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Abstract: In this article, we examine a model of terrorism that focuses on the tradeoffs facing a terrorist organization that has
two qualitatively different attack modes at its disposal. The terrorist organization’s objective is to successfully attack at least one
target. Success for the target government is defined as defending all targets from any and all attacks. In this context, we examine
how terrorist entities strategically utilize an efficient but discrete attack technology — e.g., suicide attacks — when a more conven-
tional mode of attack is available, and the optimal anti-terrorism measures. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59:
457–469, 2012

Keywords: conflict; suicide terrorism; weakest link; colonel Blotto game

1. INTRODUCTION

Terrorism is a form of asymmetric conflict in which terror-
ists utilize violent actions against (mainly civilian) noncom-
batants to influence a target audience beyond the immediate
victims and, ultimately, to obtain ideological, political, or
religious objectives. Whereas terrorism is asymmetric in that
terrorist groups have a relative resource disadvantage with
respect to the target government, there also exist structural
asymmetries between attack and defense which terrorists can
turn to their advantage through their selection of targets and
tactics. In particular, governments with high-profile coun-
terterror policies (e.g., the war on terror), or those facing
a coordinated terrorist campaign (e.g., the French in Alge-
ria) are often judged by their ability to deter or interdict all
attacks. If one target is successfully attacked, then countert-
error policy and the competency of the government itself can
be subject to public scrutiny. For example, as is written in
the Joint House-Senate Intelligence Inquiry into September
11, 2001 (US Congress [51]), terrorists need to be successful
only once to kill Americans and demonstrate the inherent vul-
nerabilities they face. Similarly, after bombing the Brighton
hotel where Margaret Thatcher was staying in the 1980s, and
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failing to kill her, the IRA issued a statement that read: “Today
you have been lucky. But you have to be lucky every time. We
only have to be lucky once,” (King [32]). This suggests that,
as a whole, the set of targets of interest to terrorist groups may
be viewed as a weakest-link network1 from the perspective
of a target government,2 whose success is defined in terms of
security against all possible attacks.3

1 The term weakest link stems from Hirshleifer’s [25] metaphor
about the public good provided by dike builders on the perimeter of
a circular island (c.f. Cornes [12], Hausken [23]). Whoever builds
the lowest dike will define the entire island’s level of defense against
a flood.
2 The weakest-link viewpoint may be due to the policymakers’ (or
voters’) perception that successful counterterror policy involves the
complete absence of incidents within a defined protectorate (e.g.,
Gassebner et al. [17, 18], King [32], and Rosenbaum [42]), or the
target itself may be a network corresponding to a weakest-link
technology, as is the case with inter-airline baggage handling or crit-
ical infrastructure. Under either interpretation there is a structural
asymmetry in the terrorist’s favor.
3 When the vulnerability of one target not only depends on its choice
of security measures but also on the actions of others, a situation of
interdependent security can arise that is consistent with a weakest
link. Heal and Kunreuther [24] give the example of airline baggage
screening. Specifically, the 1988 crash of Pan Am 103 over Locker-
bie, Scotland was due to a bomb that was contained in a bag initially
screened by Malta Airlines in Malta, thereby constituting the weak
link.

© 2012 Wiley Periodicals, Inc.
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In addition to the asymmetry that for terrorists one success
is often enough to alter the political landscape, airways, and so
forth,4 terrorists have multiple tactics at their disposal. Con-
sider for example, suicide terrorism, which accounts for an
average of 12 times more damage than conventional attacks
(Sandler et al. [45]) and could be even deadlier were it not for
the associated crowd blocking of casualties (Kress [37]). The
modern use of this tactic dates to the 1983 Beirut bombings
by Hezbollah against US and French military personnel, with
the bombings being viewed as bringing about these nations’
troop withdrawals from Lebanon. This tactic was subse-
quently adopted by the Tamil Tigers (LTTE) and Kurdistan
Workers’ Party (PKK), and has been indelibly ingrained into
the American psyche subsequent to the mass casualty sui-
cide attacks of September 11, 2001 (called 9/11 hereafter).
However, no group that employs suicide terror does so exclu-
sively (Crenshaw [13]). For example, the March 3, 2004 train
station bombings in Madrid are associated with affiliates of
al-Qaeda, but it was not a suicide operation, as the bombs
were left on trains.5 Indeed, the use of cell phones as det-
onators in the Madrid bombings is one rationale for why
the Aznar government initially suspected that the Basque
organization Euskadi ta Askatasuna (ETA) was behind the
attacks, as this form of detonation was a signature of past
ETA attacks. Moreover, before the bombings the Aznar gov-
ernment was favored to easily win the elections that were
scheduled three days hence. Instead, it lost; a result that is
widely interpreted as stemming from electoral accountability
in the aftermath of the bombings.6 For the al-Qaeda organi-
zation and its affiliates alone, the 1993 World Trade Center
bombing; the May 29, 2004 Al-Khobar massacres in Saudi
Arabia; and the June 30, 2007 discovery of explosives found
in unattended cars parked at Piccadilly Circus and Trafalgar
Square are additional examples of non-suicide attacks.

In this article, we examine and characterize — in the
context of a weakest-link network — how terrorist enti-
ties strategically utilize two qualitatively different modes of
attack: a discrete one being capable of inflicting more dam-
age at a lower per unit cost and a more conventional one.
Throughout this article, we use the convention of referring
to suicide attacks as this deadlier mode of attack. The indi-
visibility of suicide operatives is a common feature that is

4 Kaplan et al. [31] identify an alternative asymmetry in “low-level”
intelligence that acts in the terrorists’/insurgents’ favor. This asym-
metry counteracts the government’s advantages in resources and
force sizes. Similarly, in a related attack and defense game, Bern-
hardt and Polborn [6] examine a cost-based asymmetry between
attack and defense. In that case, the “committed” attacker experi-
ences no opportunity costs from, allocating forces and continues
attacking targets until either he runs out of targets or is defeated.
5 The suspects blew themselves up later to avoid capture.
6 Suicide attacks are, on average, far more severe than conven-
tional attacks, and the severity of attack has been shown to increase
the likelihood of cabinet changes within a government (Gassebner
et al. [17, 18]).

applicable to a number of military technologies including
chemical, biological and radio-nuclear (CBRN) weapons of
mass destruction (WMD). However, tactics such as these
have yet to be proven to be cost efficient for terrorists rel-
ative to suicide or conventional attacks, due to the difficulties
of procurement and weaponization of CBRN and increased
vulnerability to detection of WMD by intelligence services
(Franck and Melese [16]).7 Our choice of labeling the discrete
but efficient mode of attack as suicide terrorism is moti-
vated by: (i) on average, suicide operatives produce more
than they cost (Atran [3]), (ii) the utilization of suicide tac-
tics has increased in recent years (Economist [14]), and (iii)
a terrorist organization that has the ability to utilize either or
both suicide terrorism tactics and conventional tactics faces
a non-trivial tradeoff.8 In regard to this last point, Cren-
shaw [13] provides a review of 13 books on the subject of
suicide terrorism/martyrdom, all of which were published
post-9/11, and deal almost exclusively with suicide bomb-
ing from the perspective of the bomber/operative. However,
both Hoffman and McCormick [26] and Crenshaw [13] rec-
ognize that suicide actions are rational for the group that
operatives represent, and that explaining how suicide tactics
fit into the groups’ overall strategy of violence is remarkably
understudied.9

