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ASSET MARKET REACTIONS TO NEWS: 

AN EXPERIMENTAL STUDY 

Gunduz Caginalp 

David Porter 

Li Hao 

March 1, 2010 

 

Abstract 

An experimental asset market is used to test the effect of news concerning the underlying value 

of an asset on its trading price. Participants were divided into two groups and received different 

expected earnings values. Statistical support is found for the hypothesis that investors underreact 

to news on asset valuation. The results are consistent with the viewpoint that price and valuation 

history have a significant effect on trader behavior. Two sets of experiments involve a single 

asset with the same final earnings at the end of the experiment. Expected earnings are updated at 

the midpoint of the market trading. The two sets of experiments have different expectations of 

earnings during the first half of the experiment, which became identical after the midpoint. 

Despite this, the trading prices for the two sets of experiments differ significantly even after their 

expected earnings coincide. This provides support for underreaction and indicates that decision 

makers tend to ―anchor‖ their price expectations to preexisting prices and/or valuations.  
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1. Introduction 

In classical finance, there is the assumption of informed investors who possess a huge amount 

of capital and public information and can exploit any market inefficiency, thereby restoring the 

asset price to its true value. Furthermore, although not everyone will agree on the correct value 

of a security, the market acts as though there were unanimity among market participants on this 

assessment. Thus the classical theory would stipulate that the perturbations in asset prices have 

two sources: one is due to the randomness of the news entering the market, the other to a small 

amount of randomness due to mistakes made by some investors that are quickly exploited by the 

better informed. 

Although this viewpoint is espoused by many academic theorists and practitioners offering 

index funds, it is sharply challenged by market practitioners, particularly those who are involved 

in managed funds. These practitioners—who typically charge 1 or 2 percent of the fund’s value 

per year for selecting assets to hold in their portfolio and timing their purchases and sales—

believe that there are a number of factors that distort prices, enabling a skilled manager the 

opportunity to buy at bargain prices and sell at full value or higher. In fact, hedge fund managers 

typically charge these fees plus about 30 percent of the yearly profits. Hence the debate over 

market efficiency is more than academic. 

This assertion that asset markets are efficient because they instantaneously incorporate all 

public information into a unique assessment of value via asset prices has been questioned from a 

number of perspectives. Studies of market data have often concluded that market volatility is 

excessive when measured against classical concepts of valuation (see, e.g., Shiller 1981; Pontiff 

1997). There are also a number of empirical market studies suggesting systematic underreaction, 
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including Lys and Sohn (1990), Abarbanell and Bernard (1992), Ali, Klein, and Rosenfeld 

(1992), and Elliot, Philbrick, and Wiedman (1995). 

The empirical market evidence for both overreaction and underreaction leads to the important 

questions of determining whether there are fundamental biases that underlie these observations. 

This suggests that experimental asset markets can be very useful because experiments can be 

repeated and modified. 

The question of whether prices underreact to new information has been explored in an 

experimental setting without disparate information by Gillette et al. (1999), who examined 

forecasts and trading on the final in response to releases of public information. They showed that 

both forecasts and trading prices underreact to the public signals. 

Stevens and Williams (2004) showed that the forecast data reveal systematic underreaction to 

both positive and negative information and that the underreaction is generally greater for positive 

information than for negative information. 

Welfens and Weber (2004) showed that following a positive shock in fundamental value, 

prices underreact strongly; following negative shocks, they find evidence of a much less 

pronounced underreaction. After the shock, prices in both situations slowly drift toward the new 

fundamental value. 

In a set of experiments, Nosic and Weber (2009) found overreaction to new information both 

in stock price forecasts and transaction prices. They also found that subjects are not able to learn 

from their previous failures and thus do not correct their erroneous beliefs.  

The possibility that large investors may have systematic biases, such as overreaction or 

underreaction, has led to the growing area known as behavioral finance. Among these biases is 

the concept of anchoring, whereby a decision maker focuses on a particular value or set of 
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values for the asset and neglects the possibility that the true value is very different from these 

(Shefrin 2005). Another is the concept of affect, whereby an attractive and appealing idea 

mesmerizes the investor so that a realistic assessment of value is short-circuited (Slovic et al. 

