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Abstract 

Introduction:  The affinity constants a ligand for active and inactive states of a receptor 

ultimately determine its capacity to activate downstream signaling events.  In this report, we 

describe a reverse-engineering strategy for estimating these microscopic constants. 

Methods:  Our approach involves analyzing responses measured downstream in the signaling 

pathway of a G protein-coupled receptor under conditions of allosteric modulation and reduced 

receptor expression or partial receptor inactivation.  The analysis also yields estimates of the 

isomerization constant of the unoccupied receptor, the sensitivity constant of the signaling 

pathway, and the more empirical parameters of the receptor population including the observed 

affinities and efficacies of allosteric and orthosteric ligands – including inverse agonists – and 

the efficacy of the unoccupied receptor (i.e., constitutive activity). 

Results and Discussion:  We validate our approach with an analytical proof and by analysis of 

simulated data.  We also use our method to analyze data from the literature.  We show that the 

values of the microscopic constants of orthosteric and allosteric ligands are constant regardless 

of the allosteric interaction and the nature of the receptor-signaling pathway as long as the same 

active state mediates the response.  Our analysis is useful for quantifying probe-dependent 

allosteric interactions and the selectivity of agonists for different signaling pathways.  Knowing 

the isomerization constant and sensitivity constant of a signaling pathway in a given cell line or 

tissue preparation enables future investigators to estimate the affinity constants of agonists for 

receptor states simply through analysis of their concentration-response curves.  Our approach 

also provides a means of validating in silico estimates of ligand affinity for crystal structures of 

active and inactive states of the receptor.  
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1.  Introduction 

Scientists are often interested in how well an agonist activates a specific G protein-coupled 

receptor (GPCR).  Activation is usually assessed by measuring a response downstream in the 

signaling pathway, like heart rate, cAMP accumulation, phosphoinositide hydrolysis, 

mobilization of Ca2+, contraction of smooth muscle, or recruitment of arrestin.  Depending on 

which response is measured, however, the potency and maximal response of a given agonist can 

vary substantially because of differences in downstream signaling machinery.  The same can be 

said of allosteric interactions with the added complication that the modulation varies depending 

on the orthosteric ligand participating in the interaction (Valant, Felder, Sexton, & 

Christopoulos, 2012).  How then do we to assess drug-receptor interactions in a way that is 

unaffected by downstream signaling events and the interacting ligands? 

In the case of ligand-gated ion channels, the activation state of the receptor population can be 

measured directly as the whole-cell current response under voltage clamp conditions.  The 

analogous measurement for a population of GPCRs (i.e., amount of receptor in the active state in 

a complex with GDP-bound G protein) is difficult to achieve, but it can be deduced by reverse 

engineering (Black & Leff, 1983) or response-clamp analysis (Furchgott & Bursztyn, 1967) of a 

set of responses measured downstream in the signaling pathway under control conditions and 

after inactivation of a portion of the receptor population.  These analyses yield estimates of the 

observed affinity constant (Kobs) of the agonist-receptor complex and a relative measure of the 

fraction of the occupied receptor population in the active state (ε, efficacy).  But for a given 

agonist-GPCR pair, these population parameters vary, depending on the G protein (Kenakin, 

2011) and the concentration of GTP (F. J. Ehlert, 2000; F. J. Ehlert & Rathbun, 1990). 

At a deeper level of analysis, drug-receptor interactions are described in terms of affinity 

constants for active and inactive states of the receptor (Colquhoun & Hawkes, 1982; Monod, 

Wyman, & Changeux, 1965).  These are the ultimate determinants of agonist action because the 

active state is the first cause of more distal responses. 
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Colquhoun and Hawkes (1982) developed a method for estimating the transition rate constants 

for open and closed states of ligand-gated ion channels.  Their approach involves analyzing 

single-channel events as a continuous Markov process within the constraints of a two-state 

receptor scheme.  Using a similar analysis and equilibrium relationships, Auerbach and 

coworkers (1999; 2010) have estimated the affinity constants of acetylcholine for open (JD, 5 x 

107) and closed (KD, 7.1 x 103 M-1) states of the muscle-type nicotinic acetylcholine receptor. 

