrence with Differentiated Products 

Dan Kovenock* and Suddhasatwa Royt 

We examine free riding and underinvestment in noncooperative entry deterrence in the Gilbert and 

Vives (1986) model with differentiated products. Our analysis proves that for products that are 

differentiated enough, when both entry allowing and entry deterring equilibria coexist, the symmetric 

entry deterring equilibrium may Pareto dominate the entry equilibrium. Hence, "coordination failure" 

underinvestment in entry prevention can occur. However, as claimed, the overinvestment result of 

Gilbert and Vives remains robust to moderate amounts of product differentiation. We also show that 

coordination failure underinvestment arises in a wide variety of entry deterrence models and does not 

rely on assumptions regarding strategic substitutability or complementarity of precommitments. 

JEL Classification: L13 

1. Introduction 

This paper reexamines the phenomenon of free riding in entry deterrence when established firms in 

an oligopoly are unable to coordinate their entry preventing activities. Previous authors (e.g., Bernheim 

1984; Gilbert and Vives 1986; Waldman 1987, 1991; Appelbaum and Weber 1992) have highlighted 
the public good aspect of noncooperative entry prevention?if costly entry deterring actions are 

successfully undertaken by a proper subset of the incumbents, then incumbents outside of that subset 

cannot be excluded from the benefits of deterred entry. It is in this sense that entry deterrence acquires 

the nature of a public good. This observation has prompted previous researchers to raise the "free rider" 

question (with its associated welfare implications): Can there occur underinvestment in entry deterrence 

due to the incentive for each firm to free ride on the others' (costly) entry preventing activities? 

The free rider problem in entry deterrence is first mentioned in the sequential entry model of 

Bernheim (1984). However, though Bernheim discusses the possibility of free riding in his model, the 

free rider problem is not the main focus of his paper. In fact, as pointed out by Waldman (1987, p. 

309, footnote 2), the author's discussion of the role of the free rider problem is "... somewhat vague 

as regards whether Bernheim feels the free rider problem would ever be important in a noncooperative 

entry deterrence setting."1 

Gilbert and Vives (1986) is the first paper in which the underinvestment issue is explicitly 
addressed. The authors define underinvestment in entry deterrence to be associated with one or more 

of the following: 

"(a) Incumbents' total profits are higher preventing than allowing entry, but the (unique) industry 

equilibrium allows entry. 
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120 Dan Kovenock and Suddhasatwa Roy 

(b) Either entry prevention or entry may be an industry equilibrium, but incumbents' profits are 

higher when entry is prevented. 

(c) An established monopoly (or colluding incumbents) prevents entry in more situations than an 

established, noncooperating oligopoly." (p. 77) 

Label (a), (b), and (c) as underinvestment of type 1, 2, and 3, respectively. Gilbert and Vives 

(G&V) go on to show that in none of these respects is there underinvestment in their quan 

tity setting homogeneous product model. On the contrary, they demonstrate a strong possibility of 

overinvestment. 

G&V consider a situation where symmetric noncooperative incumbents with constant marginal 

costs of production make credible commitments to outputs in the preentry stage.2 The entrant incurs 

a fixed entry cost if it enters the industry and makes its entry and output decision after observing the 

incumbents' output choices. Consequently, there exists a "limit output," which if jointly produced by 

the oligopoly, deters entry.3 G&V find that entry is prevented when limit outputs are small, while 

entry is allowed for larger limit outputs. For limit outputs in an intermediate range, both allowing 

entry and preventing entry are equilibria. They prove that in this intermediate range where both entry 

accommodating and entry preventing equilibria coexist, the unique entry equilibrium Pareto domi 

nates every deterrence equilibrium. In other words, compared with any deterrence equilibrium (there 
is typically a continuum of such equilibria) the accommodation equilibrium yields strictly higher 

profits to every incumbent. Hence, if the industry settles on an entry preventing equilibrium, the 

implication is that overinvestment exists because, by jointly reducing incumbents' outputs and 

allowing entry, every incumbent can be made better off. 

This paper introduces product differentiation into the G&V model and shows that sufficiently 

large amounts of product differentiation can generate underinvestment in entry prevention. The 

intuition is straightforward. Consider an incumbent's profit in any entry deterring equilibrium where 

exactly the limit output is produced by the oligopoly. In the homogeneous good model, the price of 

the product is always the (constant) price that clears the limit output, regardless of how the limit 

output is distributed among the incumbents. This, coupled with constant marginal costs, implies that 

each incumbent's profit is continuously increasing in its own output or, equivalently, decreasing in 

rival's output.4 Consequently, each firm wants the largest share in the limit output?an incentive that 

rules out the possibility of underinvestment. However, with differentiated products, the larger an 

incumbent's share of the limit output is, the smaller the price is. There are, then, two opposing forces 

at work: An increase in an incumbent's share of the limit output has a positive influence on its profit, 

but the resultant fall in price has a negative effect on profit. When the second effect outweighs the 

first, the incumbent's deterrence profit need not be continuously increasing in own output, that is, it 

can be increasing in the other's quantity over some range and decreasing over other ranges.5 This 

could weaken an incumbent's incentive to have the largest share in the entry deterring output and 

could generate underinvestment. Note that, starting from the homogenous good benchmark, in 

creasing the degree of product differentiation strengthens the second effect, that is, for sufficiently 

2 
See Allen et al. (2000) for an interpretation of output precommitment as a reduced form for capacity in a three-stage game of 

sequential capacity choice followed by simultaneous price setting. 
3 

The limit output Z is determined by the level of the fixed entry cost F, for example, Z = max(0,l 
? c ? 

2y/F) in the case of 

a symmetric duopoly with a constant unit cost of production c and a linear inverse demand curve P = max(0,l 
? 