In examining suicide terrorism, our analysis highlights
two critical features: (i) weakest-link networks of targets and
(ii) the availability of both conventional and suicide tactics
for the attacker. We find that, in equilibrium: (i) a terror-
ist organization may choose with positive probability not to
launch any attacks, (ii) in the case that an attack is launched,
at most one target is attacked, and (iii) conditional on an
attack being launched, the suicide attack technology is not
utilized with probability one. Remarkably, we find that the
frequency and magnitude of suicide attacks in our model
depends on a simple measure that incorporates the struc-
tural asymmetry arising in the weakest-link network and the
asymmetry between the characteristics of the attacker and the
defender, which we term “the normalized relative strength
of the attacker.” As the normalized relative strength of the
attacker approaches unity the conflict becomes more symmet-
ric, and the equilibrium frequency and magnitude of suicide

7 As noted by a referee, the “lumpiness” of suicide operatives is a
feature of a number of traditional military applications. For exam-
ple, a naval commander must choose a discrete number of aircraft
carriers to execute an attack. For an early discussion of traditional
military applications of this general type of game see Blackett [8].
8 As discussed below, this issue is examined in Rosendorff and
Sandler [43] and Feinstein and Kaplan [15].
9 In her review, Crenshaw [13] concludes that there is no longer any
need to introduce an analysis of suicide attacks by explaining to the
uninitiated that it is not rooted in psychopathology or fanaticism or
indeed in any single cause such as deprivation, religious belief, or
frustration (p. 162).
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attacks increases. In addition, we find that the incidence of
suicide terrorism increases as the total cost of utilizing sui-
cide operatives decreases. Given that this total cost includes
the costs of recruiting and training suicide operatives as well
as the final force expenditure, our model is consistent with
the stylized fact that suicide terrorism is likely to arise in an
environment in which a group has significant political sup-
port (i.e., lower costs of recruitment), but not the means for
political expression (Hoffman and McCormick [26]).

Strategic interdependencies, or linkages, across targets is
a central theme in the literature on multidimensional con-
tests.10 Although the particular linkages arising in weakest-
link networks differ from those arising in traditional models
of strategic resource allocation, these two types of linkages
are related. For example, in the classic Colonel Blotto game11

each player has a fixed level of forces, each target is won by
the player who allocates the higher level of force, and the
payoff to each player is the sum of the wins across the entire
set of targets. In that game, the constraint on the total force
expenditure creates a cost-based linkage among the battle-
fields, that is, forces allocated to a specific battlefield reduce
the level of force that can be allocated to the other battle-
fields. By contrast, in our study the linkage arises through
the players’ objectives. In particular, both the government’s
(defender’s) and terrorists’ (attackers’) payoffs are a function
of the most successful of the attacks across targets.12 Analy-
ses of this type of weakest-link defense technology include
Clark and Konrad [11] and Kovenock and Roberson [35];13

however, these models differ from our focus here in that the
attacker has only the conventional allocation of homogeneous
resources across targets. In our study, the attacker has two
qualitatively different attack technologies, conventional and
suicide tactics. This framework allows us to characterize how

10 For a survey see Kovenock and Roberson [36].
11 This game originates with Borel [9] who examines the case of
symmetric players and three homogeneous battlefields. Early exten-
sions include Gross and Wagner [21] who allow for a finite number
of symmetric battlefields, and Gross [20] who allows for heteroge-
neous battlefield valuations. Recent extensions include: asymmet-
ric players (Hart [22], Macdonell and Mastronardi [39], Roberson
[40], Weinstein [52]), non-constant-sum variations (Kvasov [38],
Hortala-Vallve and Llorente-Saguer [27,28], Roberson and Kvasov
[41]), and alternative definitions of success (Golman and Page [19],
Szentes and Rosenthal [48], [49], and Tang, Shoham, and Lin [50]).
12 Similar objective-based linkages arise in Szentes and Rosenthal’s
[48] chopstick auction in which three chopsticks are being auctioned
and each of two players seeks to win at least two of the auctions.
In the context of politicians engaged in a campaign resource allo-
cation game, Snyder [47] and Klumpp and Polborn [33] examine
the case in which each player seeks to win a majority of the compo-
nent contests. The related case in which success requires winning a
super-majority is examined by Szentes and Rosenthal [49].
13 See Shubik and Weber [46] for an early treatment of a related
game, and Kovenock and Roberson [36] for further discussion of
literature utilizing the weakest-link framework.

and why terrorist organizations choose between conventional
and suicide attacks, as those organizations that have suicide
operatives at the ready do not rely exclusively on suicide
attacks.

As in the multidimensional contest literature, defense, for
the target government in our model, involves the hardening
of targets. The macrotechnologies of conflict for target gov-
ernments may include defensive and/or proactive/preemptive
measures (Arce and Sandler [2]) and disruptive and/or defen-
sive tactics (Franck and Melese [16]). In contrast to our defen-
sive tactics, Kaplan et al. [31] and Jacobsen and Kaplan [30]
examine the “targeted killing” of entrenched insurgent cells,
which would fall under the category of proactive/preemptive
measures in Arce and Sandler’s [2] taxonomy of countert-
error strategies and disruptive tactics under the Franck and
Melese [16] system. By focusing on only defensive tactics,
our model is silent about considerations such as how tar-
geted killings may lead to a desire for terrorist retaliation
as in Jacobsen and Kaplan [30], or how the costs of civil-
ian casualties resulting from government intervention affect
the government’s optimal anti-terrorism policy, as in Kaplan
et al. [31] and Jacobsen and Kaplan [30].

The issue of multiple attack technologies is also examined
by Rosendorff and Sandler [43] and Feinstein and Kaplan
[15]. In both of those papers, the attacker has two attack tech-
nologies, normal and spectacular. In Feinstein and Kaplan
[15], a normal attack is characterized as having low fixed
costs and high marginal costs. Correspondingly, a spectacu-
lar attack has high fixed costs and low marginal costs. There
are a number of important distinctions between the model-
ing approach we use, and those examined in these papers.14

However, our attack technology generalizes the multi-attack
technology utilized in these papers by modeling multiple
input use explicitly, allowing for a continuous range of normal
attacks and multiple (discrete) levels of suicide spectaculars.
We assume that each suicide operative requires a fixed cost
for recruiting and training, but that the force effectiveness
in the presence of suicide operatives can also be increased
at a constant marginal cost through the use of conventional
resources. To simplify the discussion of the model and the
results on the tradeoffs facing the terrorist organization and
the optimal counter-terrorism strategies, we focus on the sim-
plest case in which each suicide operative has the same fixed
cost and the marginal costs of increasing force effectiveness
through the use of conventional resources in both normal and
suicide attacks are set to one. However, it is straightforward,
but somewhat tedious, to extend our results to allow for differ-
ing marginal costs and for the attacker to face increasing fixed

14 Most notably, Feinstein and Kaplan [15] is a dynamic model and
the authors use simulations to characterize optimal strategies, and
our model examines a weakest-link network of targets rather than a
single target.