The affinity constant of a ligand for the active state of a GPCR (Kb, see Figure 1) is related to 

the population parameters (Kobs and ε) of the agonist-receptor complex.  For example, the product 

of affinity and efficacy (Kobsε) is proportional to Kb (Tran, Chang, Matsui, & Ehlert, 2009), and 

the proportionality constant is related to constitutive activity (F. J. Ehlert, Suga, & Griffin, 

2011a).  Thus, both relative (Kb of one agonist relative to that of another, RAi) and absolute 

estimates of Kb (i.e., in units of M-1) can be determined from downstream responses depending 

on whether constitutive activity can be measured.  Reasonable estimates of the affinity constant 

of the inactive state (Ka) can be calculated for all but the most efficacious agonist in a series (F. J. 

Ehlert, Griffin, & Suga, 2011). 

If the effects of a range of concentrations of allosteric ligand on the concentration-response 

curve of an agonist for eliciting a response through a GPCR are measured, then the observed 

affinity of the allosteric ligand and the product of its scalar effects on the observed affinity (α) 

and efficacy (β1) of the orthosteric ligand (γ1 = αβ1) can be estimated (F. J. Ehlert, 1988a, 2005).  

In many instances, the values of Kobs and γ1 are nearly equivalent to the affinity constant of the 

allosteric ligand for the inactive state of the receptor (Ke) and the ratio of affinity constants of the 

active and inactive states (Kf/Ke), respectively (F. J. Ehlert & Griffin, 2008).  To our knowledge, 

there are no reports describing a robust method for estimating both the affinity (α) and efficacy 

(β1) components of allosteric modulation in functional assays on GPCRs without also 

incorporating a measurement of Kobs from another source (e.g., binding experiment). 

A useful but difficult parameter to estimate is the isomerization constant of the unoccupied 

receptor (Eo).  This parameter is defined as the ratio of concentrations of active (Rs
*) and inactive 
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(Rs) states of unoccupied receptor (i.e., Eo = [Rs
*]/[Rs]), and it determines how much spontaneous 

receptor activation occurs in the absence of ligands.  By examining how point mutations that 

cause spontaneous channel opening affect acetylcholine-induced currents, Auerbach and 

coworkers (2012; 2009) estimated the Eo value of the unoccupied muscle-type nicotinic 

acetylcholine receptor to be approximately 7 x 10-7.  Similar values were estimated by Jackson 

(2012) and Neubig and Cohen (1980).   To our knowledge, no analogous estimate has been made 

for GPCRs.  Point mutations that cause constitutive activity increase the isomerization constant 

of the unoccupied receptor, and positive allosteric ligands have an analogous effect.   Thus, the 

analysis of allosteric interactions under the appropriate conditions should yield estimates of the 

isomerization constant of the unoccupied receptor. 

Here, we describe the theory and conditions for estimating of all of the population parameters 

for allosteric interactions at GPCRs.  We show that when the interaction is consistent with a two-

state scheme, it is also possible to estimate the microscopic constants (Ka, Kb, Ke, and Kf) of the 

interacting ligands as well as the isomerization constant of the unoccupied receptor (Kq-obs), the 

sensitivity constant of the signaling pathway (KE-obs), the efficacies of orthosteric agonists and 

inverse agonists (ε) and of allosteric ligands (εA), and the activity of the unoccupied receptor 

complex (constitutive activity, εsys).  We demonstrate our approach using simulated data and data 

from the literature, and we also provide an analytical proof for the validity of our approach.  