2002). Analogously, a company that is involved in a business that is unpleasant or unexciting 

will often be out of favor. Oil companies are often considered to be within this ugly-duckling 

group until energy prices soar. Often a stock or industry that is out of favor tends to remain at 

suppressed prices (i.e., a trading price that is low by measures of price/earnings, price/book 

ratios, etc.), reinforcing the undesirability. There is also the possibility that a stock with a 

suppressed price is also a victim of anchoring; that is, investors have become accustomed to 

observing the low stock price and are skeptical of any improvement in price, and thereby fail to 

react optimally when there is evidence that the situation has turned around. Hence this could be a 

fundamental origin of underreaction and could be tested experimentally. Alternatively, if the 

market price were to increase disproportionately to news of improving prospects, it would suffer 

from an overreaction to news. Both under- and overreaction have been noted in the literature.  

One of the underlying causes for overreaction may be explained through the 

representativeness heuristic. Grether (1980) examined the evidence on representativeness 

heuristics from an experimental perspective. In his experiment, subjects were first given two 

different prior probabilities presented by two bingo cages. Six balls were then drawn sequentially 

with replacement from one of the bingo cages, based on which subjects estimated which bingo 

cage the balls were drawn from. Grether found that subjects gave too much weight to the new 

evidence and too little weight to the objective prior probabilities (though the priors are not 

ignored, especially with experienced subjects). He also found that financial incentives did little 



Page 5 of 49 

to improve on estimate accuracy among inexperienced subjects. His results confirmed previous 

evidence on overreaction due to representativeness heuristics. 

There may be many other reasons for overreaction in the markets. For example, in a 

competitive situation (e.g., a money manager who must keep up with the index average 

performance), one might recognize that some news is not terribly significant in the long run but 

may fear that others will not share this calculation. Hence there is an incentive to increase one’s 

positions in an asset based on the uncertainty involving others’ reactions. As noted by Smith, 

Suchanek, and Williams (1998), even when there is no uncertainty about the ultimate earnings, 

there is the uncertainty involving others’ actions. In the fundamental experiments of Beard and 

Beil (1994), it was noted that while agents seek to self-optimize, they tend not to rely on the self-

optimization of others. Thus, in any situation in which there are two different calculations, one of 

them biased, a trader who recognizes the flaws in the biased reasoning must nevertheless worry 

that many others could be subject to it and that there could be a movement toward the prices 

reflecting the biased reasoning. 

The fundamental causes of underreaction are also complex. Practitioners have long noted that 

investors tend to use reference points to make their decisions. In particular, they are aware of the 

price at which they purchased the asset and would like to avoid a loss. In this way, they ―frame‖ 

their decisions and ―anchor‖ potential trades about values such as the purchase price. Kahneman 

and Tversky (1979) popularized this concept through a series of small experiments in which they 

asked participants questions about their preferences. The two sets of questions were identical in 

terms of the expected value but differed in that one set framed the choice as a loss, while the 

other framed it as a gain. Extrapolating from this theory (see also Shefrin 2005) suggests that 

someone who purchased a stock at $50 and observed it fluctuating between $40 and $50 might 
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have an incentive to sell when the price reaches $50 once again. Consequently, as the stock 

moves from $40 toward $50, a person receiving a signal that the probability of the stock reaching 

$60 is significantly higher would hold if he were evaluating the situation objectively but sell if he 

were strongly influenced by the anchoring bias. As the price reaches $50, the trader has the 

opportunity to avoid a loss, which prospect theory advocates suggest is a strong motivation to 

trade at $50. Hence one might postulate from prospect theory that anchoring is a fundamental 

cause of underreaction. 

In a particular situation, the various behavioral effects can suggest biases that are in different 

directions. For example, a slightly positive signal on the value of an asset might suggest 

overreaction through representativeness theory but underreaction due to prospect theory and 

anchoring. Distinguishing between the two in market situations is the focus of our research. 