Naval Research Logistics DOI 10.1002/nav
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costs for suicide operatives. Furthermore, our main results on
the tradeoff between conventional and suicide tactics hinge
on the cost-effectiveness of suicide operatives rather than
differences in the marginal costs.

Closely related is the literature on attacker–defender
games, also known as interdiction models, that feature a
sequential-move structure in which the defender is an exoge-
nously imposed leader, the defender maximizes his value for
the system, and the attacker’s objective is to minimize the
maximum value of the system. For example, Brown et al. [10]
consider a critical infrastructure model in which there are
complex network effects involving weakest-link substruc-
tures. In contrast to our weakest-link system approach, in
Brown et al. [10] the overall system is expected to operate in a
degraded fashion following a successful attack on a weakest-
link subsystem. This leads governments to identify weakest-
link infrastructure (subsystems) and terrorists to probe for
weakest links in the government’s payoff function(s). Our
model differs from this game — and from the attacker-
defender game literature in general — in terms of the struc-
tural asymmetry in the players’ objectives (weakest-link),
multiple modes of attack, and simultaneous-move structure.
With a sequential-move structure in which the defender is an
exogenously imposed leader, the defense has no opportunity
to conceal the allocation of forces and all attacker allocations
can be made contingent on given defensive allocations. How-
ever, in most applications defensive resources can either be
concealed or randomly allocated with sufficient speed that
it is difficult to argue that attacker allocations can be made
contingent on defensive allocations. This is certainly true in
the case of information or transportation network defense
or border defense, where either attackers must take actions
before being certain of the allocation of defensive resources
or where strategies like random monitoring or deployment
may be used by defenders. Indeed, in these contexts, exo-
genous leader structures seem rather implausible. Maybe this
is why the early literature on Blotto games expended sub-
stantial effort to solve the simultaneous move case, despite
the simplicity of the solution of sequential games of perfect
information.

The contest success function we use is a special case
of am/(am + dm) where a and d denote, respectively, the
attacker’s and defender’s effective expenditures, andm equals
infinity. However, it is not true that the existing literature
that uses this formulation is more general than our approach.
In simultaneous-move games this literature generally places
very severe restrictions on the exponent m to ensure the exis-
tence of a pure-strategy equilibrium. For a single contest with
linear costs, (the famous Tullock rent seeking model), a pure
strategy equilibrium exists only for m less than or equal to
2, and concavity in a player’s variable holds only for m less
than or equal to 1. For m greater than 2, as in the m = ∞
case, no pure-strategy equilibria exist. Although there has not

been a complete characterization of the equilibrium set for
the m > 2 case, except for Baye et al.’s [5] characterization
for m = ∞, we do know that there exist equilibria in one shot
contests that are payoff equivalent to the m = ∞ case when-
ever m > 2 (Baye et al. [4], Alcalde and Dahm [1]). Hence,
as argued in Konrad and Kovenock [34] simultaneous move
models with pure-strategy equilibria employing the form of
am/(am+dm) are not more general than all-pay auction-based
equilibria and hold only for a small range of the parameter
space of m. The interpretation of models with low m is that
they involve a sufficiently large amount of noise (see Kon-
rad and Kovenock [34] for a discussion of how much noise
is implied). Models with high m, with m = ∞ the limiting
case, are models with low or no noise.

The article proceeds as follows. In Section 2, we describe
a model of conflict with technologies of attack and defense in
terms of the players, their strategies, and payoffs. In Section
3, the model is solved with the result being a mixed strategy
Nash equilibrium. This characterization is consistent with the
observation that suicide terrorism is not the exclusive modus
operandi of the way in which terrorists broaden the impact
of their actions by creating an aura of uncertainty through
tactics that appear to be random. In particular, we are able to
characterize the frequency of suicide attacks and the nature
of terrorist “spectaculars,” whether of the suicide or con-
ventional variety. The final section contains brief concluding
remarks.

2. THE MODEL

2.1. Players and Strategies

We examine a complete-information, simultaneous-move,
one-shot game in which two players, an attacker, A, and a
defender, D, allocate their forces across a weakest-link net-
work consisting of a finite number, n ≥ 2, of homogeneous
targets. The defender chooses a level of a continuous (con-
ventional) one-dimensional defensive force for each of the
targets. The attacker can also choose a level of the conven-
tional (non-suicide) force for each target. For both players
conventional forces have a unit cost equal to one, and the
level of conventional force allocated to each target must be
nonnegative. In addition to a conventional attack, for each
target i the attacker has the opportunity to send any discrete
number of suicide operatives denoted by si ∈ {0, 1, 2, . . .}
(where si = 0 denotes no suicide attack) at cost c for each
operative which provides an effective force allocation of S

for each operative. Note that our focus is on suicide oper-
atives, an inherently discrete resource for the attacker. Let
s = (s1, s2, . . . , sn) denote the n-tuple of the attacker’s allo-
cation of suicide operatives across the n targets. Observe that
to get the same effect, with conventional forces, as a sui-
cide attack on target i with si suicide operatives, the attacker
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would have to allocate si · S units of the conventional forces
to target i. In addition, the attacker has the ability to con-
tinuously increase the force effectiveness of a suicide attack
by using conventional forces at a constant marginal unit cost
equal to one. That is, to launch a suicide attack on target i

with si operatives the attacker incurs a fixed cost of sic and
faces a constant marginal cost of one per unit of additional
force effectiveness beyond siS. Note that our assumption that
conventional forces can be used to augment the effectiveness
of a suicide attack does not imply that conventional forces
are utilized in the same manner in both types of attacks.

We focus on the case in which the suicide attack is strongly
efficient, c < S. For example, the improvised explosive
devices worn or carried by a suicide bomber can cost less than
$150 to produce and the bombers themselves are regarded as
expendable assets from the organizational perspective (Hoff-
man and McCormack [26]). Furthermore, the requirements
to be a successful suicide operative are not trivial, involving
a level of intelligence that exceeds what is required of opera-
tives in a conventional attack.15 The suicide attack technology
captures the notion that a tactic such as a suicide attack is a
discrete decision that, although cost effective, entails costs —
including recruitment, training, and the final force expendi-
ture. As Iannaccone [29] observes, the number of “martyrs”
is very small relative to the total number of the members in
the groups that use suicide terrorism.

2.2. Payoffs

Our focus is on a weakest-link network of targets, and
the players have asymmetric payoff functions reflecting the
structural asymmetry arising in the weakest-link network. For
each target, the player that allocates the higher level of force
wins that target. In the case that the players allocate the same
level of force to a target, the defender wins the target. For
the defender success consists of allocating at least as high a
level of force to all targets within the network. Conversely,
an attacker is successful if he allocates a higher level of force
to at least one target in the network.