Knowing the values of KE-obs and Kq-obs for a specific receptor-signaling pathway or response 

enables the estimation of the Ka and Kb values of any agonist through analysis of its 

concentration-response curve.  Our method will enable investigators to estimate the microscopic 

constants of endogenous ligands and other orthosteric agonists and inverse agonists and enable 

quantification of probe-dependent allosteric interactions and the selectivity of agonists for 

different signaling pathways. 
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2.  Methods 

We begin by describing the theoretical basis for the analysis of allosteric interactions in 

functional assays so that the affinity constants of the interacting ligands for active and inactive 

states of the receptor can be estimated.  We also describe the requisite theory for estimation of 

the observed parameters of the receptor population.  This process involves developing the 

appropriate equations for global nonlinear regression analysis of functional data.  To assess the 

feasibility of our approach we simulate data using the model shown in Figure 1 and analyze these 

data by our regression equations to determine if the parameters used to simulate the data can be 

estimated.  These four steps are described in the following sections entitled, “Analysis of data, 

receptor states”, “Analysis of data, parameters of the receptor population”, “Simulation of 

agonist concentration-response curves” and “Nonlinear regression analysis.”  

 

2.1  Analysis of data, receptor states 

The output of the scheme in Figure 1 is consistent with a simple one-site model with 

constitutive activity as described below in connection with Figure 3.  Thus, the simple allosteric 

two-state scheme shown in Figure 2a adequately describes the output.  This scheme is equivalent 

to that described by Monod Wyman and Changeux (1965), but it also includes a conformational 

induction step (DRs ↔ DRs
*).  The scheme can be solved for the fractional amount of receptor in 

the active state including both constitutive (Rs
*) and ligand-activated (DRs

* + Rs
*A +DRs

*A) forms 

as described previously (F. J. Ehlert & Griffin, 2008): 

  ! = !!∗ ! !"!∗ ! !!∗! ! !"!∗!
!!

= !

!! !"!!! !"!!!
!!!!"# !"!!! !"!!!

  1 

In this equation, RT denotes the total amount of receptor, Kb and Ka the microscopic affinity 

constants (inverse molar units, M-1) of the orthosteric ligand for the active and inactive states, Kf 

and Ke represent the corresponding parameters for the allosteric ligand and Kq-obs denotes the 

observed isomerization constant of the unoccupied receptor.  As described below, the value of 
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Kq-obs is perturbed from Kq by endogenous G protein and guanine nucleotide.  Equation 1 was 

substituted into the transducer function of Black and Leff (1983) 

 !"#$%&#" = !!"!!!

!!!!!
! 2 

to yield an equation for the downstream response expressed as a function of the microscopic 

constants of the allosteric model (Figure 2a) as described previously (F. J. Ehlert & Griffin, 

2008). 

  !"#$%&#" = !!"!

!!!!!!"#
! !! !"!!! !"!!!

!!!!"# !"!!! !"!!!

!  3 

In this equation, Msys represents the maximum response of the system, m, the transducer slope 

factor and KE-obs, the observed sensitivity constant of the operational model.  As described below, 

the value of KE-obs differs from KE in the operational model (see equation 2) because of the 

influence of G protein and guanine nucleotides. 

In many instances, it is impossible to estimate the individual parameters, Kb, Kq-obs and KE-obs, 

but it is possible to estimate the composite parameter, Kbqs: 

 !!"# =
!!!!

!!!! !!!!"#
  4  

Thus, the following form of equation 3 is useful for estimating Kbqs: 

  !"#$%&#" = !!"!

!!!!!!"#
! !! !"!!! !"!!!

!!!!"#
!"!"# !!!!!!"# !!!!"#

!!!!"#
!! !"!!!

!  5 

The parameter Kbqs is useful for estimating a relative value of Kb (see equation 15). 

More parameters can be estimated if some of the data are measured following inactivation of a 

fraction of the orthosteric binding sites with a ligand that behaves as a neutral antagonist when 

bound irreversibly.  Under this condition, the receptor population behaves as two subpopulations 

– one unaffected by the irreversible antagonist and the other having its orthosteric sites 
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irreversibly blocked.  The contributions of the two subpopulations are denoted by q and 1 – q, 

where q denotes the fraction of the residual orthosteric sites unaffected by the irreversible ligand.  

The total stimulus (T) after partial receptor inactivation is equivalent to the sum of the two 

subpopulations: 

 ! = !

