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Abstract 

Electronic reverse auctions are a commonly used procurement mechanism. Research to date has 

focused on suppliers who are ex ante symmetric in that their costs are drawn from a common 

distribution. However, in many cases a seller’s range of potential costs depends on their own 

operations, location, or economies of scale and scope. Thus, understanding how different bidder 
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types impact auction outcomes is key when designing an auction. This paper reports the results of 

the first controlled laboratory experiment designed to compare prices between first-price and 

second-price procurement auctions for homogeneous goods when seller cost types are asymmetric 

and the number of bidders varies. The results indicate that first-price auctions generate lower 

prices regardless of market composition. The results also reveal that first-price auctions are at least 

weakly more efficient than second-price auctions despite the theoretical prediction that the reverse 

should hold in asymmetric auctions. Post-hoc analysis of individual bidders’ behavior in first-price 

auctions revealed evidence that bidders systematically underbid when their cost realizations were 

close to the lower bound. Furthermore, bidders adjust their behavior based on the type of the other 

bidders in the market in a manner inconsistent with theory. Consequently, adding a third bidder to 

a two-bidder market is not advantageous to the buyer unless that third bidder is a low-cost type.    

 

Keywords: Procurement, Reverse Auction, Asymmetric Auctions, Laboratory Experiment. 

 

History: Received: February 2014; Accepted: March 2016 by Elena Katok after three revisions. 
 
 
Introduction 

Electronic reverse auctions are now a ubiquitous method for procurement.1 Because they open 

up the process to a larger number of potential bidders and reduce the cost and effort of 

participation, the hope is that this will lead to more competitive bidding. It is common for firms to 

qualify suppliers based on product and service quality before conducting the auction (Kumar 

2013). Moreover, Kostamis et al. (2009) raise the concern that the buyer’s choice of auction format 

might depend on whether an additional supplier is qualified to bid.  

There is a recent move toward attracting greater diversity of bidders by large firms such as 

General Electric, GlaxoSmithKline, Hewlett Packard, Dell, and Sun Microsystems with increased 

engagement from smaller firms as suppliers (Wyld 2011). The share of federal contracting dollars 

                                                             
1 The term reverse auction is used as the roles of buyers and sellers are reversed from regular forward 
auctions in which buyers bid for a product offered by a seller. In a reverse auction, regardless of the auction 
rules, sellers bid for the right to supply a product to a buyer who proffers the contract with the product 
specifications. 
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awarded to small businesses between 2006 and 2011 ranged from 20.5% to 22.8% annually (Wyld 

2013).2 The overall growth rate for small business awards by the federal government using reverse 

auctions was 181% over the time period 2008-2012 (Wyld 2013). Technology and globalization are 

also enabling firms from around the world to participate in auctions. Thus, the variations in 

operations, economies of scope and scale, and geographic locations could lead to vastly different 

production costs, regulatory compliance costs, and transportation costs to the delivery point 

(Baldwin and Lopez-Gonzalez 2014). For these reasons, the typical academic assumption that firms 

have costs drawn from a common distribution even when supplying a homogeneous good may not 

be applicable in many real world settings. 

The evidence that a greater number of bidders result in lower prices is also mixed. Mithas and 

Jones (2007) find some evidence that the number of bidders has no effect on buyer surplus. They 

call for more research on this issue, and point to the need to explore alternative explanations. In 

practice, however, many procurement auctions require only two or three bidders. States such as 

New York and North Carolina have such policies, as do many firms (Gazette of India 2005; Kulp and 

Randall 2005; New York University at Albany 2013; North Carolina Statutes and Codes 2013). 

While there is a large academic literature examining reverse auctions (see Katok 2011), there is 

limited work examining the more realistic scenario where bidders come from a variety of 

backgrounds and thus asymmetric cost distributions. Given the complexity of allowing asymmetry, 

the extant theoretical work studies exactly two asymmetric bidders who are also assumed to be 

rational and risk-neutral (see Kaplan and Zimir 2012). Maskin and Riley (2000) consider a two-

bidder auction where one bidder is from a high value distribution and the second bidder is from a 

low value distribution. The only difference between the two types is a shift in the respective 

distributions: formally one bidder has a cost drawn from [a,b] while the other has a cost drawn 

from [a+c,b+c].3 Maskin and Riley (2000) show that the first-price auction dominates the second-

price auction under some stringent assumptions (that the distributions are convex and log-

concave). Kirkegaard (2012) relaxes these strong assumptions and shows that the primary result – 

that the first-price auction is better for the party holding the auction – holds more generally. Recent 

experimental work by Elmaghraby et al. (2012) introduces asymmetric sellers in a model with 

heterogeneous quality; however, sellers are symmetric in costs after adjusting for quality 
                                                             
2 In the most recent fiscal year there were 24,880 awards made through Fedbid (the online marketplace of 
the federal government) totaling over a billion dollars to small businesses (Wyld 2013). 
3 This work was done in the context of a standard auction, but one can switch between the two settings in a 
straight forward manner (see Ausubel 2003). 
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differences. Another recent experimental study by Saini and Suter (2013) investigates the bidding 

behavior of two shifted asymmetric sellers, only in first-price auctions.  

However, we are unaware of any previous work that evaluates the behavioral performance 

across first- and second- price auction mechanisms or that considers more than two sellers when 

there are shift asymmetries. Hence, this study aims to fill a gap in the existing procurement auction 

literature with a laboratory experiment that varies three factors: (1) the market mechanism (first-

price vs. second-price auctions), (2) the number of suppliers in the market (two vs. three suppliers), 

and (3) the distribution of types (percentage of low-cost suppliers) participating in the auction. 