For example, using Memorial Institute for the Prevention
of Terrorism (MIPT) data, Gassebner et al. [17, 18] find sta-
tistically significant evidence of a “one strike and you’re out”
phenomenon whereby the presence of at least one terror event
increases the likelihood of a cabinet change within a tar-
get government, with the likelihood of a change increasing
with the severity of attack. Furthermore, some targets them-
selves are, by definition, weakest links. The luggage transfer
of the suitcase bomb that downed Pam Am flight 103 is an

15 For example, Sageman [44] finds that the suicide operatives of
the global Salafist movement (which includes al-Qaeda) were far
more educated than the average person worldwide, with 60% having
college degrees.

example, as is the interdiction of a twin car bombing plot
against Saudi Arabia’s main oil processing facility (Econo-
mist [14]). Similarly, pipeline attacks in Nigeria have had a
significant impact on Nigerian oil production as well as on
crude prices internationally.

For the defender, let d = (d1, d2, . . . , dn) denote an n-
tuple of forces across the n targets. Similarly, let a =
(a1, a2, . . . , an) denote an n-tuple of the attacker’s conven-
tional forces, where ai denotes the attacker’s allocation of
conventional force to target i. Recall that s = (s1, s2, . . . , sn)

denotes the attacker’s n-tuple of suicide operatives. Given
that for each target i the attacker may utilize either conven-
tional or suicide tactics, we define the attacker’s effective
force allocation as follows.

DEFINITION 1: The attacker’s effective force allocation
for target i is equal to the allocation of the continuous conven-
tional resource to target i plus any and all suicide operatives
allocated to target i:

âi = ai + Ssi .

The n-tuple of the attacker’s effective force allocations is
denoted by â.

Observe that if the attacker has chosen an effective force
level of âi for target i such that S ≤ âi < 2S, it is clearly
cost minimizing for the attacker to set si = 1. Similarly,
given an effective force level of âi for target i such that
λS ≤ âi < (λ + 1)S for some integer λ, an optimizing
attacker has implicitly chosen si = λ. Note that any effec-
tive force level of âi such that λS + c < âi < (λ + 1)S

is provided at the lowest cost by using λ suicide operatives
combined with an investment of âi − λS additional units of
force effectiveness.16 However, the lowest cost of this effec-
tive force level is âi −λ(S −c), which is greater than the cost
of using λ+ 1 suicide operatives, attaining an effective force
level of (λ+1)S > âi . Consequently, no effective force allo-
cation âi such that λS + c < âi < (λ+1)S will be optimally
used by the attacker.

Success for the attacker is formally defined as follows.

DEFINITION 2: The weakest-link indicator function,
denoted by ιWL, takes a value of one if there exists a tar-
get i for which the attacker’s effective force (as defined in
Definition 1) exceeds the defensive forces allocated to that
target and takes a value of zero otherwise.

ιWL =
{

1 if ∃ i | âi > di

0 otherwise
.

16 If λ = 0, then these are conventional forces, but if λ > 0, then
this is an investment in continuously increasing the suicide attack
force effectiveness.
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In the event that all targets are successfully defended, the
weakest-link indicator function takes a value of zero, but if
any single attack is successful this indicator takes a value of
one. Again, this corresponds to a “one strike and you’re out”
implication for an incumbent target government (Gassebner
et al. [17, 18] and Rosenbaum [42]). It also refers to the
terrorist’s need to only be lucky once to highlight the govern-
ment’s vulnerability (King [32]). Alternatively, a collection of
specific targets (e.g., critical infrastructure) may intrinsically
exhibit a weakest-link network structure.

Although we focus on the case in which conventional
forces and suicide operatives are linearly additive, in practice
a terrorist organization may choose to send a suicide opera-
tive to a target and then follow that up with another attack on
the first responders. If such a technology dominates the pure
suicide-bomber technology, then in our model the combina-
tion of a suicide attack and follow up force could be treated
as a single unit which, given its cost structure and effective
force implications, would fit directly into our framework.17

The attacker’s (terrorist’s) payoff function is given by

πA(a, s, d) = vAιWL − c

n∑
i=1

si −
n∑

i=1

ai .

When any target is successfully attacked, so that ιWL = 1,
the terrorist receives the value of a successful attack, vA, less
the total cost of all suicide attacks (if any) and the cost of
all conventional attacks (if any). If no target is successfully
attacked these costs are still born by the terrorist. Also, we
have normalized the per unit cost of conventional forces to
one, and c represents the fixed cost per suicide operative.

The defender’s payoff function is given by

πD(a, s, d) = vD(1 − ιWL) −
n∑

i=1

di .

As in an insurance policy, the defender always pays the cost of
defense,

∑n
i=1 di . This is augmented by the value of a success-

ful defense, vD , when every target is successfully defended,
thereby reflecting a weakest-link vulnerability.

Given that terrorism is a form of asymmetric conflict with
respect to both the resource disparity and the structural exter-
nalities arising in the weakest-link network of targets, it will
be useful to introduce a simple summary statistic which cap-
tures both of these forms of asymmetry. Recall that the floor
function �x� gives the largest integer less than or equal to

17 We thank an anonymous referee for this example. Our assumption
that conventional forces and suicide operatives are linearly addi-
tive, and neither experience decreasing returns to scale, is clearly
restrictive. However, we consider it a reasonable starting point for
examining the problem. An obvious direction of extension is to more
general technologies.

x, and observe that � vA

c
� is the maximum number of suicide

operatives that the terrorist organization can profitably use.
Note that the maximum profitable expenditure for the

attacker (defender) is vA (vD), which if used solely by con-
ventional means, translates into a maximal effective force
of vA (vD). To capture the notion that terrorist organizations
have a relative resource disadvantage with respect to the tar-
get government, we focus on the case that vD > vA. However,
terrorist organizations also have the ability to utilize suicide
operatives. An allocation s of suicide operatives across the
targets increases the effective force by

∑
i siS at a cost of∑

i sic, implying that the maximal effective force that can be
allocated at a cost of vA is vA + � vA

c
�(S − c).

DEFINITION 3: The normalized relative strength of the
attacker, denoted by α, is the ratio of n times the attacker’s
maximal effective force allocation to the defender’s maximal
effective force allocation,

α = n(vA + ⌊
vA

c

⌋
(S − c))

vD

,

where α < 1 implies that the attacker is relatively disad-
vantaged and α > 1 implies that the attacker is relatively
advantaged. As α → 1 the situation becomes (relatively)
symmetric.

The coefficient n applies because under a weakest-link
structure the target government must successfully defend
all possible targets from potential attacks. Hence, for the
defender the maximum profitable expenditure that may be
allocated equally to all targets is vD/n. If α < 1, the attacker
is relatively disadvantaged, and the defender has the ability to
profitably apply to all n targets a level of force that is greater
than the level the attacker can profitably apply to a single
target. Conversely, if α > 1, then the attacker is relatively
advantaged, and the defender does not have the ability to
profitably apply to all n targets a level of force that is greater
than what the attacker can profitably apply to a single target.

Given the structural asymmetries arising in the weakest-
link network of targets, the normalized relative strength of
the attacker identifies whether or not the defender has the
ability to allocate more defensive forces to all n targets than
the amount of effective force the attacker can allocate to any
one target (α < 1 and α > 1, respectively). Furthermore, as
the normalized relative strength of the attacker approaches
unity we will refer to the conflict as being more symmetric,
where this symmetry takes into account both the resource and
structural asymmetries.