In a typical market situation, an asset (e.g., common stock) trades each day, and relevant 

information (such as an earnings report) is released at the end of the trading day. As in Grether’s 

(1980) study, overreaction to new information about the final dividend due to representativeness 

heuristics is possible in such environments. However, a significant difference between this 

environment and that of Grether (1980) is that continuous trading may have the tendency to 

establish a price through repetition and reinforcement, which provides an example of anchoring 

whereby a decision maker focuses on the price history and neglects the possibility that the true 

value is very different (Shefrin 2005). Therefore persistent trading at a low price for an extended 

period might lead to an underreaction to the announcement due to anchoring at the lower price 

that has been established during the trading period. Thus a dynamical setting rather than a static 

or two-step process has some additional richness. 
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While efficient market theorists view the trading price as a harmonious unanimity on the 

value of the security, many practitioners view it as a tug-of-war between different camps. The 

small fluctuations about a single value may appear superficially as an equilibrium but in fact 

comprise a tense stalemate that is ultimately resolved, sometimes with a small amount of 

additional buying or selling arising from new information. It is very common for different large 

investment houses to offer completely incompatible assessments on everything from stocks to 

commodities to currencies. However, even as they espouse very different views, they optimize 

their trading by placing their trades as close to the other camp as they are able. In other words, if 

one investment company values a stock at $50 and another at $100 while the stock is trading at 

$75, the company trying to buy will not do so at $100. They will try to buy as low as possible, 

namely, near $75. Hence a casual observer of the market price will see the price fluctuating close 

to $75 and may conclude, falsely, that there is general agreement among market participants that 

this is the true value. Thus an experiment designed to understand market behavior can be made 

more realistic by giving disparate information to different groups. This can also be used to 

understand the interaction between the assets of the groups and their assessment of value.  

To meet this objective, we design a set of experiments in which there are two ten-minute 

rounds separated by a short break. Participants trade an asset with a single payment occurring at 

the end of the second round. The traders are classified into two distinct groups receiving different 

information but trade without the knowledge of the other group’s information. In the baseline 

experiments, there is no change in the earnings probabilities during the break. In the second set 

of experiments, however, one or both groups have updated information that improves the 

expected earnings, thereby matching the earnings in the baseline treatments. Hence the 

anticipated earnings are identical for both groups during the entire second half of the two sets of 
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experiments. In the absence of either underreaction or overreaction, there should be no statistical 

difference between the two treatments. If the second set of experiments has higher (or lower) 

trading prices than the baseline treatment, it would suggest overreaction (or underreaction). 

Understanding the assimilation of new information is critical to the development of models of 

market dynamics such as the asset-flow approach (Caginalp and Balenovich 1999), which 

incorporates the concepts of the finiteness of capital and the fundamental tendency to buy due to 

the trend as well as the valuation. This approach has been useful in discovering the underlying 

causes of bubbles in asset market experiments (Caginalp, Porter, and Smith 2001). 

The rest of this article is organized as follows. Section 2 is a detailed description of the design 

of the experiment, section 3 gives the hypotheses of the study, section 4 analyzes the results, and 

section 5 concludes the article with some discussion of the results. 

 

2. Experimental Design 

Undergraduate students of various majors at George Mason University were recruited, and the 

experiments were conducted between October 2005 and April 2006. Sessions were run one at a 

time. A single asset was traded using an open-book (traders can observe all bids and asks being 

offered at any moment) double auction on a computer network. In each experiment, 8–12 

participants were given instructions and a 5-minute practice session to ensure that they had 

understood the mechanics of the auction.
1
 Participants in the experiment were evenly and 

randomly assigned to trader types in the experiment, which we label group A and group B. 

Participants were not aware that there were groups and only knew their own earnings 

information and the history of market prices and transaction volume. In one set of treatments, the 

                                                 
1
  The experimental instructions can be found in Appendix A. 
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groups were differentiated based on the news they received during the experiment. In particular, 

both groups were informed that the asset traded would have a dividend of either 100 or 10 e-

dollars (i.e., experimental dollars that we also denote by E$) at the end of the experiment. The e-

dollars were converted to U.S. dollars at the end of the experiment at a rate that was announced 

before the experiments started. Each trader was given information (called a ―hint‖) at the 

beginning of the experiment on the probability of the two earnings. For example, our ―hint75‖ 

listed on a participant’s screen ―the earnings of the share at the end of the experiment is 100 e-

dollars with a chance of 75% and 10 e-dollars with a chance of 25%.‖ Thus the expected 

earnings for hint75 is 100 (75%) + 10 (25%) = 77.5 e-dollars. 