 

Related Literature 

There is a growing literature on bidding behavior in reverse auctions. Elmaghraby et al. (2012) 

compare rank-based feedback, full-price feedback, and no feedback to buyers in open-bid auctions. 

While they consider asymmetric supports for seller cost structures, our research enhances theirs in 

two ways: (1) In their research setting the firms with higher costs also supply goods with higher 

quality so that the quality adjusted distribution of costs are in fact symmetric between firms. (2) 

They consider dyadic auctions and do not consider the competitive effect of a third firm. In contrast 

to commonly held beliefs in practice that full-price feedback should result in more competition due 

to bid visibility, rank-only feedback resulted in lower prices than full-price feedback. While 

Elmaghraby et al. (2012) do not study sealed-bid auctions in the laboratory, Jap (2003) found no 

significant difference in buyer costs between sealed-bid and open bid reverse auctions in the field. 

In the current research we consider sealed-bid auctions using two market mechanisms: first-price 

and second-price auctions. 

When the same set of suppliers bid against each other repeatedly, both revelation of the 

winners’ bid and the revelation of all bids at the end of successive auctions has been shown to lead 

to higher bid prices (Kannan 2012). Greenwald et al. (2010) point out that electronic marketplaces 

typically feature two types of uncertainties: cost-structure uncertainty, which is uncertainty about 

supplier costs, and market structure uncertainty, that geographically distributed suppliers face 

about the number of competitors. In buyer-determined auctions sellers supply higher quality 

leading to higher market efficiencies, and buyers who can consider reputation effects prefer buyer-

determined auctions over price-based auctions (Brosig-Koch and Heinrich 2014). In our sealed-bid 

studies sellers are anonymous in a stranger design so that there are no reputational effects. 
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There are a few experimental studies that investigate behavior in asymmetric auctions. In their 

theoretical work, Maskin and Riley (2000) make a distinction between a shift, where both ends of a 

common support are shifted by a constant amount for one of the two bidders and a stretch, where 

only one end of the support is shifted. Güth, Ivanova-Stenzel, and Wolfstetter (2005) compare 

standard two-bidder first-price and second-price auctions with a stretch asymmetry. They observe 

bidders being more aggressive in the first-price auction than predicted and they find prices being 

more favorable to the party holding the auction with a first-price auction. Saini and Suter (2013) 

study a procurement auction with a shift in which one seller’s cost is drawn from the high 

distribution and the other’s is drawn from the low distribution. In their one shot auctions, the 

theoretical predictions are generally supported although bidders are more aggressive than 

predicted. Our research setting differs from theirs as they do not consider the competitive effects of 

more than two sellers or compare auction mechanisms for two bidders. Pagnozzi and Saral (2013) 

also consider two asymmetric cost sellers in their experimental investigation, but their setting is a 

multi-object auction with resale. In addition, there is also a literature on procurement auctions in 

which products are differentiated on non-price attributes (Engelbrecht-Wiggans and Katok 2006; 

2007; Fugger et al. 2015; Haruvy and Katok 2013; Shachat and Swarthout 2010) All of these studies 

feature bidders with symmetric costs (i.e., seller costs are drawn from a common distribution).  

 

Experimental Design and Procedures 

To explore behavior in shift asymmetry procurement auctions, we conduct an incentivized 

experiment in a controlled laboratory setting. In each experimental auction, a computerized buyer 

solicits offers for a fictitious item. Seller output is assumed to be homogeneous so that the buyer 

only cares about the price and not the identity of the supplier. Subject sellers observe their own 

induced cost for providing the item, as well as the number of other sellers and the distribution from 

which those suppliers’ induced costs were drawn.  

In the experiment there are two types of sellers: low-cost types and high-cost types. Low-cost 

types have induced costs that are distributed Uniform  while high-cost types have 

induced costs that are distributed Uniform . Note that a “high-cost” type may 

actually have a lower cost than a “low-cost type” in any given realization. 
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The experiment varies three factors:  

Factor 1: The allocation mechanism is either a first-price or second-price sealed-bid auction. 

Subject sellers earn a profit from winning the auction and receiving a price greater than their own 

cost. The lowest offer always wins (with ties broken randomly), while the price received by the 

winner depends on the auction mechanism. In a first-price sealed-bid auction the price equals the 

lowest bid and in a second-price sealed-bid auction the price equals the second lowest bid. 

Factor 2: The number of bidders in the auction is either two or three.  

Factor 3: The percentage of bidders who are low-cost types ranges from 0% to 100%, and depends 

on the number of bidders.  

The auction mechanism is varied between-subject, so each subject only participates in first-price, or 

second-price auctions, but not both. The number of bidders and bidder type compositions are 

varied within-subject where each subject experiences various market compositions competing 

against one or two other bidders. In each session, a group of 8 subjects, each at a private computer 

station, read auction format specific instructions. Subjects then answered a series of 

comprehension questions and participated in three practice auction periods, which were followed 

by 36 paid auction periods. Copies of the directions and the comprehension questions are provided 

in the Appendix. Subjects do not know how many total periods there will be in the study, but do 

know that they will be paid their cumulative earnings in cash at the end of the session. All costs and 

prices in the experiment are denoted in terms of Experimental Dollars (valued at the pre-specified 

rate of 5 E$ = 1 US$).  