In the next section, we provide an equilibrium in our model
in which the attacker creates an aura of uncertainty over the
mode of attack, conventional and/or suicide, as well as the
identity of the target to be attacked. Hence, the defender faces
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strategic uncertainty over both the method of attack and the
identity of the target to be attacked.

3. EQUILIBRIUM AND CHARACTERIZATION

Note that in our formulation: (i) force expenditures are
sunk, (ii) force expenditures have a positive opportunity cost
and (iii) the player who allocates the higher level of force
to a target wins that target with certainty.18 Consequently, if
one player wins with certainty, then the other player’s best
response is the strategy vector 0, which minimizes cost in a
losing effort. Then, the winner will reduce the winning force
arbitrarily close to zero to reduce cost as well. But then, 0 is
no longer a best reply to this strategy. It clearly follows that
there is no pure strategy equilibrium for this class of games.

Let x denote a generic n-tuple of (effective) forces. For the
defender, a mixed strategy (which we term a distribution of
force for the defender) is an n-variate distribution function
PD : R

n+ → [0, 1], where PD(x) = Pr{di ≤ xi for all i}
denotes the probability that each di in a random n-tuple d
drawn from the n-variate distribution function PD is less than
or equal to the corresponding xi in the n-tuple x ∈ R

n+. Note
that the univariate marginal distribution of PD for the ith tar-
get, F i

D(xi) = Pr{di ≤ xi}, denotes the probability that at
target i the level of force di is less than or equal to xi .

For the attacker, a pure strategy is a 2n-tuple consisting
of the n-tuple of the attacker’s allocation of the continuous
resource across the n targets and the n-tuple of the attacker’s
allocation of suicide operatives across the n targets. It fol-
lows directly that our focus on the attacker’s effective force
allocation does not place any restrictions on the correlation
structures available to the attacker. To simplify the following
expressions we will focus on the attacker’s effective force
allocation.

A mixed strategy for the attacker (which we term a distri-
bution of effective force for the attacker) may thus be written
as an n-variate distribution function P̂A : R

n+ → [0, 1], where
P̂A(x) = Pr{âi ≤ xi for all i} denotes the probability that
the n-tuple of forces x ∈ R

n+ successfully defends each and
every target i from attack given that the attacker’s effective
allocation of force across the n targets, â, is a random n-tuple
drawn from the n-variate distribution function P̂A.

Below, we examine an equilibrium for all parameter con-
figurations in which neither the suicide attack technology is
prohibitively costly for the attacker (vA ≤ c) nor the defender
is so weak that suicide tactics are always suboptimal for the
attacker ( vD

n
< c). The remaining cases, as well as the proof

of our main theorem, are included in appendix.

18 More formally, the conflict at each target utilizes the deterministic
auction contest success function. See Baye et al. [5].

Recall that if there exists an integer λ such that λS ≤
âi < (λ + 1)S, then an optimizing attacker has implic-
itly chosen si = λ. In the analysis that follows it will
also be helpful to define the following two functions, for
x, x̂ ∈ [0, (� vA

c
� + 1)S]n and λ = 0, . . . , � vA

c
�

g(xi) =
{

xi − λ(S − c) if λS ≤ xi < λS + c

(λ + 1)c if λS + c ≤ xi < (λ + 1)S

and

h(x̂i) =
{

x̂i if λS ≤ x̂i < λS + c

λS + c if λS + c ≤ x̂i < (λ + 1)S
.

To interpret g(xi) and h(x̂i) note that it is suboptimal for
a cost-minimizing attacker to allocate an effective force of
x̂i ∈ (λS+c, (λ+1)S) for any integer λ = 0, . . . , � vA

c
� [doing

so is strictly dominated by the effective force x̂i = (λ+1)S].
For the defender, this suboptimal region corresponds to force
allocations xi ∈ (λS + c, (λ + 1)S) for any integer λ =
0, . . . , � vA

c
�. Over the set of attacker’s cost-minimizing effec-

tive force levels and the corresponding defensive force levels
[i.e., x̂i , xi ∈ [λS, λS + c] for any integer λ = 0, . . . , � vA

c
�],

the functions g(xi) and h(x̂i) identify the attacker’s mini-
mal cost for allocating an effective force equal to xi units of
defensive force and the defender’s minimal cost for allocating
force equal to x̂i units of effective attack force, respectively.
For x̂i , xi ∈ (λS+c, (λ+1)S), the function g(xi) is completed
by inserting the attacker’s cost of effective force allocation
at the upper endpoint of the interval, where λ + 1 suicide
operatives are used, and the function h(x̂i) is completed by
inserting the defender’s cost of force allocation at the lower
endpoint of the interval.

THEOREM 1: A Nash equilibrium of the model of terror-
ism with suicide attack is for each player to allocate his forces
as follows.

a. If α < 1, then for player D and x ∈ [0, vA+� vA

c
�(S−

c)]n,

PD(x) = mini{g(xi)}
vA

(1)

Similarly for player A and x̂ ∈ [0, vA + � vA

c
�(S −

c)]n,

P̂A(x̂) = 1 − α +
∑

i h(x̂i)

vD

(2)

The expected payoff for player A is 0, and the
expected payoff for player D is vD(1 − α).

b. For α ≥ 1 and c ≤ (vD/n), let λ̄ be the largest
nonnegative integer such that λ̄S < vD

n
.
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Figure 1. Supports of case (a) equilibrium joint distributions with � vA
c

� and n = 2.

i. If λ̄S < vD

n
< λ̄S + c, then for player D and

x ∈ [0, (vD/n)]n,

PD(x) = 1 − (vD/n) − λ̄(S − c)

vA

+ mini{g(xi)}
vA

(3)

Similarly for player A and x̂ ∈ [0, (vD/n)]n,

P̂A(x̂) =
∑

i h(x̂i)

vD

(4)

The expected payoff for player A is vA −
(vD/n) + λ̄(S − c), and the expected payoff for
player D is 0.

ii. If λ̄S + c ≤ vD

n
≤ (λ̄+1)S, then for player D and

x ∈ [0, λ̄S + c]n,

PD(x) = 1 − (λ̄ + 1)c

vA

+ mini{g(xi)}
vA

(5)

Similarly for player A and x̂ ∈ [0, (λ̄ + 1)S]n,

P̂A(x̂) =
∑

i

[
min

{
h(x̂i),

vD

n

}]
vD

(6)

The expected payoff for player A is vA − (λ̄ +
1)c, and the expected payoff for player D is 0.

Figure 1 provides the supports of the equilibrium distri-
butions of effective force for case (a) of Theorem 1 with
� vA

c
� = 2 and only two targets in the weakest-link network

(n = 2).19 In case (a), as in all cases, the attacker launches an
attack on at most one target. Note also that in case (a), as in all
cases, the defender’s allocation of force has perfect positive
correlation. One property of this correlation structure is that
for any given level of force the probability that the attacker
destroys at least one target is maximized if the attack is on a
single target. As a result the attacker launches an attack on at
most one target and may simultaneously use more than one
suicide operative in the attack. When as in case (a) the nor-
malized relative strength of the attacker is less than one, the
attacker launches at most one attack and launches no attacks
with probability 1 − α. Figure 2 provides the supports of the
equilibrium distributions of effective force for subcase (i) of
case (b) of Theorem 1 with � vA

c
� = 2 and only two targets in

the weakest-link network (n = 2). In this case, the attacker
launches exactly one attack with certainty. The equilibrium
number of attacks is summarized in corollary 1.