Subjects were told that the shares last exactly one period, which consists of two rounds
2
 of ten 

minutes each, with a one-minute break between the rounds. During the break, news concerning a 

change in the probability of the dividend earnings was provided privately to each participant. To 

ensure that subjects were aware of the news, the experimenter announced before the second 

round started that ―you may have received updated information on the final payment. Please read 

it very carefully.‖ In the Baseline treatment, there was no updated information so that the initial 

probability assessments remained the same. The participants in group A were provided 

information in the form of hint75, while the group B participants were given the more 

pessimistic estimates of hint25—―the earnings of the share at the end of the experiment is 100 e-

dollars with a chance of 25% and 10 e-dollars with a chance of 75%‖—with an expected 

earnings of 32.5. Besides the baseline with no news, we had two types of information treatments 

where news was released at the break between rounds to the different groups, which involved 

increasing the probability of the 100-dividend earnings. In the Disparate Information treatment, 

                                                 
2
  The dividend was realized after round 2. 
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group A started with hint60,
3
 which moved to hint75, and group B started with hint10,

4
 which 

moved to hint25. In the Merge Information treatment, we had both groups merge to the same 

probability estimate. In one case, group A started with hint75, which remained unchanged at the 

break, while group B started with hint25, which merged to hint75 at the break. In a second merge 

treatment, group A started with hint60 and moved to hint75 at the break, while group B started at 

hint10 and merged to hint75 at the break. These information treatments allow us to examine 

price movements in a variety of information updates. 

 Previous experiments have demonstrated the strong role of the ratio of cash and number of 

shares in trading prices (Caginalp, Porter, and Smith 1998), which we call liquidity. To ensure 

robustness of the experimental conclusions, we created variations in the share and cash 

endowments of the two groups. In both Baseline and Disparate Information treatments, each 

participant in both groups was given the same initial portfolio of ―E$500 and ten shares‖ in type 

1 sessions and ―E$1000 and ten shares‖ in type 4 sessions. In type 2 and 3 sessions, we varied 

the cash-to-shares ratio of the two groups. One group had more cash (E$750 and five shares), 

while the other group had the base amount of E$500 and ten shares. Table 1 summarizes our 

experimental design. 

 

3. Hypotheses  

The null hypothesis is that after the midpoint of the experiment, there will be no significant 

difference between the trading prices in the two sets of experiments because both consist of the  

  

                                                 
3
  The message for hint60 was ―the earnings of the share at the end of the experiment is 

100 e-dollars with a chance of 60% and 10 e-dollars with a chance of 40%.‖ 
4
  The message for hint10 was ―the earnings of the share at the end of the experiment is 

100 e-dollars with a chance of 10% and 10 e-dollars with a chance of 90%.‖ 
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Table 1: Experimental Design 

  Endowment variations  

Treatment Information*  

(before break → after break) 

Type Group Cash amount No. 

shares 

No. 

sessions 

Baseline Group A: hint75 → hint75 1 A 500 

500 

10 

10 

3 

B 

2 A 750 5 3 

B 500 10 

Group B: hint25 → hint25 3 A 500 10 3 

B 750 5 

4 A 1000 

1000 

10 

10 

2 

B 

Disparate 

Information 

Group A: hint60 → hint75 1 A 500 

500 

10 

10 

3 

B 

2 A 750 5 3 

B 500 10 

Group B: hint10 → hint25 3 A 500 10 3 

B 750 5 

4 A 1000 

1000 

10 

10 

1 

B 

Merge 

Information 

Group A: hint75 → hint75 1 A 500 

500 

10 

10 

3 

Group B: hint25 → hint75 B 

Group A: hint60 → hint75 2 A 500 

500 

10 

10 

3 

Group B: hint10 → hint75 B 

Note. Baseline treatment does not inject news during the midpoint break, so group A had hint75 and group B had 

hint25 throughout the experiment. There are four types of endowment variations; for example, in type 1 of Baseline, 

each member of both groups was endowed with E$500 and ten shares, whereas in type 2, each member in group A 

was given E$750 and five shares, and each in group B was given E$500 and ten shares. All four variations in the 

Disparate Information treatment have the same endowments with their corresponding Baseline treatment types. In 

the Disparate Information treatment, group A started with hint60 and group B started with hint10 and were updated 

with higher expected earnings of hint75 and hint25, respectively, during the break. Comparing type 1 in Disparate 

Information and Baseline, we note that each has exactly the same endowments, but Disparate Information initially 

gives group A hint60, with expected earnings 100 (0.6) + 10 (0.4) = 64, and group B hint10, with expected earnings 

100 (0.1) + 10 (0.9) = 19. During the midpoint break, group A was updated with hint75, and group B was updated 

with hint25, that is, the same level of expected earnings as in the Baseline Information treatment. 