In each auction period, the 8 subjects are randomly and anonymously assigned to different 

markets of two or three sellers. The subjects learn their type and realized cost for the period as well 

as the number and types of the other sellers in the auction. Let H denote a high-cost type seller and 

let L denote a low-cost type seller. There are seven possible market compositions involving two or 

three sellers: LL, LH, HH, LLL, LLH, LHH, and HHH.4 A session involves 16 repetitions of each of the 

7 market compositions. The periods in which the different combinations of market compositions 

occur are randomized over the course of the session. After each auction, subjects receive feedback 

regarding the price in their auction and their own profit. To reduce variation between sessions and 

                                                             
4 Given the homogeneity of the supplied items HL is isomorphic to LH. HLH and HHL are isomorphic to LHH, 
and HLL and LHL are isomorphic to LLH. For consistency, we always list the low-cost types first when 
referring to a market composition.  
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auction mechanisms, one set of groupings, types, and cost realizations is drawn and used in all 12 

sessions.  

Subjects were recruited from a database of over 3000 study volunteers at the behavioral 

laboratory of a large state university. A total of 96 subjects participated in the experiment. Half of 

these were assigned to first-price sealed-bid markets and the other half were assigned to second-

price sealed-bid markets. While some of the subjects had participated in other studies, none had 

participated in any related auction experiments. In addition to their salient earnings, subjects 

received an initial endowment of $10, including the lab’s standard participation payment. The 

average total payment for the 60-minute experiment was $19.22.                    

 

Equilibrium Bidding Strategies and Ex Ante Predictions 

In this section we outline the theoretical predictions of equilibrium bidding strategies of low- 

and high-cost sellers in all market types. The predictions for the symmetric markets (LL, HH, LLL, 

and HHH) are well known for both first-price and second-price auctions, at least under the 

assumption of risk neutral bidders. The predictions for risk neutral bidders in a first-price 

asymmetric LH market can be found in Kaplan and Zamir (2012). In their derivation, Kaplan and 

Zamir (2012) assume that the disadvantaged bidder will bid truthfully when such a bid has no 

chance of winning because it is off the support of bids the advantaged bidder might place. In the 

procurement setting, this amounts to the high-cost type bidding its cost when its cost exceeds the 

bid a low-cost type with a cost of 20 would place. To identify the equilibrium for risk neutral 

bidders in first-price LLH and LHH markets, we maintain this assumption. 

For the three bidder asymmetric first-price auctions, we start with the expected profit 

equations for each type of bidder in each market composition. From these equations we would like 

to derive the Nash-Equilibrium bidding functions for each cost type.  Let  and  represent the 

bid function for the low-cost type and high-cost type respectively, which are assumed to be 

monotonically increasing in cost and continuous. We can then define  and  as the 

respective inverse bid functions with supports  and , where these intervals denote 

the range of bids for which someone wins the auction with positive probability as in Kaplan and 

Zamir (2012). It is straightforward to extend Lemma 4 of Kaplan and Zamir (2012) to the LLH and 

LHH cases to show that both inverse functions share the same upper support which we define as . 
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However, it is not necessary for both types to share the same lower support in the LLH composition 

as the two low-cost types may be incentivized to bid below  when competing against each other. 

Following Appendices A.2 and A.3 of Kaplan and Zamir (2012), the upper boundary conditions for 

each type are  and  = 20. From these conditions we can derive  in each case. 

In LLH  and in LHH .  

The expected profit for a bidder is defined as follows where  and  represent the 

probability density and cumulative density functions of bidder b’s cost distribution, respectively. 

 

In the equation above,  is the profit margin for bidder b who has cost c and bids . The 

product term at the end of the equation gives the probability that the bidder wins the auction given 

the bidding strategy of the other players. This profit expression can be rewritten in terms of the 

inverse bid functions, yielding the following. 

 

Because the low-cost type may bid below  in the LLH case and thus effectively only compete 

against the other low-cost type, this bidder’s expected profit function can intuitively be expressed 

in two components, where the second term captures the profits when the high-cost type is 

effectively out of the market. 

 

Taking the first order conditions and rearranging them gives the following in the LHH case. 
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For the LLH case, the first order conditions can be written as follows. 

 

 

Solving either of these systems of ordinary differential equations directly is problematic because 

the slope of a low-cost type’s bid function is undefined at . Therefore, we turn to a genetic 

algorithm to identify reasonable boundary conditions for and  for deriving numerical solutions 

for the bid functions. The genetic algorithm can be described as an iterative agent-based simulation. 

Each agent (bidder) starts with a randomly generated set of strategies (bid functions) and updates 

these strategies over time in response to interactions with other agents. Multi-population genetic 

algorithms work very well in competitive environments because each agent operates 

independently with a distinct strategy and fitness function. The fitness function is a metric for 

evaluating the performance of a strategy, which for an auction is the expected profit from using a 

particular bid function given the bid functions of the other two agents.   

To implement the genetic algorithm, the set of allowable bid functions has to be parameterized. 

Given the highly non-linear nature of the known equilibrium bid functions in LH market 

composition, allowable bid functions for the genetic algorithm are taken to be piecewise linear. This 

specification allows for the bid function to be convex over some ranges and concave over others. 

The bid functions assign specific numeric values to a set of 41 evenly spaced cost realizations, Ć. 

The bid for a cost, c  Ć is determined by linear interpolation for the largest element of Ć less than c 

and the smallest element of Ć  larger than c. For example, a low-cost type is assigned a bid value for 

costs of 0.0, 0.5, 1.0,…, 19.5, 20.0 and the bid function is assumed to be linear in the intervals 

between these costs. These bid functions were designed to obey the boundary conditions described 

above. We used a three-population genetic algorithm; one population for each bidder so that two 
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bidders of the same type can evolve independently. Each population was initialized with 100 

randomly generated monotonic strategies,  … .   