Q). 
4 

Incumbent i's profit at an entry deterring equilibrium is given by [P(Z) 
- 

c] q?, where P(.) is the inverse demand function, c is 

the constant marginal cost, and [P(Z) 
- 

c] is a fixed number. 
5 
We shall henceforth use the term "deterrence profit" to refer to an incumbent's maximum profit from deterring entry for given 

levels of its rivals' choice variable. 
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differentiated products, an increase in rival output (and a consequent decrease in own output) raises 

own price to such an extent that its positive effect on profit more than compensates for the negative 

effect on profit of a lower own share of the limit output, thereby resulting in a deterrence profit that is 

increasing in rival output over the relevant range.6 

We formalize this intuition by incorporating the differentiated products demand structure of 

Vives (1985) into the G&V model. Using G&V's methodology, the equilibria of the game are char 

acterized in terms of the limit output. Focusing on the region where both entry allowing and entry 

deterring equilibria exist, we show that underinvestment of type 2 is a distinct possibility, namely, the 

entry allowing equilibrium may be Pareto dominated by an entry deterring equilibrium. We call this 

type of underinvestment "coordination failure" underinvestment?there exists an equilibrium where 

entry is deterred, but coordination failure may lead to one that allows entry and yields lower payoffs to 

all incumbents. This sort of underinvestment can arise even when type 1 and type 3 underinvestment 

are absent and is more likely with greater amounts of product differentiation. However, moderate 

amounts of product differentiation preserve the G&V overinvestment result. We demonstrate that 

coordination failure underinvestment, in our model, can occur only if each incumbent's entry deter 

ring profit is increasing in its rival's output at the point at which it is indifferent between allowing 

entry and preventing entry. A numerical example of underinvestment is also provided. 

Bernheim (1984) is the first paper to recognize the possibility of coordination failure underin 

vestment by pointing out the existence of one type of equilibrium in which each incumbent firm 

makes a zero investment in entry deterrence and equilibria of a second type where investments are just 

sufficient to deter entry. However, since the second kind of equilibria exist if and only if entry 
deterrence is jointly profitable, Bernheim chooses to focus on the symmetric entry deterring 

equilibrium on the grounds that the possibility of "informal communication" would lead to the 

industry settling on the equilibrium that is not Pareto dominated by the entry allowing equilibrium. 
In similar vein, Waldman (1987, 1991) adopts Bernheim's equilibrium choice rule and sets out 

to investigate whether or not, given this equilibrium choice rule, the free rider problem is important. 
While the possibility of coordination failure underinvestment is clearly understood, as evidenced 

by the discussion in Waldman (1987) of Bernheim's paper, the author's adoption of Bernheim's 

equilibrium choice rule necessarily results in coordination failure underinvestment being ruled out. 

More specifically, Waldman (1987) considers uncertainty regarding the exact investment needed to 

deter entry and demonstrates that while such uncertainty causes underinvestment in the Bernheim 

framework, introducing uncertainty in the G&V model does not change their original conclusions and 

free riding remains nonexistent. However, he defines underinvestment as the situation where the 

aggregate investment at the noncooperative equilibrium is less than that which maximizes expected 

joint profits, that is, his results refer to underinvestment of type 3 only. 
On the other hand, in the sequential entry model of Waldman (1991), underinvestment is regarded 

as the situation where allowing entry is the unique noncooperative equilibrium even though deterring 

entry is mutually more profitable for all incumbents. Thus, his conclusion that the presence of multiple 

potential entrants is crucial for underinvestment in entry deterrence is valid for type 1 underinvestment 

only. In their externalities model, Appelbaum and Weber (1992, p. 474) consider precommitments that 

can be unambiguously classified as "public goods" or "public bads" and predict that "if 

precommitments constitute 'public goods' but make incumbents 'tough', we have under-investment." 

They use the same definition of underinvestment as Waldman (1987), and so their results must be 

6 
See section 3 and footnote 15 for further discussion. 
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similarly qualified. In other words, because of their approach, none of these later studies explore the 

possibility of type 2 underinvestment. 

This may be reconciled by pointing out that, owing to the methodology used, much of the later 

literature has overlooked an important feature of lumpy public goods models. Lumpy public goods 
such as entry deterrence, by their very nature, give rise to discontinuous payoffs and multiple equi 

libria along with the associated coordination failure problems.7 While first recognized by Bernheim 

(1984) and explicitly investigated by G&V, multiple Nash equilibria are ruled out in Waldman (1987) 

by the introduction of uncertainty, while the use of multiple potential entrants in Waldman (1991) 

performs a similar role. This allows the author to completely ignore situations (explicitly characterized 

by G&V) where both allowing entry and deterring entry can be equilibrium outcomes. Appelbaum 
and Weber assume concavity of each incumbent's expected profit function, an assumption that clearly 

does not hold in our model (and will not hold for cases with uncertainty that is not too large). 

Consequently, their model does not generate multiple equilibria, enabling them to sidestep the 

coordination failure problem entirely. Furthermore, their predictions on underinvestment relative to 

the collusive outcome depend crucially on their definition of a "public good" ("public bad")?both 

entry deterring profit and entry allowing profit for each incumbent must be increasing (decreasing) in 

other incumbents' precommitments. Since our differentiated product framework can have opposite 

signs for these marginal profits, Appelbaum and Weber's model cannot shed any light on free riding 
in our model. In fact, their analysis cannot even say anything conclusively about the G&V environ 

ment, where entry prevention is unambiguously a "public bad." 

We demonstrate that coordination failure underinvestment in entry prevention can arise in 

the G&V framework when products are differentiated enough. Our analysis suggests that how an 

incumbent's maximum entry deterring profit changes with respect to its rival's output holds the key to 

the free riding issue. We may conjecture that for strategic substitutes, any entry deterrence model 

characterized by a deterrence profit that is increasing in rivals' precommitments over the relevant 

range is a likely candidate for coordination failure underinvestment. Two such examples of 

precommitment equilibria models with strategic substitutes are provided at the end of the paper. The 

first model introduces increasing marginal costs into the G&V homogeneous product model and, by 

showing the equivalence with the differentiated products model, demonstrates the possibility of type 2 

underinvestment in this scenario.8 Coordination failure underinvestment is also shown to emerge in 

the second model, where incumbents precommit to cost reducing research and development (R&D) 

(prior to the entry decision) before engaging in Cournot quantity setting. 
The following section sets up our differentiated products version of the G&V model and char 

acterizes the equilibria of the game. Section 3 examines the underinvestment phenomenon, while 

section 4 outlines the increasing marginal costs model and the R&D model. The last section concludes. 

2. The Differentiated Products Model 

We consider a two-stage noncooperative game with complete information played by two 

incumbents (firms 1 and 2) and a potential entrant (firm 3). In stage 1, firms 1 and 2 precommit 
to quantity levels x\ and jc2, respectively. In stage 2, firm 3 makes its entry decision after observing 

7 
Henceforth, all references to "public goods" will be in the context of lumpy public goods. 

8 
We are grateful to Xavier Vives for educating us on this issue. 
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Xi and x2. If entry occurs a fixed cost F is incurred by the entrant. All firms are assumed to have 

identical constant marginal costs of production. We focus on subgame perfect equilibria. 