 

same information after that point. In other words, prices should depend on the available 

information of expected earnings and not on the price history. However, the key question we will 

examine is whether there is underreaction or overreaction to the updated information that is 

injected during the midpoint break. Recall that the Disparate Information sessions have lower 

expected earnings in the first half of the experiment but are then updated to the same expected 

earnings after the midpoint as the Baseline sessions. If investors underreact to positive 
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information after a prolonged state of lower expectations, then the prices in the information 

experiments should be lower than the prices in the baseline experiments, namely, those in which 

the information is the same throughout the experiment. Such a result would provide support for 

the role of anchoring in financial markets and to the concept that price history has a strong effect 

on future prices, even in the face of updated information on fundamental value. 

Alternatively, if investors overreact to new information, then the treatments with news would 

have higher prices in the second half than the baseline, even though the expectations of earnings 

are exactly the same during this latter part of the experiment. This would be consistent with 

representativeness or affect, whereby participants exaggerate the impact of the new and positive 

information. 

In addition to the fundamental hypotheses, we will also examine the effect of changes in the 

underlying environment in terms of liquidity. 

 

4. Results 

Appendix B contains the time series of prices of trades for each experimental session. The 

graphs strongly suggest that there is anchoring in the decision making of the market participants. 

There seems to be no evidence of overreaction to updated market information. To formalize 

these ocular results, we begin with the following notation: 

 

W1A = expected earnings by group A in the first round, prior to information update 

W1B = expected earnings by group B in the first round, prior to information update 

W2A = expected earnings by group A in the second round, after information update 

W2B = expected earnings by group B in the second round, after information update. 
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These are calculated in the usual way by multiplying the probability with the outcome. For 

example, if group A is given hint75 that there is a 75 percent chance of $100 earnings and a 25 

percent chance of $10 earnings, group A has expected earnings of (0.75) (100) + (0.25) (10) = 

E$77.50. 

The cash endowments of the two groups are denoted by MA or MB, and the total number of 

shares in each group is given by NA or NB. The asset flow differential equations approach and 

various experiments have shown the importance of the liquidity price per share, computed as the 

total cash in the system divided by the total number of shares, that is, 

 

A B

A B

M M
L

N N




 .      (1) 

 

We first examine the relative impact of these variables on the trading prices in the absence of 

news. This can be accomplished by considering prices just before the end of the first round, 

denoted P1. The initial impact of the news, combined with these variables, can be studied by 

examining prices just at the beginning of the second round, denoted P2. Finally, one can study 

the final prices just before the end of the experiment, denoted Pf, to understand how this 

information is assimilated in time. Because the news is presented prior to the start of the second 

round, a perfectly efficient market would accurately reflect the current outlook. Even if there is 

some delay in assimilating the new information, however, the effect of the information should be 

reflected in the prices at the end of the experiment. These questions will be examined through a 

series of regressions. Because many prices are generated by the same group, we cannot regard 

them as independent. Consequently, an ordinary linear regression would overstate the statistical 

confidence. This problem can be overcome by using a fixed effects model that compensates for 
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the dependence of the data on different groups, in this case, the experimental sessions (Pinheiro 

and Bates 2000). Recapitulating the definitions, we have the following:  

 

P1: The last nine trading prices in the first round. 

P1t–1: The tenth to last trading price to the second to last trading price in the first round. 

P2: The second to the tenth trading prices in the second round. 

P2t–1: The first nine trading prices in the second round. 

Pf: The final nine trading prices at the very end of the experiment (the second round). 

Pft–1: The tenth to last trading price to the second to last trading price at the very end of the 

experiment (the second round). 

 

First we calculate the logarithm of all prices, and then we control for the session as a random 

effect and perform the regression using the SPlus fixed effects model on the following three 

regressions. 

4.1. Trading Prior to News 

Using the data from all treatments and the first round only, which does not involve any new 

information, we write 

 

Log (P1) = α0 + α1Log (P1t–1) + α2L + α3W1B.    (2) 

 

Table 2 provides the estimates of our model. 