The iterative component of the genetic algorithm starts with each agent choosing a candidate (to 

be the equilibrium) strategy. For the initial iteration a strategy is randomly chosen, but for all 

subsequent iterations the best performing strategy from the previous iteration is used. Each agent 

then evaluates the fitness of all strategies in their population using the candidate strategies of the 

other agents. The resulting fitness allows us to judge the relative performance of each strategy in 

the current iteration. Based on their fitnesses, the strategies within a population are replicated, 

replaced, or updated through a process called reproduction.  

The first step in reproduction is to double the strategy set. This starts by selecting 100 parent 

strategies using a tournament selection process that repeatedly samples two strategies from the 

population, selecting the one with higher fitness. Next, the newly selected strategies are randomly 

paired to form 50 parent sets. From these two parents, two new strategies (children) are created by 

either replicating the parents (clone) or joining a portion of one parent strategy with the other 

parent strategy (crossover). Formally, a crossover of two parent strategies and  is 

implemented by randomly choosing an element c* of Ć, such that the resulting children,  and 

 are defined as follows.  

          

         

After the two children strategies are created, they have a fixed probability of 0.025 of being 

mutated by either increasing or decreasing the given bid value at each point in Ć. Thus, there is a 

74% chance a bid function will experience at least one mutation. The fitnesses of the children 

strategies are evaluated in the same way as the original parent strategies and they are added to the 

population that existed at the start of the iteration. Finally, a new set of 100 strategies is created by 
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selecting the current candidate strategy and 99 other strategies through a weighted sampling 

method related to the each strategy’s fitness.5  

 

There is a strong tendency for strategies with higher fitness to move on to the next iteration, but 

it is not guaranteed. Due to the randomness of the selection process, many of the poorly performing 

strategies will also carry on to the next iteration. This diversity helps to ensure that the algorithm 

does not get stuck in a local maxima. However, over time the number of poor performing strategies 

in the population will decrease and the strategies within the population will converge. To test for 

convergence we consider how much the candidate strategies vary from iteration to iteration.  

Our genetic algorithms ran for 2500 iterations. To measure how the strategies change over time, 

we choose a very conservative metric that looks at the difference between the maximum and 

minimum value at any single point (element of Ć) over a moving window of the 100 most recent 

iterations. This lagged greatest difference reduces to 0.65, 0.62, and 0.68 for the low-cost and two 

high-cost agents, respectively, in the LHH case after the first 500 iterations. In the LLH case, the 

lagged greatest difference reduces to 0.55, 0.59, and 0.67 for the two low-cost agents and the high-

cost agent respectively after the first 500 iterations. However, a more illustrative way to evaluate 

the convergence of the candidate strategies is presented in Figure 1. The first plot shows the 

candidate strategy of the low cost agent in the LHH environment for every 100th iteration between 

1 and 1000. The second plot shows the best strategy of the same agent for every 100th iteration 

between 1500 and 2500. 

 

 

 

 

 

                                                             
5 It should be noted that crossover and mutation strategies may not be monotonic. In cases where non-
monotonic bid functions were created, their fitness was assigned to be negative. Despite the resulting 
negative fitness, these non-monotonic bid functions still have a chance to be part the strategy set for the next 
iteration.   
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Figure 1:  Low cost agent candidate bid functions 

Iterations 1-1000       Iterations 1500-2500. 

 

After the 2500 iterations were complete, the candidate strategies provide approximate values of 

the relevant s and, in the LLH case, , which determines when a low cost type is effectively 

only competing with the other low-cost type. With these approximations, we can solve the system 

of ordinary differential equations using a shooting method.6 

The numerical solutions for the three bidder asymmetric first-price risk neutral equilibrium bid 

functions are presented in Figure 2, along with the first-price risk neutral equilibrium bid functions 

for each of the other market compositions. Bid functions for low-cost types are shown as solid lines 

whereas bid functions for high-cost types are shown as dashed lines. Two interesting patterns 

emerge from the figure. First, conditional on the number of bidders, both types bid more as the 

percentage of bidders who are high-cost types increases.7 Second, while symmetric first-price 

auctions should be efficient, meaning that the lowest cost seller should always win the auction, 

asymmetric auctions are not expected to be efficient. This can be seen in the LH panel of Figure 2 as 

the bid function for both types are continuous and the bid function for a low-cost type lies strictly 

above the bid function for the high-cost type. Hence, a high-cost type with a cost realization slightly 

greater than the cost realization of a low-cost type would win the auction despite having a higher 

cost.  

                                                             
6 A shooting method starts from a possible initial condition, a guess about , and numerically solves the 

system of differential equations. The guess is validated when the resulting numerical solution conforms to the 

known boundary condition, . Mathematica files for the genetic algorithms and numerical solutions are 
available upon request.     
7 This relation is not strict as high-cost types in LHH and LLH both truthfully reveal their cost when their 
realized cost is near the top of the support.  
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In second-price asymmetric auctions, truthful revelation remains a dominant strategy just as in 

symmetric markets. Hence, all bidders placing bids equal to their costs is an equilibrium for all 

seven market compositions that we consider.8 We choose not to present figures for second-price 

auctions corresponding to Figure 2, as each would be simply a portion of the 45 line.  

Table 1 presents the expected price and the probability that the lowest cost seller wins the 

auction, which we refer to as efficiency, for each auction mechanism and each market composition.9  

An important difference between symmetric and asymmetric auctions is apparent from this table. 

While first- and second-price auctions generate the same predicted price in symmetric auctions, 

this is not the case in asymmetric auctions. In particular, first price procurement auctions generate 

lower theoretical prices when bidders have (shift) asymmetric cost values.  