COROLLARY 1: In cases (a) and (b) of Theorem 1, for
any realization of his equilibrium strategy, the attacker attacks
at most one target. In any case (b) realization the attacker
launches an attack on exactly one target. In case (a), the
attacker’s equilibrium strategy attacks a single target with
probability α, and launches no attacks with the remaining
probability.

The proof of corollary 1 is contained in the proof of The-
orem 1 given in appendix. It is important to note that our
formulation of attack and defense features endogenous entry
and force expenditure decisions and allows for the players
to use general correlation structures for force expenditures

19 Recall that the support of an n-variate distribution function P , is
the complement of the union of all open sets of R

n with P -volume
zero.
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Figure 2. Supports of case (b), (i) equilibrium joint distributions with λ̄ = 2 and n = 2.

across the targets within the weakest-link network.20 In con-
trast, much of the existing literature [e.g., Bier et al. [7] and
Rosendorff and Sandler [43] among others] assumes that the
number of terrorist attacks (which is usually set to one) is
exogenously specified. Additionally, several of the existing
models which allow for the attacker to endogenously choose
the number of targets to attack21 obtain the paradoxical result,
that even when (as in a weakest-link network) the attacker’s
objective is to destroy a single target, the attacker optimally
chooses to attack every target with certainty. Conversely, we
find that the attacker optimally chooses to attack at most one
target, but each target is chosen with positive probability.

Given the endogenous number of targets that are attacked
in the equilibrium given in Theorem 1, we now examine (i)
the probability of a suicide attack conditional on an attack
being made and (ii) the expected number of suicide opera-
tives that are utilized conditional on a suicide attack being
launched. Recall that if λS ≤ âi < (λ + 1)S then an opti-
mizing attacker has implicitly set si = λ. Let c and 0 denote
the n-tuples (c, . . . , c) and (0, . . . , 0), respectively. The con-
ditional probability that the attacker launches at least one
suicide attack is given by (1 − P̂A(c))/(1 − P̂A(0)), where
P̂A(·) is player A’s distribution of effective force. Recall that
P̂A(c) = Pr{âi ≤ c for all i} is the probability that no attack
exceeds level c — and therefore does not require suicide
operatives — and 1 − P̂A(c) is the probability of at least
one suicide attack. Similarly, P̂A(0) is the probability of no
attack and 1− P̂A(0) is the probability that at least one attack
is made. In case (a), the conditional probability of suicide

20 See also Kovenock and Roberson [35].
21 Most closely related is Clark and Konrad [11] who, utilizing
the Tullock contest success function, also examine a weakest-link
network.

attack is 1 − (c/(vA + � vA

c
�(S − c))). In case (b), the condi-

tional probability of suicide attack is 1 − (nc/vD). Although
the upper bound of the number of equilibrium suicide oper-
atives � vA

c
� is not continuously differentiable with respect to

vA and c, it follows that — in cases (a) and (b) and for all
marginal changes which hold � vA

c
� constant — the condi-

tional probability that the attacker utilizes a suicide attack is
decreasing in the cost of a suicide operative, c.

Recalling that the normalized relative strength of the
attacker is the relevant measure of the symmetry of the
conflict, consider two simple symmetry increasing transfor-
mations corresponding to the attacker having a normalized
relative strength advantage and disadvantage, repectively.
The simple transformation for the case in which the attacker
has a normalized relative strength disadvantage [case (a) of
Theorem 1], which we term a “cost invariant increase in the
attacker’s relative strength,” corresponds to an increase in
the expression vA + � vA

c
�S, where again we focus on mar-

ginal changes which hold � vA

c
� constant.22 In case (a), any

simple transformation of this form results in an increase
in the normalized relative strength of the attacker which
approaches one from below. The simple transformation for
the case in which the attacker has a normalized relative
strength advantage [case (b) of Theorem 1], which we term a
“relative increase in the defender’s strength,” corresponds to
an increase in the expression (vD/n). In case (b), a relative
increase in the defender’s strength leads to a decrease in the
normalized relative strength of the attacker which approaches
one from above.

In case (a), the normalized relative strength of the attacker
is less than one, and for all cost invariant increases in the

22 This restriction allows for all marginal changes such that S
increases and/or vA increases, subject to � vA

c
� remaining constant.
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attacker’s relative strength the conditional probability of sui-
cide attack is increasing. Similarly, in case (b), the normalized
relative strength of the attacker is greater than one, and for
all relative increases in the defender’s strength the condi-
tional probability of suicide attack is increasing. That is, the
more symmetric the conflict the more likely the attacker is to
utilize suicide operatives when an attack is launched. These
properties of the conditional probability of suicide attack are
summarized in corollary 2.

COROLLARY 2: In cases (a) and (b) of Theorem 1, the
conditional probability that the attacker utilizes at least one
suicide operative is: (i) decreasing with respect to the cost
of suicide operatives, and (ii) increasing with respect to
our two simple symmetry increasing transformations of the
environment.

The characterization above indicates that although terror-
ist organizations attack at most one target, suicide operations
are not the exclusive modus operandi even when such oper-
atives are available; the terrorist leadership randomizes over
conventional and suicide tactics. For example, al-Qaeda has
been associated with conventional (non-suicide) events such
as the Madrid train station bombing, the Al-Khobar mas-
sacres in Saudi Arabia, and 2007 attempted car bombings
of Piccadilly Circus and Trafalgar Square. As noted by San-
dler et al. [45], terrorists broaden their audience beyond the
immediate victim by making their attacks and tactics appear
to be random, so that everyone feels at risk. Furthermore, the
use of suicide operatives is an increasing function of the rel-
ative symmetry of terrorists and target governments. This is
a novel insight given that the literature on terrorism almost
exclusively emphasizes the resource asymmetry between
target governments and terrorists but does not incorporate
alternative technologies of attack or defense. Our measure
of symmetry, α, captures the potential for the weakest-link
technology to balance resource disparities. In particular, sym-
metry within a weakest-link framework leads to an increased
likelihood of suicide attack.

Moreover, terrorist organizations not only randomize over
the use of suicide and conventional tactics but also the level
of effective force. In the case of a suicide attack, this involves
randomization over the number of suicide operatives that
are utilized. Recalling that the probability that the attacker
launches a suicide attack is 1 − P̂A(c), the case (a) expected
number of suicide operatives conditional on a suicide attack
being launched is

∑� vA
c �−1

i=1
i(P̂A(iS + c) − P̂A((i − 1)S + c))

+ ⌊
vA

c

⌋ (
1 − P̂A

((⌊ vA
c

⌋ − 1
)

S + c
))

1 − P̂A(c)

Table 1. Expected number of suicide operatives conditional on
the launch of a suicide attack.