The term P1t–1 is the one-trade-lag of P1, which we utilize to determine if there is a trend 

effect at the end of the first round. We find no support for any trend as prices have essentially 

settled nearly ten minutes after the start of trading.  
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Table 2: Regression Estimates 

 Value SE df t-value p-value 

(Intercept) 2.1194 0.2949 215 7.1870 <.0001 

Log (P2t–1) 0.0379 0.0661 215 0.5729 .5673 

L 0.0094 0.0026 24 3.5761 .0015 

W1B 0.0230 0.0073 24 3.1389 .0045 

Note. Number of observations = 243; number of groups = 27. 

 

Previous experimental studies suggest the trading price moves up as the cash per share ratio 

increases. We investigate this by including the term liquidity L, which varies across treatments. 

We confirm previous evidence as α2 (the coefficient of L) is positive and significant (p = .0015). 

The expected earnings of group A in the first round, W1A, either remains unchanged or 

increases in the same direction with W1B, so we only include W1B in the regression. We find that 

the coefficient of W1B is positive and significant, as expected, which indicates that the trading 

price rises as the expected earnings rise. 

4.2. Trading after News 

We now investigate the impact on trading prices right after the news was released in the 

midpoint break between the two rounds. The binary variable INFO equals 1 when the session has 

an upgrade of the expected earnings during the break (such as the Disparate Information 

treatments), and 0 otherwise (such as the Baseline treatment). A fixed-effects linear regression 

analysis is then performed for the trading price just after the second session starts. The fixed-

effects model we estimate is 

 

Log (P2) = α0 + α1 Log (P2t–1) + α2L + α3INFO + α4W2B. 

 

Table 3 contains the estimates of this model. 
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Table 3: Regression Estimates with Information Dummy 

 Value SE df t-value p-value 

(Intercept) 1.8241 0.2527 215 7.2188 <.0001 

Log (P2t–1) 0.4246 0.0529 215 8.0245 <.0001 

L 0.0041 0.0019 23 2.1699 .0406 

INFO –0.2112 0.0674 23 –3.1338 .0047 

W2B 0.0032 0.0020 23 1.6041 .1223 

Note. Number of observations = 243; number of groups = 27. 

 

Unlike the results of the regression on trading prices right before news, the coefficient on the 

lagged trading price Log (P2t–1) is now significant (and positive), indicating that the market price 

is adjusting to the new expected earnings, which are now higher than before. Liquidity L’s 

coefficient α3 is again positive and significant as it is a fixed feature within a treatment and thus 

invariant to whether it is regressed on trading prices before or after news.  

Note that subject traders who did not receive news had higher expected earnings throughout 

the entire experiment; traders who received news started low but then were upgraded in the 

second session to the same level. The term INFO has a significantly negative coefficient (p = 

.0047), indicating that the markets that received news did not fully incorporate the information 

into the trading prices. This result strongly suggests market underreaction to news. In the next 

section, we will further test and report on the impact of the news on trading prices near the end of 

the experiment, when prices are stabilized. 

In addition, the coefficient W2B is not significant owing to the fact that the news is not 

incorporated by the market and thus the expected earnings are not yet reflected in the trading 

prices. 
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4.3. Trading in the End  

In addition to this initial reaction to the new information, one can examine the final trades of 

the experiment to determine whether the underreaction that is evident immediately after the 

announcement is remedied. This yields the regression model and results in 

 

Log (Pf) = α0 + α1 Log (Pft–1) + α2L + α3INFO + α4W2B. 

 

Table 4 summarizes the results of the preceding regression. 

As expected, the trend effect disappeared in the end of the trading (p = .9191) as the market 

stabilized nearly ten minutes after the news was released. Liquidity remains significant and thus 

reconfirms its positive effect on trading prices. 

The coefficient of INFO remains negative and significant (p = .0765), indicating that markets 

starting with lower expected earnings trade at lower prices near the end of the experiment, even 

though the expectations were identical in the second half. This confirms again that market 

underreaction to news persists even after trading prices stabilize. In addition, the coefficient of 

W2B is significant (p = .0252), suggesting that the trading prices now again reflect the expected 

earnings across treatments, as they did in the end of the first round, prior to the news. Combining 

these two results, we conclude that the markets do incorporate the new expectations after a long  

 

Table 4: Regression Estimates 

 Value SE df t-value p-value 

(Intercept) 2.5308 0.5400 215 4.6862 <.0001 

Log (Pft–1) –0.0067 0.0653 215 –0.1016 .9191 

L 0.0112 0.0050 23 2.2197 .0366 

INFO –0.3260 0.1758 23 –1.8547 .0765 

W2B 0.0129 0.0054 23 2.3936 .0252 

Note. Number of observations = 243; number of groups = 27. 
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period of trading, but the trading prices are not as high as the markets, which had higher 

expectations throughout. 