We use the Vives (1985) differentiated products demand structure where an active firm i's 

inverse demand is given by 

Pi = a - bxi 
- 

g]P Xj] 1,7 = 1,...?; b > g > 0; a > 0. (1) 
j?i 

in the region of quantity space where prices are positive. The number of active firms is n and gib is a 

measure of the substitutability between products, ranging from zero when the goods are independent, 

that is, when g 
= 

0, to one when the goods are perfect substitutes, that is, when g 
= b. Without loss of 

generality the intercept term a is interpreted as the net of the constant marginal cost. 

Using backward induction, we first derive the entrant's decision rule. Let x3 
= 

x*3 (xu x2) be the 

entrant's optimal output if it enters. Then, assuming the entrant enters if and only if it makes a positive 

profit, we can easily derive its optimal decision rule as 

Enter (and set x3 ? 
x^(x\,x2)) if x\ + x2 < Z, , . 

Stay out if X\ + x2 > Z, 

where Z = (a 
? 

2y/bF)/g is the limit output that just deters entry. Not surprisingly, the limit output is 

decreasing in the fixed cost F that the entrant must incur to enter the industry. More interestingly, Z 

is decreasing in the substitutability parameter g, reflecting that, ceteris paribus, the greater the 

substitutability between products the less the incumbents need to produce to keep the entrant out. 

Now, consider firm l's optimization problem.9 Let x2 < Z. (If x2 > Z, firm 1 ignores the entry 

threat.) If incumbent 1 produces x\ < Z 
? 

x2, firm 3 enters with x3 
= 

x*3 (xux2) and firm 1 earns 

nf (xx\x2) = 
{a 

? 
bxi 

? 
g[x2 + x*3(xi,x2)]}xi. Otherwise, if xx >Z ? 

x2 entry does not occur and firm 1 

gets a profit of 
U^E(xi;x2) 

? 
(a 

? 
bxx 

? 
gx2)x\. Firm l's profit functions are as shown in Figure l.10 

These profit functions (the positions of which are fixed by arbitrary x2) are functions of firm l's own 

quantity. The higher curve U^E(xi;x2) shows firm l's profit if the entrant stays out. The other curve 

depicts net profit of firm 1 for various X\ when firm 3 enters and produces x*3 (jci, x2). For Xi less than 

Z ? 
x2, firm 1 's profit moves along Ilf (xi;x2). At xx ? Z ? 

x2 profit jumps up to U^E(xi;x2) and stays 
on this higher curve for larger x\. 

Let rf(x2) and r^E(x2) be the (unique) maximizers of Uf(xi;x2) and ltfE(xi;x2), respectively. 
Whenever r^E(x2) + x2 > Z, firm 1 's unconstrained profit maximizing output rf E(x2) (ignoring the 

entry threat) automatically blockades entry and yields the greatest profit. Since r^E(jc2) + x2 is 

increasing in x2, there exists a unique x2 (Z) solving r^E(x2) -f- x2 = Z (see Appendix). For all x2 > 

x2 (Z), firm 1 produces r^E(x2) and entry is blockaded. 

However, for x2 < x$(Z), entry is no longer blockaded since r^E(x2) -\-x2 falls short of the limit 

output Z. Incumbent 1 can prevent entry by choosing Z ? 
x2 or can allow entry by producing r\(jc2). We 

define n^E*(x2) 
= 

II^E(Z 
- 

x2\x2) and Ilf (*2) = 
nf (rf (x2);x2) as the maximum profit that firm 1 can 

earn from deterring entry and allowing entry, respectively. As shown in the Appendix, similar to G&V, 

9 
We shall, henceforth, use incumbent 1 as the representative firm, keeping in mind that the case for firm 2 is exactly symmetric. 

10 
It may be readily verified that for positive xx, the II^E curve lies everywhere above the Iff curve and has a larger horizontal 

intercept than Iff. 
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n^n^ 

* E f NE 7 v 
ri ri Z - 

x2 

Figure 1. Incumbent l's "Entry" and "No Entry" Profit as a Function of Own Quantity, for Given x2 

nf*(x2) is decreasing and strictly convex in x2. However, the shape of Il^fe) can be very different 

from that in G&V. The explicit expression for firm l's maximum profit from deterring entry is 

nf 
* 
(x2) 

= 
(Z 

- 
x2)(a -bZ+[b- g]x2). (3) 

When the goods are perfect substitutes (g 
= b), from Equation 3 it is clear that II^e*(jc2) is linear and 

decreasing in x2t that is, we are in the G&V case. However, for smaller g, Il^E*(x2) 
is strictly concave, 

increasing in the rival's output until some point jcJ13* 
= ([2b 

? 
g]Z 

? 
a)/(2[b 

? 
g]) and then 

decreasing.11 These profit functions are depicted in Figure 2. Note that at x2 = 
xf(Z), firm l's profit 

from deterring entry must dominate that from allowing entry. This ensures a unique intersection x2(Z) 

11 
Note that Z > a/(2b 

- 
g) is required for the entry deterring profit to be increasing over some positive range. Otherwise, we get 

xmax < Q an(j ?rm j's maximum entry deterring profit decreases continuously for all nonnegative x2 so that the Gilbert and 

Vives result remains valid. Hence, as claimed, their overinvestment prediction is robust to moderate amounts of product 
differentiation. 
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n,E\n,NE* 

NE* 

X2 

X2 X2^ 

Figure 2. Incumbent l's Maximum Profit from Allowing Entry and from Deterring Entry as a Function of the 

Other's Quantity 

where Y\^E*(x2) 
= 

Hf*(x2), that is, at this rival output, 1 is indifferent between allowing entry (by 

producing rf (x2(Z)) and deterring entry (by producing Z ? 
x{(Z)).12 

Firm l's overall best response ai(.x:2) is, then (see Figure 2): 

f rffe) 
<*i(x2) 

= 
{ Z-x2 

3(*2) 

when x2 G [0, x[ (Z) ], 
when x2 G [x^ (Z), xf (Z) ], 
when x2 > xf(Z), 

i.e., allow entry, 

i.e., deter entry, 

i.e., blockade entry. 