Case (a) � vA
c

� −
(

� vA
c �( � vA

c �−1
2 )S

vA+� vA
c �(S−c)−c

)

Case (b) (i) λ̄ −
(

λ̄( λ̄−1
2 )S

vD
n −c

)

Case (b) (ii) (λ̄ + 1) −
(

λ̄( λ̄+1
2 )S

vD
n −c

)

where again the bold notation iS + c denotes the n-tuple
(iS + c, iS + c, . . . , iS + c) and the term P̂A(iS + c) −
P̂A((i − 1)S + c) is the probability that the attacker allo-
cates exactly i suicide operatives. In case (b) (i) [case (b)
(ii)], the expected number of suicide operatives conditional
on a suicide attack being launched is similarly calculated by
replacing each � vA

c
� in the above expression with λ̄ [(λ̄+1)].

Table 1 provides the expected number of suicide operatives
conditional on a suicide attack being launched in each of the
three cases of Theorem 1.

As was the case with the conditional probability that the
attacker launches a suicide attack, the expected number of sui-
cide operatives conditional on a suicide attack being launched
is decreasing with respect to the cost of each suicide opera-
tive. Furthermore, in case (a), the expected number of suicide
operatives conditional on a suicide attack being launched is
increasing for all cost invariant increases in the attacker’s
relative strength, and in case (b) the expected number is
increasing for all relative increases in the defender’s strength.
That is, the expected number of suicide operatives conditional
on a suicide attack being launched increases as the conflict
becomes more symmetric, according to the normalized rel-
ative strength of the attacker. The properties of the expected
number of suicide operatives conditional on a suicide attack
being launched are summarized in Corollary 3.

COROLLARY 3: In cases (a) and (b) of Theorem 1, the
expected number of suicide operatives conditional on the
attacker launching a suicide attack is: (i) decreasing with
respect to the cost of each suicide operative, and (ii) increas-
ing with respect to the two simple symmetry increasing
transformations of the environment.

As highlighted above, the level of symmetry in the conflict,
which depends on both the characteristics of the players and
those of the weakest-link network, is a pivotal determinant
of the optimal attack and defense strategies. In particular,
note that in case (a) the attacker launches at most one attack
and launches no attacks with positive probability. However,
the probability that the attacker launches an attack is weakly
increasing as the normalized relative strength of the attacker
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approaches unity (i.e., as the conflict becomes more sym-
metric). Thus, for both of the simple symmetry increasing
transformations of the environment: (i) the probability of a
terrorist event weakly increases, (ii) the conditional probabil-
ity that such an event involves a suicide attack increases and
(iii) the expected number of suicide operatives conditional on
a suicide attack increases. Although the logic of this result is
straightforward, this does complicate the conventional wis-
dom that an increase in the frequency and magnitude of
terrorist attacks (of either the conventional or suicide variety)
signals desperation on the part of a weakened terrorist orga-
nization. In particular, this popular characterization applies
only in the case that the attacker has a normalized relative
strength advantage. If the the attacker is disadvantaged with
respect to his normalized relative strength, then an increase
in the frequency and magnitude of terrorist attacks signals
that the terrorist has actually become relatively stronger and
the conflict has become more symmetric.

4. CONCLUSION

In this article, we examine a model of terrorism which
focuses not on the rationality of suicide operatives, but on
the tradeoffs facing a terrorist organization that has the ability
to utilize either or both suicide terrorism tactics and conven-
tional tactics. A second feature of our focus is weakest-link
networks of targets and the structural asymmetries between
attack and defense. In this context, we find that the attacker
endogenously launches at most one attack. The attacker ran-
domizes over exclusively using a conventional attack and
exclusively using a suicide attack each with positive probabil-
ity. Conditional on an attack being launched, the probability
of a suicide attack depends on both the structural asymmetry
arising in the weakest-link network and asymmetry between
the characteristics of both the attacker and the defender.
Indeed, we show that the strategic implications of asymme-
try between terrorists and target governments cannot be fully
captured by differences in available resources but must also
take into account the technologies of attack and defense. The
availability of suicide operatives acting against a weakest-link
defense can lead to a previously unrecognized symmetriza-
tion of conflict. As the conflict becomes more symmetric,
suicide attacks are more likely to occur, and, conditional on a
suicide attack being launched, the expected number of suicide
operatives is increasing.

This article contributes to the analysis of the logic of sui-
cide terrorism in finding that suicide operatives represent a
discrete increase in terrorists’ effective force that can sym-
metrize their conflict with target governments. This is particu-
larly the case when governments are subject to a weakest-link
defense technology (or definition of successful counterterror
policy), as investigated here. Governments would do well by

deemphasizing the importance of an individual attack and
continuing with everyday life, as is often the case in Europe,
whereas US policy continues to be cast in terms of publicly
emphasizing terrorists’ success. Under such a policy change
extensions to our model that recognize alternative technolo-
gies and/or multiple terror attacks may come into play.

APPENDIX

This appendix contains the proof of Theorem 1 and the statement of
Theorem A.1, which provides an equilibrium in the remaining parameter
configurations [i.e., the suicide attack technology is prohibitively costly for
the attacker (vA ≤ c) or the defender is so weak that suicide tactics are
suboptimal for the attacker (

vD
n

< c)].

THEOREM A. 1: For the remaining parameter configurations a Nash
equilibrium of the model of terrorism is for each player to allocate his forces
as follows:

(c) If α < 1 and vA ≤ c, then for player D and x ∈ [0, vA]n,

PD(x) = mini{xi}
vA

(7)

Similarly for player A and x̂ ∈ [0, vA]n,

P̂A(x̂) = 1 − nvA

vD

+
∑

i x̂i

vD

(8)

The expected payoff for player A is 0, and the expected payoff for
player D is vD − nvA.

(d) If (i) α ≥ 1 and (vD/n) < c ≤ S, then for player D and x ∈
[0, (vD/n)]n,

PD(x) = 1 − vD

nvA

+ mini{xi}
vA

(9)

Similarly for player A and x̂ ∈ [0, (vD/n)]n,

P̂A(x̂) =
∑

i x̂i

vD

(10)

The expected payoff for player A is vA − (vD/n), and the expected
payoff for player D is 0.

PROOF OF THEOREM 1: This proof, which is for case (a), shows that
the pair of joint distribution functions PD and P̂A form a Nash equilibrium
in mixed strategies. In particular, we show that for each player each point
in the support of their equilibrium n-variate distribution functions (stated in
Theorem 1) results in the same expected payoff, and there are no profitable
deviations from this support. The proofs of cases (b)–(d) follow along similar
lines. �

We begin with the support of each player’s case (a) equilibrium distribu-
tion of force. For yk ≤ zk for all k = 1, 2, . . . , n, let [y, z] denote the n-box
B = [y1, z1] × [y2, z2] × . . . × [yn, zn], the Cartesian product of n closed
intervals. The vertices of an n-box B are the points (v1, v2, . . . , vn) where
vk is equal to yk or zk . Recall the following two definitions.

DEFINITION 4: Given an n-variate distribution P , the P -volume of the
n-box [y, z] is given by

VP ([y, z]) = �zn
yn

�
zn−1
yn−1 . . . �z2

y2
�z1

y1
P(t)
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where

�zk
yk

P (t) = P(t1, . . . , tk−1, zk , tk+1, . . . , tn) − P(t1, . . . , tk−1, yk , tk+1, . . . , tn)

DEFINITION 5: The support of an n-variate distribution function, P , is
the complement of the union of all open sets of R

n with P -volume zero.