Table 1: Ex Ante Predictions by Auction Type and Market Composition 

  Expected Price  Expected Efficiency 
  first-price second-price  first-price second-price 

2-person 
auctions 

LL 13.3 13.3  100% 100% 
LH 18.5 20.5  84% 100% 
HH 23.3 23.3  100% 100% 

3-person 
auctions 

LLL 10.0 10.0  100% 100% 
LLH 12.6 12.7  99% 100% 
LHH 16.1 17.3  86% 100% 
HHH 20.0 20.0  100% 100% 

                                                             
8 It is worth noting that this truth telling equilibrium is not unique for asymmetric auctions. To see this 
consider a high-cost type in an LH market facing a low-cost type who bid truthfully. If this high-cost bidder 
truthfully revealed its cost if its cost was less than 20 and place a bid of B>20 for any cost above 20, this 
would not impact the profit of the high-cost type and the low-cost type would have no incentive to deviate. 
Hence, this is an equilibrium. As a result, the expected prices shown in Table 1 are not unique although the 
efficiency calculations are.                
9 This differs from the standard definition of efficiency in laboratory experiments, which measures the 
percentage of the possible gains from trade that are realized, but for the two-bidder auctions these definitions 
coincide.  
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Figure 2:  Equilibrium Bid Functions for First-Price Auctions by Market Composition 
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Behavioral Results 

The behavioral results are organized in two subsections: market outcomes and individual 

bidding behaviors. First, we evaluate how price and efficiency change between auction mechanisms 

and across market compositions. Then, we estimate individual bidding strategies in order to shed 

further light on market-level results. Market outcomes are analyzed using both non-parametric 

tests and OLS regressions with robust standard errors clustered at the session level to account for 

potential serial correlation within the session. Individual bidding strategies are estimated via 

random effects models at the subject level, in addition to robust standard errors clustered at the 

session level. The data for the findings are from 1,344 laboratory auctions. 

Market Outcomes: Auction Price and Efficiency 

Table 2 summarizes empirical performance of each auction type, including average market 

price and efficiency, as well as standard deviations in parentheses.  

Table 2: Summary Statistics: Observed Price and Efficiency per Auction Type 

 

Market 

Composition 

Price  Efficiency 

 
First-

Price 

Second-

Price 

p-value in 

WMW rank 

sum test 

 
First-

Price 

Second-

Price 

p-value in 

WMW rank 

sum test 

2-Bidder 

Auctions 

LL 
  8.14 

(0.675) 

10.77 

 (0.290) 
0.004*** 

 92.7%  

(0.073) 

89.6%  

(0.032) 
0.309 

LH 
12.96 

 (0.951) 

20.93 

 (0.945) 
0.004*** 

 93.8%  

(0.079) 

90.6%  

(0.052) 
0.314 

HH 
21.69 

 (0.434) 

23.83 

 (0.902) 
0.004*** 

 90.6%  

(0.095) 

81.3%  

(0.056) 
  0.070* 

3-Bidder 

Auctions 

LLL 
  8.94 

 (0.334) 

  9.78 

 (0.608) 
0.025** 

 89.6%  

(0.065) 

69.8% 

(0.139) 
    0.014** 

LLH 
  9.59 

 (0.740) 

12.08 

 (0.829) 
0.004*** 

 87.5%  

(0.040) 

76.0%  

(0.092) 
    0.039** 

LHH 
11.93 

 (0.545) 

16.03 

 (0.757) 
0.004*** 

 89.6%  

(0.032) 

83.3%  

(0.123) 
0.611 

HHH 
18.32 

 (0.495) 

22.07 

 (0.827) 
0.004*** 

 92.7%  

(0.073) 

86.5%  

(0.083) 
0.180 
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Notes: In parentheses are standard deviations.  
The nonparametric WMW (Wilcoxon-Mann-Whitney) rank sum test is based on a comparison of the 6 
session-averages from first-price auctions and 6 session-averages from second-price auctions, for each 
market composition. All tests are two-sided.  
*** indicates significance at 1% level, ** at 5%, and * at 10%.  

 

Theoretical derivations for auctions, such as the predictions in Table 1, are by their nature ex 

ante; in contrast, observed prices and efficiencies are necessarily ex post in relation to cost 

realizations. That is, the prices and efficiencies observed in the laboratory are a function of the 

realized costs. Our design choice of using the same cost realizations for both first-price and second-

price auctions allows direct comparisons between the two auction mechanisms.10 The non-

parametric WMW (Wilcoxon-Mann-Whitney) rank sum tests reported in Table 2 make such 

comparisons. The results reveal that first-price auctions systemically lead to (statistically) lower 

prices and (at least nominally) greater allocative efficiency than second-price auctions. These 

findings are generally consistent with previous experimental investigations of symmetric auctions 

(see e.g., Davis and Holt 1993 and Kagel and Roth 1995). The statistical results in Table 2 provide 

the basis for our first two findings. 

 

Finding 1 (price comparison between mechanisms): First-price auctions generate significantly 

lower procurement prices than second-price auctions. 

 

Finding 2 (efficiency comparison between mechanisms): Second-price auctions are not 

significantly more efficient than first-price auctions and are significantly less efficient for some market 

compositions (specifically HH, LLL, and LLH).  