(4) 

Firm 1 's best response is shown in Figure 3. The straight line ZZ is the locus of points for which 

firm 1 and firm 2's outputs add up to exactly the limit output. Points below ZZ represent combinations 

of xi and x2 that allow entry, while points above this line denote individual outputs that deter entry. 
For low values of x2 firm 1 chooses the quantity rf(x2) that maximizes its profit from allowing entry, 
that is, entry is allowed. This is true for all x2 less than x2(Z). At x2 = 

x2(Z), firm 1 's best response 

jumps up to make up the difference between the limit output and firm 2's quantity, that is, entry is 

12 
We define xf2 (Z) to be zero if the intersection occurs at negative x2. 
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X2 

Xl 

Figure 3. Incumbent l's Overall Best Response 

deterred. For very high values of x2 firm 1 ignores the entry threat and produces r^(x2), that is, entry 
is blockaded. 

Since the incumbent firms are symmetric, firm 2's best response may be derived in analogous 

fashion and the equilibria of this game can be identified using G&V's methodology. The 

characterization of the set of equilibria is critically dependent on x2(Z), the properties of which were 

characterized by G&V. Lemma 1 shows that these properties are robust to the introduction of product 
differentiation (see Figure 4). 

Lemma 1. Let Zm be the limit output for which a monopolist is indifferent between allowing entry 
and deterring entry. Then Zm > 0 and x2(Z) is zero on [0, Zm] and for Z > Zm, x2(Z) is increasing in Z 

with constant slope greater than unity up to a/g. 

Proof. See Appendix. 

The best response of incumbent 1 given in Equation 4 along with Lemma 1 can now be used to 

derive the equilibria in terms of the limit output Z. The (unique) entry allowing equilibrium can be 

calculated from the intersection of the incumbents' best responses when the intersection occurs at 

a point before the one at which an incumbent becomes indifferent between allowing and deterring 
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x2'(Z) 

45-degree line 

Zm Z Z a/g 

Figure 4. The Rival Output xf2 (Z) That Makes Incumbent 1 Indifferent between Allowing and Deterring Entry, as 

a Function of the Limit Output 

entry. This entry equilibrium has both firms producing equal amounts given by X\ 
= 

x2 
? xE. If there is 

no entry threat, both incumbents behave as unconstrained duopolists and in equilibrium produce X! 
= 

x2 
= xNE. Denote the aggregate output in the unconstrained case as x^with xu = 

2xNE). If the limit 

output is less than xu, entry is automatically blockaded. Hence, consider Z > xu. 

Let Z be the smallest limit output for which allowing entry is an equilibrium, that is, Z solves 

x2(Z) =xE. This means that when its rival produces Xe each incumbent is indifferent between allowing 

entry (by producing Xe itself) and deterring entry (by choosing an output level of Z?Xe). Further, denote 

by Z the largest limit output for which preventing entry is an equilibrium, that is, Z solves x2(Z) 
= Z/2. 

Since Z/2 is greater than Xe and x2(Z) is increasing in Z, we know that Z> Z. We can now characterize 

the equilibria of this game in terms of the limit output Z as described in Proposition l.13 

Proposition 1. 

(i) When Z < xu, each incumbent produces xNE and the entrant stays out in equilibrium. Entry is 

blockaded by the oligopoly. The equilibrium is unique and symmetric. 

(ii) When xu < Z < Z, any incumbent outputs in the set D = 
{(xi, x2) 6 R2+: xx + x2 = Z, x2(Z) < 

X/ < Z ? 
x^(Z), /, j 

= 1, 2; / ̂  j}9 and the entrant staying out is an equilibrium. The oligopoly 

prevents entry by producing exactly Z. 

13 
The interested reader should refer to the Appendix for the technical details. 

This content downloaded from 206.211.139.204 on Thu, 8 Jan 2015 17:22:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


128 Dan Kovenock and Suddhasatwa Roy 

X2 

Figure 5. Incumbents' best responses for Z < Z < Z. That is, when both entry allowing and entry deterring equilibria 
coexist. 

(iii) When Z < Z < Z, either allowing entry or preventing entry is an equilibrium. If entry is 

deterred, any incumbent outputs in the set D, and the entrant staying out is an equilibrium. If 

entry is accommodated, each incumbent producing Xe and the entrant entering with an output 

of x^x^, Xe) is an equilibrium. 

(iv) When Z> Z, the unique equilibrium has each incumbent producing Xe and the entrant entering 
the industry with an output of x^x^, Xe). 

Case i of Proposition 1 tells us that when the limit output is very small, each incumbent ignores 
the threat of entry and the unconstrained equilibrium aggregate output automatically blockades entry. 

However, for larger limit outputs we get the entry deterring regime of case ii where the incumbents 

produce exactly the limit output in equilibrium. As the limit output increases further, both entry 

allowing and entry deterring equilibria are possible (case iii), while for even greater levels of limit 

output (case iv), the unique equilibrium is to allow entry. Figure 5 illustrates case iii where both 

allowing entry and deterring entry are equilibria. 
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n,E\n, 

xE x2'(Z) Z/2 Z-x2'(Z) x2b(Z) 

Figure 6. Incumbent 1 's Maximum Profit from Allowing Entry and from Deterring Entry as a Function of the Other's 

Quantity in the Gilbert and Vives Homogeneous Product Model 

3. Underinvestment with Differentiated Products 

In this section we show that underinvestment of type 2 can arise in the differentiated products 
model even though type 1 and type 3 underinvestment are absent. We state this latter fact as 

a proposition. The proof is analogous to Gilbert and Vives (1986). 

Proposition 2. There is no underinvestment of type 1 or type 3 in the differentiated products 
model. 