Given Definitions 4 and 5, it is straightforward to show that in all fea-
sible case (a) parameter configurations the support of player D’s equilib-
rium distribution of force is uniformly distributed along the following set
of line segments.23 One line segment connects the origin with the point
c ≡ (c, c, . . . , c). For μ = 1, . . . , � vA

c
� − 1 there are also line segments

connecting the points μS to the point μS + c. If vA − c� vA
c

� > 0, then
there is also a line segment that connects the point � vA

c
�S to the point

vA + � vA
c

�(S − c). Similarly, the support of player A’s effective distribu-
tion of force consists of the combination of a set of mass points and mass
uniformly distributed along a set of line segments both of which are located
on the axes. One mass point of size 1−α is located at the origin. On each axis
i there are � vA

c
� mass points of size S−c

vD
located at the points x̂i = μS for

μ = 1, . . . , � vA
c

�. There is one line segment on each axis from the origin to
the point x̂i = c. On each axis i and for μ = 1, . . . , � vA

c
� − 1, there are also

line segments from x̂i = μS to x̂i = μS+c. If vA−c� vA
c

� > 0, then there is
also a line segment on each axis i from x̂i = � vA

c
�S to x̂i = vA+� vA

c
�(S−c).

For each point in the support of player D’s strategy, player D must have
the same expected payoff. Let D denote the set of n-tuples x such that
μ̃S ≤ xi ≤ min{μ̃S + c, vA + � vA

c
�(S − c)} for μ̃ = 0, . . . , � vA

c
� and

i = 1, . . . , n. Note that the support of player D’s equilibrium strategy is a
strict subset of D.

If player A is using the equilibrium strategy P̂A given in (2), then the
expected payoff to player D for any allocation of force d ∈ R

n+ is

πD(x, P̂A) = vDP̂A(d) −
∑

i

di . (11)

From Eq. (2), the probability that with an allocation of d player D wins every
target i is

P̂A(d) = 1 − n(vA + ⌊
vA
c

⌋
(S − c))

vD

+
∑

i h(di )

vD

. (12)

Inserting Eqs. (12) into (11) and simplifying, the expected payoff to player
D from any allocation d ∈ D, is vD − n(vA + � vA

c
�(S − c)). Thus, as

the support of player D’s equilibrium strategy is contained in D, each point
in the support of the n-variate distribution function PD results in the same
expected payoff.

To show that there are no profitable deviations from this support, note that
for μ̃ = 0, . . . , � vA

c
� it is clearly suboptimal for player D to allocate a level of

force di to any target i = 1, . . . , n such that min{μ̃S+c, vA+� vA
c

�(S−c)} <

di < (μ̃ + 1)S. In any such allocation, player D could decrease his cost
without changing his probability of winning all of the targets by setting
di = min{μ̃S + c, vA + � vA

c
�(S − c)}. That is, it is suboptimal for player D

to allocate a level of force above vA + � vA
c

�(S − c) or to allocate a level of
force between μ̃S + c and (μ̃+ 1)S to any target. However, this rules out all
n-tuples in R

n+ − D from being profitable deviations. As established above
all n-tuples in D yield the same expected payoff. Thus, for player D there
are no profitable deviations from the distribution of force PD given in (1).

The case of player A is similar. For each point in the support of player A’s
strategy, player A must have the same expected payoff. Note that the support

23 Figure 1 shows that for � vA
c

� = 2 and n = 2 the support of player
D’s distribution of force PD is uniformly distributed along the three
shaded line segments.

of P̂A consists of all effective force allocations â ∈ R
n+ such that there exists

exactly one target i in which μ̃S ≤ âi ≤ min{μ̃S +c, vA +� vA
c

�(S −c)} for
μ̃ = 0, . . . , � vA

c
� and âi′ = 0 for all i′ �= i. Clearly, it is cost minimizing for

the attacker to set si = μ̃. Thus, âi = ai +μ̃S and, it follows that 0 ≤ ai ≤ c

for the one target that receives a positive level of effective force.
Given that player D is using the equilibrium strategy PD given in (1) the

expected payoff to player A from an effective force allocation â from the
support of P̂A in which μ̃S ≤ âi ≤ min{μ̃S + c, vA + � vA

c
�(S − c)} is

πA(â, PD) = vAPD

(
âi ,

{
vA +

⌊ vA

c

⌋
(S − c)

}
i′ �=i

)
− μ̃c − ai (13)

where PD(âi , {vA + � vA
c

�(S − c)}i′ �=i ) is the probability that player A wins
target i. Note that PD(âi , {vA +� vA

c
�(S − c)}i′ �=i ) is the univariate marginal

distribution of PD for the ith target, which we will henceforth denote as F i
D .

From Eq. (1), it follows that for any effective force allocation in the support
of P̂A player A’s expected payoff is

πA(â, PD) = vA

(
g(âi )

vA

)
− μ̃c − ai = 0

as g(âi ) = ai + μ̃c for all such points.
We now show that there are no profitable deviations from the support of

player A’s equilibrium joint distribution. Note that if player A attacks only
one target i, then it is clearly suboptimal for player A to allocate a level of
effective force âi such that min{μ̃S+c, vA+� vA

c
�(S−c)} < âi < (μ̃+1)S.

That is, it is clearly strictly dominated for player A to allocate an effective
level of force above vA+� vA

c
�(S−c) or to allocate an effective level of force

strictly between μ̃S+c and (μ̃+1)S to target i. The only remaining possible
deviation from the support is for player A to allocate a strictly positive level
of effective force to two or more targets.

The probability that player A wins both targets i and i′ is given by the
bivariate marginal distribution PD(âi , âi′ , {vA +� vA

c
�(S −c)}i′′ �=i,i′ ), which

we will denote as P
i,i′
D (âi , âi′ ). The expected payoff to player A for any

allocation of force â ∈ R
n+ which allocates a strictly positive level of force

to two targets i, i′ is

πA(â, PD) = vAF i
D(âi ) + vAF i′

D(âi′ ) − vAP
i,i′
D (âi , âi′ )

− (ai + csi ) − (ai′ + csi′ ).

Simplifying,

πA(â, PD) ≤ −vAP
i,i′
D (âi , âi′ ) < 0

where the left-hand weak inequality holds with equality if for k = i, i′ there
exist μ̃k ∈ [0, . . . , � vA

c
�] such that âk ∈ [μ̃kS, min{μ̃kS +c, vA +� vA

c
�(S −

c)] and âk = ak + μ̃kS. Furthermore, P
i,i′
D (âi , âi′ ) > 0 as âi , âi′ > 0,

and thus it is unprofitable for player A to allocate a strictly positive level of
effective force to two targets.

The case of player A allocating a strictly positive level of force to more
than two targets follows directly. Clearly, in any optimal strategy player A

never allocates a strictly positive level of force to more than one target. This
concludes the proof that in case (1) the pair of joint distribution functions
PD and P̂A constitute a Nash equilibrium of the model of terrorism with
suicide attack. The proofs of cases (b)–(d) follow a similar line of argument.
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