On the other hand, due to variations in realized costs, it is difficult to draw clear inferences from 

direct comparisons between market compositions, as observed differences could be due to either 

behavioral responses to the composition or the cost realizations. Similarly, comparisons between ex 

ante predicted outcomes and behavioral outcomes do not offer clear results, as the latter is 

conditional on cost realizations while the former is not. Hence it is not appropriate to directly 

compare among rows in Table 2 or to compare between entries in Tables 1 and 2. Instead, to 

                                                             
10 An inevitable feature is that our results and implications are conditional on the set of realized costs. 
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compare observed and predicted outcomes, as well as to make comparisons across market 

compositions, we first calculated the conditional predicted price and efficiency for each market in 

the experiment. The conditional predicted price and efficiency are calculated as the price and 

efficiency that would be attained in the market if each bidder bid according to the theoretical 

prediction conditional on the realized cost.   

Table 3 examines the deviation of observed market outcomes from conditional predicted 

outcomes in different market types. Take Model (1) for example, we run an OLS regression using 

observed market price minus conditional predicted price as the dependent variable, and include 14 

separate indicator variables for each of the 14 combinations of market composition and auction 

mechanism. Standard errors are clustered at the session level to take into account correlation 

within a session. Constant terms are suppressed so that the coefficient is the direct measure of the 

deviation of the particular market type. Hence, if the observed prices match the theoretical 

predictions in a particular situation, then the associated coefficient would equal 0. We conduct an 

identical regression for market efficiency in Model (2). 

Table 3:  Comparison of Conditional Predicted and Observed Market Outcomes 

Model:  (1) (2) 
Dependent 
Variable: 

Observed Price –  
Conditional Predicted Price 

 

Observed Efficiency –  
Conditional Predicted Efficiency 

 First-Price Second-Price First-Price Second-Price 

LL -4.520*** -0.419*** -0.073** -0.104*** 

(0.264) (0.113) (0.029) (0.013) 

LH -5.820*** -0.637 0.062* -0.094*** 

(0.372) (0.369) (0.031) (0.020) 

HH -2.874*** -0.049 -0.094** -0.188*** 

(0.170) (0.353) (0.037) (0.022) 

LLL -2.434*** -0.342 -0.104*** -0.302*** 

(0.130) (0.238) (0.025) (0.054) 

LLH -3.191*** -0.731** -0.125*** -0.240*** 

(0.290) (0.324) (0.015) (0.036) 

LHH -3.010*** -1.163*** -0.042*** -0.167*** 

(0.213) (0.296) (0.013) (0.048) 

HHH -2.556*** 0.443 -0.073** -0.135*** 

(0.194) (0.323) (0.029) (0.032) 

Observations 1344 1344 

R2 0.503 0.153 

Clusters 12 12 
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Notes: In both (1) and (2), market-level data are regressed with standard errors clustered at the session level.  
Moreover, constant terms are suppressed; hence each coefficient is the direct measure of the observed 
market price (efficiency) deviation from conditional predicted market price (efficiency).     
OLS regressions with clustering.  
*** indicates significance at 1% level, ** at 5%, and * at 10%.  

 

The results in Table 3 clearly show that prices are significantly below the conditional prediction 

for every market composition in first-price auctions. Further, these price shortfalls are 

economically large. For second-price auctions, prices are significantly lower than predicted for 

some, but not all, market compositions, but in no case is the reduction economically large. This is 

formalized in finding 3. 

Finding 3 (comparison of observed and predicted prices): First-price auctions uniformly lead to 

economically and statistically lower prices than predicted while second-price auctions generate 

statistically lower than expected prices only in LL, LLH, and LHH markets, and the difference is never 

economically large.  

  The results in Table 3 also reveal that second-price auctions are less efficient than predicted, 

although because efficiency is predicted to be 100% all errors are one sided.11 Generally, first-price 

auctions are also less efficient than predicted; however, in the asymmetric LH market, observed 

efficiency is marginally higher than what is predicted. This provides the basis for Finding 4. 

Finding 4 (comparison of observed and predicted efficiency): Second-price auctions are uniformly 

less efficient than predicted. The allocative success of first-price auctions depends on the market 

composition.   

The coefficients in Table 3 can also be used to compare first-price and second-price auctions, an 

alternative approach to the support offered above for Findings 1 and 2. Additionally, this approach 

can be used to compare the differences between market compositions. For example, in a first-price 

auction the ex ante expected difference between an LH and an LL market is 18.5-13.3 = 5.2, 

according to Table 1. From Tables 1 and 3, the observed difference was (18.5 – 5.8) – (13.3 – 4.5) or 

5.2 – (5.8 – 4.5) = 5.2 – 1.3 = 3.9. Thus, the difference in coefficients in Table 3 indicates the amount 

by which the observed outcome difference differs from the conditional predicted differences, a diff-

in-diff estimate. For example, in the case of moving from an LH to an LL market, the observed price 

                                                             
11 The same conclusion holds if a probit model is used to account for the binary nature of the efficiency 
measure.  
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difference is 1.3 smaller than conditional predicted price difference. Table 4 reports the p-values for 

t-tests testing that the difference in coefficients in the first- and second-price auctions of the same 

market composition in Table 3 is 0, or alternatively that the observed difference equals the 

predicted difference conditional on the realized costs. Table 5 reports the p-values for similar t-

tests based on coefficients in Table 3 comparing market compositions for a given auction format. 

We restrict attention to comparisons that either change the cost type of one bidder, or involve the 

addition of the third bidder. 