Let us now focus on coordination failure underinvestment. In the G&V homogeneous product 

setting, incumbent l's maximum profit from deterring entry, n^E*(jc2), is continuously decreasing in 

incumbent 2's output, as shown in Figure 6. Let Z < Z < Z, so that both allowing entry and deterring 

entry are equilibria. Then, from Proposition 1 we know that the quantity Xe that each produces at the 

entry equilibrium is less than the rival output x|(Z), for which an incumbent is indifferent between 

allowing and preventing entry. Further, in any entry deterring equilibrium, the rival output (including 
that corresponding to the symmetric deterrence equilibrium, Z/2) is greater than x2(Z). 
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Now, consider firm l's profits. If incumbent 2 produces Xe then incumbent 1, by itself choosing 
Xe and allowing entry, earns a profit at the entry equilibrium corresponding to point E on the Ilf*(x2) 
curve. We know that at any entry deterring equilibrium, x2(Z) < x2 < Z ? 

x2(Z) must hold. It should 

now be easy to see that for any x2(Z) < x2 < Z ? 
x2(Z), firm 1 by producing Z - x2 earns a lower profit 

at the corresponding entry deterring equilibrium compared with the entry equilibrium profit at E since 

II^E*(x2) 
is continuously decreasing. In particular, incumbent l's profit at the symmetric entry 

deterring equilibrium, corresponding to point D on the II^E*(x2) curve, is always unambiguously 
lower than its profit at the entry equilibrium. By symmetric considerations firm 2 prefers the entry 

equilibrium to any of the deterrence equilibria, and, hence, the entry equilibrium always Pareto 

dominates every deterrence equilibrium in the G&V framework. This forms the gist of G&V's 

overinvestment argument. If the actual equilibrium realized in the industry deters entry, then each 

incumbent has overinvested in the sense that each would have been better off by producing less and 

allowing entry. 

Dropping the homogeneous good assumption can affect these conclusions. For sufficiently large 

amounts of product differentiation, it is now no longer necessary for an incumbent's entry deterring 

profit to be continuously decreasing in the other's output over the range of deterrence equilibria. This 

feature makes it impossible to unequivocally claim that, when both types of equilibria coexist, the 

entry equilibrium Pareto dominates every deterrence equilibrium. 

Starting from the homogeneous good case with g 
= b shown in Figure 6, an increase in product 

differentiation affects the UE*(x2) and IINE*(x2) curves in the following manner. First, a decrease in g 

shifts 
Ilf*(x2) upward, but the curve continues to retain its decreasing convex shape. On the other 

hand, increasing the degree of product differentiation introduces concavity into the II^E*(x2) curve but 

keeps the vertical intercept unchanged.14 More specifically, starting from g 
= 

b, as g decreases, the 

deterrence profit function becomes concave with the new curve lying everywhere above the original 

one except at zero rival output. As the degree of differentiation keeps increasing, the I1^e*(jc2) curve 

becomes more and more concave until, after exceeding a certain critical level, it becomes upward 

sloping at x2 
= 0.15 

Hence, for sufficiently differentiated products, we get the situation depicted in Figure 7 where 

both entry allowing and entry preventing equilibria coexist and incumbent l's maximum entry 

deterring profit is increasing at x2(Z), that is, the rival output at which it is indifferent between 

accommodating entry and deterring entry. Recall thatx2ax is the rival output for which firm 1 's profit 
from deterring entry reaches a maximum, and assume that this maximum entry deterring profit 

II^E*(x2nax) 
is greater than firm l's profit at the entry equilibrium UE*(xE).16 

Here again, in any entry deterring equilibrium x2(Z) 
< x2 < Z 

? 
x2(Z) 

must hold. However, now, 

in contrast to the G&V scenario, at any entry deterring equilibrium where x2 is sufficiently large 
incumbent 1 is strictly better off relative to the entry equilibrium; for instance, if incumbent 2 

produces half the limit output, Z/2, then incumbent l's equilibrium profit at D is strictly greater than 

that at E. This implies that the entry equilibrium does not Pareto dominate the symmetric entry 

deterring equilibrium. In fact, in this case, at the symmetric entry deterring equilibrium, both 

14 
We thank an anonymous referee for helping us sharpen this discussion. 

15 
The first partial of maximum entry allowing profit with respect to g is -[(2b 

- 
g)(a 

- 
gx2)][(2b 

- 
g)(2b2 

- 
g2)x2 + 2b(a 

? 

gx2)(b 
? 

g)]/[4b(2b2 
? 

g2)2], which is negative for all rival outputs. As for the deterrence profit function, the first partial with 

respect to g is -(Z 
- 

x2)x2, which is negative for all x2 > 0. The first derivative of deterrence profit with respect to x2 is (2b 
~ 

g)Z 
- a ? 

2(b 
- 

g)x2, and this term is positive at x2 = 0 when g < 2b ? 
a/Z. Note that the fixed cost is being adjusted 

accordingly to keep the limit output constant. 
16 

If this condition is not satisfied, the entry equilibrium will, obviously, Pareto dominate every entry deterring equilibrium. 
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xE x2'(Z) Z/2 x2max Z-x2'(Z) 

Figure 7. Incumbent l's Maximum Profit from Allowing Entry and from Deterring Entry as a Function of the Other's 

Quantity When Its Entry Deterring Profit Is Increasing at x2(Z) 

incumbents earn a profit represented by D and, hence, the symmetric entry deterring equilibrium 

Pareto dominates the entry equilibrium. Underinvestment of type 2, or coordination failure 

underinvestment, arises. 

Note that the rising portion of firm l's entry deterring profit function IlfE*(x2) plays a crucial 

role in the emergence of coordination failure underinvestment in the differentiated products model. 

However, if the entry deterring profit curve n^E*(x2) intersects the entry allowing profit curve nf*(x2) 
after it has started decreasing then this type of underinvestment cannot arise, as illustrated in Figure 8. 

The reasoning is similar to that given above for the nonexistence of type 2 free riding in the G&V 

model. This is formally stated in Proposition 3 below. 

Proposition 3. Let Z < Z < Z, so that both entry allowing and entry deterring equilibria exist. 

Then, V /, j 
= 1, 2; / ̂  j\ a necessary condition for coordination failure underinvestment is that an 

incumbent's maximum profit from deterring entry UfE*(Xj) be increasing in the other's output at the 

point where it is indifferent between allowing entry and deterring entry. 

Proof. Suppose Z < Z < Z but xfax < x2(Z). From Proposition l(iii), Xe < x2(Z), and since 

Uf*(Xj) is decreasing in Xy, nf*(x^) 
> Hf*(x2(Z)). Since UfE*(xj) is decreasing in Xj for x, > x2(Z), 
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n,E*,n, 

x2max xE x2'(Z) Z/2 Z-x2'(Z) 

Figure 8. Incumbent l's Maximum Profit from Allowing Entry and from Deterring Entry as a Function of the Other's 

Quantity When Its Entry Deterring Profit Is Decreasing at x2(Z) 

U^E*(x{(Z)) > 
U^iXj) V xj e [x|(Z),xf (Z)]. Now, using the fact that Uf*(x{(Z)) > 

UfE*(x[(Z)) and 

that Xj > x2(Z), we get Ilf*(xE) 
> 

nfE*(x/). Hence, the entry equilibrium Pareto dominates every 
deterrence equilibrium and there can never be any underinvestment of type 2. QED. 