 

5. Conclusions  

We have conducted a series of experiments in which participants trade an asset that has single 

earnings at the end of two rounds of ten minutes each. In some of the experiments, the 

information given to some or all traders was updated at the end of the first ten-minute round, 

while it was left unchanged in other experiments. The experiments also differed in terms of the 

cash-to-asset level of participants (liquidity levels). Previous work has shown that liquidity is an 

important factor in determining trading prices, so a range of liquidity levels were used for 

robustness. 

The data have been analyzed using a series of mixed-effects regressions that compensate for 

heteroskedasticity or the fact that many data points are generated by the same group. The first 

regression concerns only the first round, entailing no new information during the time round 

analyzed. Each of the nine prices at the end of this first round is regressed against the expected 

earnings, the liquidity, and the previous trading price. As expected, the trading prices increase 

with increasing expected earnings and liquidity. These are highly significant statistically, with p 

values of .0045 and .0015, respectively. The dependence on the previous trading price is not 

significant. Although it was expected from our previous results, the role of liquidity remains 

strong even after much trading has occurred, suggesting that it is not due to initial confusion or 

lack of familiarity with the trading system. 

The next regression explores the impact of new information by examining the dependence of 

the first nine trades of the second round on the earnings, liquidity, and previous price, plus the 
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dummy variable (INFO) that is defined as 1 if there is new information and 0 if there is none. 

The INFO variable is highly significant, with a p value of .0047. The negative value indicates 

that those experiments in which the information was updated exhibited lower trading prices 

during the second half compared to the experiments in which the information remained the same. 

The two sets of experiments featuring identical expected earnings during the second half 

nevertheless differed in terms of trading price, depending on the conditions that prevailed in the 

first half. Hence the lower trading price observed in the experiments featuring a more subdued 

past demonstrated a strong deviation from any concept of optimization (e.g., Bayesian) that 

utilizes only current information. 

The issue of whether these lower trading prices are transient is examined in the subsequent 

regression, which differs from the previous one in that we utilize the last nine trades of the 

second round. Using identical independent variables, we find results that are quite similar, 

indicating that the lower prices resulting from the lower expectations of the first round are 

persistent in time. In fact, the INFO variable is still negative and even larger in magnitude. The 

main difference between the two sets of regressions (first vs. last nine trades of the second 

round) is that the role of liquidity and the expected earnings are both larger at the end of the 

experiment. It is not entirely surprising that some time is required for traders to assimilate the 

expected earnings. However, one may have predicted that the role of liquidity would diminish as 

traders have more time to consider the expected earnings. The result that the impact of liquidity 

increases with time suggests a deeper role for liquidity. In particular, as the trading evolves, more 

dollars chasing the same number of shares tends to influence how people place their bids and 

asks. A higher liquidity level means that there are more dollars with which one can bid, thereby 

raising the price, which in turn influences others to raise their bids and asks. That there is a 
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significant trend term during the initial trades of the second round suggests that rising prices 

influence trading decisions. The trend term is not significant during the last nine trades, by which 

time the price has settled. The asset flow used by Caginalp and collaborators since 1989 has 

indicated a complex relationship between the trend, the past history of prices and valuations, and 

current valuations. The positive trend term in the initial trades of the second round is consistent 

with the expectations of this theory. In particular, consider the experiments in which one of the 

groups receives updated information while the other does not. The group receiving no new 

information has the same expected earnings but notices rising prices that indicate that perhaps 

others have information upgrading the earnings, and they react by bidding higher for the asset. 

A number of questions that arise from these results have the potential to be addressed by 

additional asset market experiments. With a larger number of experiments that differ only in the 

distribution of assets among groups (defined as receiving or not receiving updated information), 

one can hope to obtain enough data to understand the motivations underlying the higher prices. A 

pilot experimental study on these questions was performed by Caginalp (2002), where the 

asymmetric information was given to three groups of participants with varying levels of cash. 