 

Table 4. p-values for Comparisons of Observed and Predicted Differences  

between Auction Formats (First-Price v Second-Price) 

 2-Bidder Auctions 3-Bidder Auctions 
Comparison LL LH HH LLL LLH LHH HHH 

Price  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Efficiency  0.339 0.001 0.052 0.007 0.014 0.029 0.177 

 
 

Table 5. p-values for Comparison of Observed and Predicted Differences  
between Market Compositions 

 
  Prices Efficiency 
  First-Price Second-Price First-Price Second-Price 

Change 
in Type 
of a 
Bidder 

LL v LH 0.006 0.602 <0.001 0.755 
LH v HH <0.001 0.192 <0.001 0.018 
LLL v LLH 0.028 0.425 0.427 0.348 
LLH v LHH 0.643 0.398 0.002 0.111 
LHH v HHH 0.129 <0.001 0.319 0.417 

Addition 
of a 
Bidder 

LL v LLL <0.001 0.689 0.509 0.004 
LL v LLH 0.015 0.307 0.176 0.005 
LH v LLH <0.001 0.788 <0.001 0.004 
LH v LHH <0.001 0.364 0.016 0.269 
HH v LHH 0.633 0.009 0.242 0.636 
HH v HHH 0.198 0.319 0.546 0.176 

 

The statistical tests in Table 4 provide further support for Findings 1 and 2. The significant 

values for efficiency differences between auction mechanisms for the LH and LHH market 

compositions (see the second row of Table 4) are due to the fact that in both cases second-price 

auctions are predicted to be substantially more efficient than first-price auctions, but in fact are 
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observed to be statistically similar (see right-hand column of Table 2) and hence the observed 

difference between auction mechanisms is smaller than the predicted difference.   

The statistical results in Table 5 reveal several interesting patterns. For second-price auctions, the 

effect of changing a bidder’s type or of adding an additional bidder generally has the expected effect 

on price. The LLH market has the largest deviation of observed price from conditional predicted 

price among all second-price auctions (see Table 3). Because prices are similar to the predicted 

level for HH markets, the reduction in price from adding a low-cost type and creating an LHH 

market is more dramatic than predicted. Similarly, the price increases going from LHH to HHH is 

greater than expected. 

For first-price auctions, a different story emerges from Table 5. Because bidders are relatively more 

aggressive in both the LL and LH markets, resulting in prices substantially below the predicted level 

(see Table 3) as compared to other market compositions, the impact of adding a third bidder is 

significantly smaller than predicted. In fact, while adding a high-cost type to an LH market is 

expected to lower price by 16.1 – 18.5 = – 2.4, it actually leads to a nominal increase in the expected 

price of (16.1 – 3.0) – (18.5 – 5.8) = 0.4. The results also show that the effect of changing from an LL 

to an LH market are not as large as predicted while the change from an LH to an HH market is 

greater than predicted. Similarly changing from an LLL to an LLH market does not increase prices 

by as much as expected. Together these two patterns show that merely adding a third bidder is not 

as important as attracting a low-cost type. These patterns are summarized in Finding 5.  

Finding 5 (impact on expected price of changes in market composition): Changes in market 

composition generally have the predicted effect on expected prices in second-price auctions. In first-

price auctions however,  

i. The price reduction from adding a third bidder is smaller than expected, and 

ii. The effect of replacing a low-cost type with a high-cost type is smaller than expected as long as 

there remains a low-cost type in the auction, but is bigger than expected if no low-cost 

types remain.  

With respect to efficiency, Table 5 shows that because first-price auctions in the LH market 

composition are more efficient than predicted, the difference in efficiency between LH markets and 

other markets is not as large as predicted. Otherwise, changes in composition generally have the 

predicted effect on efficiency except that the observed reduction in efficiency in moving from LLH 

to LHH is not as dramatic as predicted. For second-price auctions, LLL and LLH markets are the 
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least efficient market compositions and LH is the most efficient. Table 5 indicates that these 

performances differ significantly from those of other compositions. This is summarized in Finding 

6.   

Finding 6 (impact on efficiency of changes in market composition):     Changes in market 

composition typically affect efficiency in first-price auctions by the degree expected or less. In second-

price auctions where market composition is not expected to affect efficiency, it does.    

Individual Behavior: Bidding Strategy 

We now turn to analyzing the determinants of individual bidding strategies. To facilitate 

comparisons between mechanisms and across market compositions, we look at the difference 

between the predicted and the observed bid as a function of cost. Figures 3 and 4 provide scatter 

plots along with the fitted quadratic error functions and 95% confidence intervals for bidding in 

first- and second-price auctions, respectively. We use a quadratic specification due to the non-linear 

equilibrium bid functions for asymmetric first-price auctions. For each bidder type in each market 

type, we estimate the following regression model allowing for a random effect for each bidder and 

using robust standard errors clustered at the session level.  

observed bid – conditional predicted bid   =  + 1  cost +2  cost2  +     

It is important to note that the estimated equation is not the bid function, but rather it is the bid 

error.  Therefore, if bidders act in accordance with the theoretical predictions then it should be that 

 = 1 = 2 = 0. Figures 3 and 4 provide the estimated regression along with the p-value for the F 

tests that bidders are following the (risk neutral) conditional predicted strategy for each scenario. 

For no market composition do low- or high-cost types follow the equilibrium bid function in a 

first-price auction. Instead, regardless of type or market composition, bidders in first-price auctions 

on average bid too low when their cost realization is near the lower bound of its support. This is our 

seventh finding. Such behavior is consistent with risk aversion and is commonly observed in 

symmetric auctions (see e.g., Davis and Holt 1993 and Kagel and Roth 1995). It also explains why 

we find that prices are below the predicted level (see Finding 3) for first-price auctions.  

Finding 7 (bidding behavior in first-price auctions): In first-price auctions, bidders do not bid 

according to the conditional predictions. Instead they underbid when their cost is relatively low.       
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In second-price auctions, we only observe equilibrium bidding in two cases:  high-cost types in 

LHH and HHH markets. In all other market compositions, there is at least marginal evidence that 

people are not bidding truthfully for all cost realizations. This is formalized in our final finding. 