A numerical example of type 2 underinvestment is presented in Table 1. Here, the demand 

parameter a, is normalized to unity and b is set equal to 2. Choosing a limit output of Z = 0.52, the 

degree of substitutability, g, is allowed to vary, and for every g, the fixed cost, F, is chosen so as to 

maintain the limit output at 0.52. The chosen parameters ensure that both entry allowing and entry 

deterring equilibria coexist (Z<Z<Z) and that each incumbent's maximum profit from deterring 

entry is increasing in the other's output at the point where it is indifferent between allowing entry and 

deterring entry (x2(Z) < xf**). When g = 1.1, the entry equilibrium Pareto dominates the symmetric 

entry deterring equilibrium. However, unlike G&V, the entry equilibrium does not Pareto dominate 

every entry deterring equilibrium. Each incumbent would prefer the deterrence equilibrium where it 

produces Z 
? x 

** 
and the other produces x *. As g decreases, starting from g 

? 
1.05, this gets 

reversed and it is clear that each incumbent's profit in the symmetric entry deterring equilibrium is 

greater than its profit at the entry allowing equilibrium. Thus, the symmetric entry deterring 
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Table 1. Comparison of Incumbent 1 's Profit at the Entry Allowing Equilibrium, the Symmetric 
Entry Deterring Equilibrium, and the Profit from Deterring Entry When Rival Produces x2Tiax, as the 

Degree of Product Differentiation, g, Varies from 0.8 to 1.1, for a = 
1, b = 

2, and z = 0.52 

g F Z Z Xe x?(Z) Z/2 xfax Z - 
x[(Z) ufe**) n?E*(Z/2) n?E*Cr!?ax) 

0.8 0.0426 0.5156 0.5921 0.1852 0.1915 0.26 0.2767 0.3285 0.0631 0.0707 0.0711 

0.85 0.0389 0.5131 0.5870 0.1828 0.1932 0.26 0.2774 0.3268 0.0608 0.0673 0.0677 
0.9 0.0354 0.5105 0.5817 0.1805 0.1952 0.26 0.2782 0.3248 0.0586 0.0640 0.0643 
0.95 0.0320 0.5080 0.5763 0.1784 0.1978 0.26 0.2790 0.3222 0.0565 0.0606 0.0610 
1.0 0.0288 0.5054 0.5708 0.1765 0.2008 0.26 0.28 0.3192 0.0545 0.0572 0.0576 
1.05 0.0258 0.5028 0.5653 0.1746 0.2043 0.26 0.2811 0.3157 0.0526 0.0538 0.0542 
1.1 0.0229 0.5003 0.5596 0.1729 0.2084 0.26 0.2822 0.3116 0.0508 0.0504 0.0509 

equilibrium Pareto dominates the entry allowing equilibrium. Hence, there is coordination failure 

underprovision of public goods. 

4. Other Examples of Coordination Failure Underinvestment 

This section briefly discusses two other models that exhibit coordination failure underinvest 

ment. Our purpose is to show that this type of underinvestment can be prevalent in a variety of models 

with precommitment equilibria and should, hence, be studied in greater depth. 

The Increasing Marginal Costs Model 

Our first model (to be called the increasing marginal costs model) retains the homogeneous 

product structure of the G&V model but relaxes the constant marginal costs assumption. We consider 

an industry characterized by linear demand for a homogeneous good and quadratic costs of production 

where the incumbents precommit to quantities before the entrant makes its entry decision. The 

intuition for underinvestment in this framework is as follows. Here, as in the G&V model, whenever 

entry is deterred the price is constant and invariant to how the limit output is distributed among the 

incumbents. However, unlike G&V, as an incumbent's share of the limit output expands it incurs 

increasingly larger costs of production. Consequently, when the additional revenue from a unit 

increase in output is more than offset by the additional cost of producing that unit, an incumbent's 

entry deterring profit decreases in own output or, equivalently, its deterrence profit increases in rival's 

output. When this happens, producing the entire limit output is too costly for any single incumbent 

and the incentive to have the largest share in the limit output is attenuated?a setting that is conducive 

to the emergence of underinvestment. 

Formally demonstrating the existence of coordination failure underinvestment in the increasing 

marginal costs model is simply a matter of invoking the equivalence under quantity competition, 

observed by Vives (1990), between differentiated products with constant marginal costs and 

homogeneous products with increasing marginal costs. Let inverse demand for the homogeneous 

good be 

p^a-y^; y=l,.../z; y > 0, a > 0, (5) 
j 

where n is the number of active firms, and let C(x?) = 8x? be each firm's total cost function. Then, firm 

i's profit is given by 

This content downloaded from 206.211.139.204 on Thu, 8 Jan 2015 17:22:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


134 Dan Kovenock and Suddhasatwa Roy 

?li(xhx-i) 
= ( a 

-Y^Xj JXi 
- 

hxf, 

ILi(xhX-i) 
= 

?-(y + 
?^-Y^*, J& J 

(6) 

Note that Equation 6 corresponds to quantity competition with differentiated products and constant 

marginal costs if we interpret the intercept term as net of the marginal cost. In fact, for oc = a, y 
= 

g, 

and 8 = b ? 
g, Equation 6 is identical to a firm's profit in our differentiated products model. With the 

same type of analysis, it can be verified that for sufficiently steep marginal costs, underinvestment of 

type 2 can also arise in the homogeneous good case. Here, too, this type of underinvestment can occur 

only if an incumbent's entry deterring profit is increasing in the other's output at the point where it is 

indifferent between allowing entry and preventing entry. However, the G&V overinvestment result 

remains robust to moderately increasing marginal costs. 

The dampening effect of increasing marginal costs on entry preventing incentives is also found, 

in a different but related context, in the sequential entry model of Vives (1988). He considers a model 

with a single incumbent and a pool of potential entrants sequentially choosing outputs in 

a homogenous good industry before the market clears. With constant marginal cost of production, the 

incumbent never allows entry of any firms that will subsequently deter further entry, since it prefers 

producing the entire limit output itself. However, with increasing marginal costs, if the pool of 

potential entrants is large and marginal costs are increasing, producing the limit output may be too 

costly and so the incumbent may not want to be the sole entry preventer. 