Though trading prices reflected the additional information given to just one of the three groups, a 

large amount of additional cash led to prices that were much higher than could be expected even 

with all the information. This leads to a number of questions. If information is received by only 

some of the participants, what is the mechanism whereby the market assimilates that 

information? Does the price reach the level it would had all participants received the 

information? What is the timescale on which the new equilibrium (or steady state) price is 

reached, and how does it depend on the fraction of assets owned by the group receiving the new 

information? 
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In summary, our statistical analysis provides support for the assertion that market prices 

underreact to information that upgrades expected earnings following a prolonged round of less 

positive information and prices. This means that the price (when adjusted for the other variables 

such as liquidity) is lower in the experiments featuring an upgrade of the earnings than it is for 

the experiments having the higher expected earnings from the start. Furthermore, this 

underreaction persists throughout the remainder of the experiment, providing support for the 

concept of anchoring in asset price dynamics. If fundamentals and trading prices are low for a 

prolonged time, then improvement of fundamentals does not lead to the same price that would be 

attained if the fundamentals were always high. In other words, the market price in our 

experiments is not simply a function of the current expectations, as efficient market theory and 

classical economics would predict; rather, the trading price depends strongly on the past price 

history of the asset. Even in this experimental setting, where the fundamentals are clearer than 

they are in field markets, participants appear to be influenced either by the lower price or by the 

lower fundamentals of the past. On a practical level, this study provides some support to value 

managers who claim that bargains among out-of-favor stocks persist for some time. 

The findings of underreaction—possibly as a consequence of anchoring—appear at first 

glance to be in contrast to the Grether experiments in which an update providing a small increase 

in earnings leads to an overreaction. One factor that distinguishes the two types of experiment is 

time. In Grether’s experiment, the new information is only the second piece of information, and 

there has been no opportunity to observe others’ reactions in the intervening time. In our 

experiments, there is a significant amount of time and trading that occur prior to the release of 

the new information. It is possible that there is some tendency for overreaction to the new 

information that is much smaller than a competing tendency for underreaction caused by the 
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nature of trading. In other words, when the updated information (suggesting higher earnings) is 

released at the start of the second half of our experiments, some traders may react in accordance 

with representativeness rather than Bayesian strategy and be prone to overreacting. However, 

others may be focusing on the trading that has occurred and remain skeptical of the new 

information. If the latter dominate during the initial trades of the second round, then traders who 

initially were prone to overreacting may be readjusting their strategy in light of the information 

on others’ strategies obtained through observing the trading prices. Undoubtedly, the effect of 

overreaction to new information (due to representativeness) observed by Grether is present in our 

experiments; however, other factors leading to underreaction appear to be stronger under the 

conditions of our experiments. Thus one might regard underreaction and overreaction as 

competing effects, just like stability and instability, with the winner of the competition 

depending on many factors that are yet to be discovered. 

One of these factors may be closely related to prospect theory. Behavioral finance has shown 

that decision makers treat potential losses differently from gains. When the news upgrades the 

earnings at the midpoint of the experiment, there is the possibility of greater profit for those who 

wish to purchase more of the asset. However, failure to do so will not lead to loss. At this point 

in the experiment, the participants have come to regard the current value of the stock plus cash as 

their own. By not rushing to buy more shares, they are not losing any money that they have 

become accustomed to regarding as their own. It is possible that with short selling or selling of 

futures contracts, there would be some traders scrambling to cover their shorts and bidding up 

prices aggressively. This could be a source of overreaction. 

Ultimately, the issues of underreaction and overreaction are at the heart of behavioral finance. 

If these effects did not exist in a statistically verifiable sense, then there would be no change in 
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the trading price due to behavioral effects, and the classical paradigm would be realized. 

Moreover, if the effects of underreaction and overreaction cannot be distinguished a priori, even 

with the comprehensive information that we have in asset experiments, then it would be difficult 

to build behavioral finance into a quantitative and predictive science. Thus developing an 

understanding of the conditions that lead to underreaction and overreaction, respectively, is an 

essential step in understanding the motivations that underlie nonclassical behavior in finance. 
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Appendix A: Experimental Instructions 
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Appendix B: Time Series of Contract Prices per Session 
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