Finding 8 (bidding behavior in second-price auctions): In second-price auctions, bidders only 

follow the dominant strategy to bid truthfully if they are a high-cost type facing two other bidders and 

at least one of the other bidders is also a high-cost type. 

Figure 3 and 4 also shed light on the surprising, in light of the theoretical predictions, efficiency 

results of Finding 2. It is clear that there is more variance in bids in a second-price auction than in a 

first-price auction. This, combined with the fact that low-cost types do not seek as large of a profit 

margin as expected in first-price auctions, increases the relative frequency with which a seller with 

a higher cost realization places the lowest bid in a second-price auction. 
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Figure 3:  Difference between Observed Bids and Equilibrium Bids for First-Price Auctions 
Panel A: Two-Bidder Auctions 

 Low-Cost Type High-Cost Type 

LL 

 

 

 
                     p-value of F-test < 0.001 

 

LH 

 

 

 
                     p-value of F-test < 0.001 

 

 
         

                       p-value of F-test < 0.001 

HH 

 

 

 

 
                     p-value of F-test < 0.001 
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Figure 3:  Difference between Observed Bids and Conditional Predicted Bids for First-Price 
Auctions 

Panel B: Three Bidder Auctions 
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Figure 4:  Difference between Observed Bids and Conditional Predicted Bids for Second-Price 
Auctions 

Panel A: Two-Bidder Auctions 

 Low-Cost Type High-Cost Type 

LL 

 

 
     

                     p-value of F-test = 0.002 

 

LH 

 

 

 
                     p-value of F-test < 0.001 

 

 
                                        

                     p-value of F-test = 0.079 

HH 

 

 

 

 
                     p-value of F-test = 0.040 
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Figure 4:  Difference between Observed Bids and Conditional Predicted Bids for Second-Price 
Auctions 

Panel B: Three Bidder Auctions 
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Concluding Remarks 

This paper reports the results of controlled laboratory experiments designed to investigate how 

the auction mechanism, as well as the number and type of bidders participating, impacts market 

outcomes and bidding behavior in asymmetric procurement auctions. In addition to two-bidder 

auctions where recent theoretical advances have identified analytical solutions for bidding in first-

price auctions, we study three-bidder markets as this is sometimes specified as a practical rule-of-

thumb for the minimum number of bidders. In the case of three bidder markets we derive a 

numerical solution for the equilibrium bid functions.  

At the market level, our results indicate that in the presence of (shift) asymmetries, first-price 

auctions lead to significantly lower procurement prices - both statistically and economically – as 

compared to second-price auctions. This result also demonstrates the robustness of previous 

experiments focusing on symmetric auctions. Whereas first- and second-price auctions are 

expected to be equally successful at identifying the lowest cost seller in symmetric markets, with 

asymmetric markets second-price auctions are expected to be strictly more efficient. However, we 

observe the opposite pattern in the laboratory. This reversal is due to bidders not behaving as 

aggressively as expected in first-price auctions and to greater variation in behavior in second-price 

auctions. The lack of aggressive behavior in first-price auctions also explains why we observe prices 

that are below the theoretical predictions for both symmetric and asymmetric market compositions 

with that mechanism.       

We hope that this paper helps spur a reexamination of procurement auctions allowing for 

asymmetries. In addition to considering other auction mechanisms and more bidders in the 

framework used in this paper, future research should consider other asymmetries as well. The 

typical assumption of a uniform distribution over the support may also be overly restrictive and 

there is no particular reason not to allow each bidder to have their own unique distribution of costs. 

Once one allows for these types of changes then there is a need to explore robustness of other 

auction results such as the impact of feedback in open auctions or allowing for quality differentials. 

In the current research, bidders knew how many other bidders were in the market and their types. 

Another potentially interesting extension would be to consider a setting in which bidders did not 

know the types or number of their competitors.  

A brief scan of instances of procurement auctions in practice (e.g., Gazette of India (2005), Kulp 

and Randall (2005), New York University at Albany (2013), North Carolina Statutes and Codes 

(2013), reveals that first-price auctions are a commonly used market mechanism.  There are two 
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findings on individual bidding behavior that have implications particularly salient for practitioners 

involved in in first-price auctions. First, we documented a behavioral regularity wherein bids were 

lower than the theoretical prediction when cost realizations were near the lower bound of their 

support (Finding 7). This finding serves to alert individuals who may bid on behalf of supplier firms 

to guard against a behavioral tendency toward overly competitive bidding behavior when they are 

likely to have a cost advantage over other supplier firms in the market. Second we found that 

bidders tend to change their bidding behavior in a manner inconsistent with theory in reaction to 

an additional bidder in the market. The price reduction from adding a third bidder is smaller than 

expected, and the effect of replacing a low-cost type with a high-cost type is smaller than expected 

as long as there remains a low-cost type in the auction, but is bigger than expected if no low-cost 

types remain. Consequently, adding an additional high-cost type bidder to a two-bidder market was 

not advantageous for the buyer, but adding a low-cost type bidder was in fact advantageous. 

In conclusion we find that in procurement auctions for homogeneous goods when seller cost 

types are asymmetric and the number of bidders varies, first-price auctions generate lower prices 

regardless of market composition. First-price auctions are either equally or more efficient than 

second-price auctions despite the theoretical prediction that the reverse should hold in asymmetric 

auctions. Suppliers are warned against a tendency toward over-competitive bidding behavior in 

specific circumstances and buying firms are given guidance as to what types of suppliers they 

should seek to qualify for their procurement auctions.  
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