The R&D Model 

The second model (to be called the R&D model) is adapted from D'Aspremont and Jacquemin 

(1988) and considers a simple two-stage game where two symmetric incumbents precommit to pro 

duction cost reducing R&D levels before the entry decision takes place. Though the cost of invest 

ment, assumed quadratic, is incurred in the first stage, the R&D choice determines production costs 

for the subsequent period. The second stage is characterized by simultaneous (Cournot) quantity set 

ting with the entrant facing an avoidable fixed entry cost. The strategic variable here is similar to the 

strategic variable, quantity, of the G&V model, and the differentiated products model in that R&D, 

too, is a strategic substitute. That is, in the absence of any entry threat, the best responses are down 

ward sloping. Now, instead of a limit output there exists a critical aggregate amount of cost reduction 

that if undertaken by the industry deters entry. 
More specifically, we assume an inverse linear demand curve given by P = 

Max{0, 1 ? 
Q} 

where Q is the aggregate output produced in the second stage. The incumbents' production costs are 

represented by C? (q?, x?) = [a 
? 

x?] q?, i = 1, 2; where a (0, 1) and x? G [0, a]. This formulation yields 
constant unit costs for the incumbents of c?(= a ? 

x?), / = 
1, 2, for any given prior investment choice. 

The entrant is assumed to have a constant unit cost of c3 
= a. The cost of investment is assumed to 

be quadratic of the form bx] with b > 0, reflecting the existence of diminishing returns to R&D 

expenditures. These assumptions allow us to explicitly derive the entry deterring critical investment as 

a sum of the incumbents' investments. 

The analysis of the cost reducing game is entirely analogous to the differentiated products model 

and delivers the same conclusions. We again get coordination failure underinvestment for the 

following reason. If an incumbent's R&D decreases (and the other's R&D increases) in moving from 
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one entry deterring equilibrium to another, its production costs rise and its gross (Cournot) profit is 

reduced relative to the initial deterrence equilibrium. However, for large investment cost coefficients, 

the fall in investment costs may be so significant as to actually increase its net profit. Consequently, an 

incumbent's equilibrium deterrence profit can be initially increasing in its rival's R&D before tapering 
off and decreasing over the rest of the domain. When this happens, similar to the differentiated 

products framework, the incumbent may no longer want the largest possible share in the critical 

aggregate investment, and type 2 underinvestment may occur?the entry equilibrium may not Pareto 

dominate every deterrence equilibrium. More specifically, we may demonstrate that this type of 

underinvestment can occur only if each incumbent's entry deterring profit is increasing in its rival's 

R&D at the point where it is indifferent between allowing entry and preventing entry. 
While this paper has focused on entry deterring variables that are strategic substitutes, 

coordination failure may also occur with strategic complements. For instance, we may conjecture that 

underinvestment is possible in a differentiated products industry where incumbents can credibly 

precommit to prices in the preentry period and the entrant stays out if incumbent prices are low 

enough.17 The intuition is that when entry is prevented, a decrease in an incumbent's price enhances 

demand for its product but reduces the price received per unit sold such that its deterrence profit may 
decrease in the other's price and may reduce its incentive to have the smallest possible "share" in the 

limit price?a setting that may be conducive to underinvestment. While the realism of this scenario 

may be open to debate given the questionable commitment value of prices as entry deterring variables, 

it does serve to buttress our conviction that coordination failure underinvestment in entry deterrence is 

prevalent in a wide variety of settings and deserves a closer study.18 

5. Conclusion 

This paper demonstrates that sufficiently large amounts of product differentiation can generate 

coordination failure underinvestment in entry deterrence, that is, even though there exists an entry 

deterring equilibrium, imperfect coordination of incumbents' actions may result in an equilibrium 
where entry is allowed and all incumbents earn lower profits. This type of underinvestment, first 

discussed by Bernheim (1984) and explicitly investigated by Gilbert and Vives (1986), has been 

ignored by the later literature. We show that with sufficiently differentiated products, an incumbent's 

entry deterring profit increases in the other's quantity (in the relevant region) and weakens its incentive 

to have the largest share in the limit output, thus generating underinvestment. Gilbert and Vives' type 2 

overinvestment result rests critically on the dual assumptions of a homogeneous product and a constant 

marginal cost. Our analysis shows that relaxing the homogenous product assumption can generate 

coordination failure underinvestment. Also, our increasing marginal cost model shows that sufficiently 

17 
This conjecture may be verified by using the demand structure of Shubik (1980) q? = 

{a 
? 

b[pi + g(p? 
? 

p)]}/n, where p = 

($2Pi)/n is the average of all prices phi=l,... n, n is the total number of active firms in the industry, and g is a measure of the 

substitutability between products (g > 0). This demand structure yields the entry preventing price combination as an aggregate 
of the incumbents' prices and is consequently amenable to the methodology employed throughout this paper. 

18 
We have also looked at an advertising model by Shubik (1980), which examines a three-stage game where two symmetric 

incumbents in a differentiated products industry commit to market share enhancing advertising outlays in the first stage. In the 

second stage, the entrant chooses its advertising level and pays an entry cost if it decides to enter. Simultaneous price 

competition occurs in the final stage. Each incumbent's advertising outlay turns out to be a strategic complement (upward 

sloping best response) over smaller values of the other's advertising and a strategic substitute over larger values of the rival's 

advertising level. Our analysis reveals that there is never any type 2 underinvestment in the advertising model since each 

incumbent's equilibrium entry preventing profit is monotonically decreasing in the other's advertising. 
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steep marginal costs can also result in type 2 underinvestment. However, for moderate amounts of 

product differentiation and moderately steep marginal costs, each incumbent still wants the largest 

share in the limit output and G&V s overinvestment result remains valid. 

We believe that coordination failure equilibria are common in settings with lumpy public goods 
and should receive more attention in the entry deterrence context. In keeping with this view, we outline 

two other models of entry deterrence?an increasing marginal costs model and an R&D model? 

where, again, underinvestment is caused by weakening an incumbent's incentive to produce the entire 

limit investment. Our analysis suggests that coordination failure underinvestment can occur for 

strategic substitutes only if the private benefit from the public good?deterred entry?is increasing in 

the rival incumbent's precommitment variable over the relevant region. 

Finally, it should be pointed out that introducing uncertainty into our model may have interest 

ing implications for the free rider problem. Waldman (1987) shows that though the introduction of 

uncertainty into the G&V framework does not result in underinvestment, adding uncertainty to the 

Bernheim model causes every equilibrium to be characterized by the free rider problem with its 

resulting underinvestment. Since introducing product differentiation into the G&V model produces 

type 2 underinvestment, it may be conjectured that differentiated products in conjunction with un 

certainty would result in the possibility of a unique underinvestment equilibrium.19 The investiga 
tion of this issue shall be taken up in future research on the free rider problem in noncooperative 

entry deterrence. 

Appendix 

1. We show there exists a unique x2(Z) such that entry is blockaded for all x2 > x2(Z). 
Maximization of nfE(x!;jc2) yields r^fo) 

= (a 
? 

gx2)/(2b) with a slope oi-g/2b, where -1 < ?glib < 0. Thus, r^fo) + 

x2 is increasing in x2 and there is a unique solution x2(Z) 
= (2bZ 

? 
a)l(2b 

? 
g) solving the equation r^iE(x2) + x2 = Z, such that 1 

ignores the entry threat and produces r^E(x2) for all x2 > 
x2(Z). 

2. We show nf*(x2) is decreasing and convex in x2, n^E*(jt2) is strictly concave in x2, and we derive their intersection 

point -4(Z)- We also derive analytic expressions for Xe, xnb, Z, and Z. 

For x\<Z 
? 

x2, the entrant enters with an output of x\ (xl,x2)= [a 
- 

g(xx -\-x2)]/(2b) and we get Ilf (x^) 
? 

[(2b 
- 

g)(a 
? 

gx2)xi 
- 

(2b2 
- 

g2)x\]l(2b). Maximizing this with respect to xx yields rf (x2) = [(2b 
? 

g)/(4b2 
? 

2g2)](a 
- 

gx2), which is downward 

sloping with a slope greater than ?1. Substituting for rf (x2), we get nf*(x2) 
= [(2b 

- 
g)2(a 

- 
gx2)2]l[%b(2b2 

? 
g2)], which is 

clearly decreasing and convex in x2. On the other hand, the first and second partials of lij?te) 
= (Z 

? 
x2)[a 

? 
bZ-\-(b 

? 
g)x2] 

show that it is concave in x2 and attains a maximum at x ax = ([2b 
? 

g]Z 
- 

a)l(2[b 
? 

g\). Since ltfE*(x2 (Z)) > 
Uf*(x2(Z)), we get 

4(Z) 
= max(0,[?i 

- 
2aE3 + (E2 + 2gE3)Z]/D) as the unique intersection of II?E* and Ilf*such that I1*E* > Ilf* for x2 > 

x*2(Z) 
and I1?E* 

< 
Ilf, otherwise. (D, Eu E2, and E3 are all functions of a, b, and g given by D = 

(-Ab2 + 2bg + g2)2, Ex = -Sab3 + 

Aab2g + ag3, E2 
= 16b4 - Sb3g 

- 
%b2g2 + 4bg3, and E3 = 

>j2b2g{Sb3 
- 

6b2g 
- 

Abg2 + 3g3)). 

Since rf (x2) and rf (xi) are downward sloping with a slope greater than -1, their intersection is unique and yields xF = a(2b 
- 

g)l[2(2b2 
- 

g2) + g(2b 
? 

g)], the output produced by each incumbent in the entry equilibrium. Similarly, the intersection of 

f^(x2) and r^ixi) is also unique and is given by xNE = a/(2b + g)- Under blockaded entry, both incumbents behave as 

unconstrained duopolists and in equilibrium produce x^=x2 = xNE. Recall that Z solves xJ2(Z)=xE and Z solves xI2(Z) 
= Z/2. 

Explicit calculations yield Z = 
[Dx* 

- 
(Ex 

- 
2aE3)]/(E2 + 2gE3) and Z = [ 

- 
2(EX 

~ 
2aE3)]l[2(E2 + 2gE3) 

- 
D]. 

Proof of Lemma 1. The proof follows Gilbert and Vives (1986). First, we show that Zm is positive. If xm is the monopoly 

output then Zm > xm must hold because for any Z < xm a monopolist would always prefer to deter entry. So Zm must be positive. 

Here, Zm = (a/2b)(l + 
yj\ 

- 
[{2b 

- 
gf/2{2b2 

- 
g1)}) and xm = a/2b. Second, to show that xf2(Z) is zero for all Z on the interval [0, 

Zm], consider any Z < Zm. If xl2(Z) 
> 0 then, since firm 1 's entry allowing profit is decreasing in x2, ltfE* < 

Ilf* at a zero rival 

output. This implies that a monopolist would prefer to allow entry, which contradicts the fact that Z < Zm. So, x!2(Z) must be zero 

for all Z on [0, Zm]. Third, we show that xI2(a/g) 
= 

alg. When Z = al g and x2 < a/g, then deterring entry makes incumbent l's 

19 
We thank an anonymous referee for pointing this out. 
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price zero and so it always prefers allowing entry to preventing entry. Hence, it is indifferent between accommodation and 

deterrence only when its rival produces a/g, which implies that x2(a/g) 
= 

a/g. 

Finally, we prove that x?2(Z) is increasing with constant slope greater than unity on [Zm, a/g]. For Zm< Z < a/g, xf2(Z) 
= 

[Ex 
- 

2aE3 + (E2 + 2gE3)Z]/D and dxI2/dZ 
= (E2 + 2gE3)/D, or, equivalently, dx!2/dZ 

= 
(\6b4 

- 
8b3g 

- 
%b2g2 + 4bg3 + 2g?3)/[16??4 

- 
Sb3g 

- 
8??V + 4bg3 + (g4 

- 
Sb3g + 4b2g2)]. Now, E3 can be rewritten as 

^2b2g(2b2 -g2)(4b-3g) > 0, while \6b4 
- 

&b3g 
- 

8?>V + 4bg3 
= 

Sb3(b -g) + Sb2(b2 
- 

g2) + 46g3 > 0. So, the numerator of dx2/dZ is positive. Recall that the denominator D is 

positive. Further, (g4 
- 

Sb3g + 4b2g2) 
= - 

g(4b3 
- 

g3 + 4Z?2(/> 
- 

?)) < 0 and, hence, ( 16b4 - 8Z?3# 
- 

8&V + 4/??3 + 2gE3)/[ 16??4 
- 

8?>3g 
- 

8/?Y + 4?>g3 + (g4 
- 

%b3g + 4?>2g2)] > 1. QED. 
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