!! !"!!! !"!!!
!!!!"# !"!!! !"!!!

+ !!!

!! !"!!!
!!!!"# !"!!!

 6 

The fraction on the left describes the stimulus of the residual unalkylated receptors and was 

derived by multiplying equation 1 by q.  The second fraction describes the stimulus of the 

alkylated receptor subpopulation, and was derived by solving equation 1 under the condition, D 

= 0, and multiplying the result by 1 – q.  Substituting this equation into the transducer function 

(equation 2) yields an equation for the response after partial receptor inactivation in terms of the 

microscopic constants: 

  !"#$!"#$ = !!"!

!!!!!!"#
! !

!! !"!!! !"!!!
!!!!"# !"!!! !"!!!

! !!!

!! !"!!!
!!!!"# !"!!!

!!  7 

When there is no constitutive activity and the allosteric ligand lacks activity by itself, it is 

impossible to estimate Kb and Kq-obs accurately, but it is possible to estimate Kbqs.  In this 

situation, the contribution of the alkylated receptor complex is negligible, and hence, a reduced 

form of equation 7, incorporating the substitution for Kbqs, adequately describes the data: 

  !"#!"#$% = !!"!

!!!!!!"#
! !

!!
!"!!! !"!!!

! !"!"#!!!!"# !!!!!!"# !!!!!"# !"!!!

!  8 

For analyzing the condition of no allosteric ligand (A = 0), equation 7 reduces to: 

  !"#$%&#" = !!"!

!!!!!!"#
! !

!! !"!!!
!!!!"# !"!!!

! !!!
!! !

!!!!"#

!!  9 
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In situations where an irreversible antagonist is unavailable, responses can be measured under 

the condition of reduced receptor expression.  In this case, all active forms of the receptor are 

reduced by the scalar q, which represents fractional receptor expression relative to control 

expression.  The total stimulus for this condition is derived by multiplying equation 1 by q:  

  ! = !

!! !"!!! !"!!!
!!!!"# !"!!! !"!!!

  10 

Substituting this equation for receptor activation into the transducer function (equation 2) 

yields an equation for the response: 

  !"#$%&#" = !!"!

!!!!!!"#
! !

!!
!"!!! !"!!!

!!!!!"# !"!!! !"!!!

!  11 

When the receptor lacks constitutive activity and the allosteric ligand lacks an effect by itself, 

it is impossible to estimate Kb and Kq-obs, but it is possible to estimate Kbqs as mentioned above.  

Substitution of Kbqs (equation 4) for Kb in equation 11 yields equation 8.  Thus, the latter equation 

can be used for reduced receptor expression or partial receptor inactivation. 

For analyzing the condition of no allosteric ligand (A = 0), equation 11 reduces to: 

  !"#$%&#" = !!"!

!!!!!!"#
! !

!!
!!!!!

!!!!!"# !"!!!

!  12 

If there is only one active state that mediates the response, then each estimate of a microscopic 

constant for an allosteric (Ke and Kf) or orthosteric (Ka and Kb) ligand should lack a statistically 

significant difference when estimated from the independent effect of the ligand or from its 

interaction with other ligands.   The appropriate equations, described above, solved for the 

condition of no allosteric modulator (A = 0), can be used for this determination.  As long as no 

interacting ligand is present, the estimates of Ka and Kb represent microscopic affinity constants 

for active and inactive states, regardless of whether the ligand is orthosteric or allosteric. 

If the receptor lacks constitutive activity, it is impossible to estimate the Kb value of an 

orthosteric ligand from its concentration-response curve in the absence of an allosteric ligand.  
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Therefore, we developed an analysis for a group of ligand concentration-response curves that 

yields Ka and a relative estimate of the microscopic affinity constant for the active state (RAi) 

under experimental conditions of no constitutive activity.  For this analysis, equation 8 is solved 

for the condition of no allosteric modulator: 

  !"#$%&#" = !!"!

!!!!!!"#
! !

!!
!"!!!!

!!"!"#
!!!!!"# !!!!!!"# !!!!!"#

!  13 

In this equation, Kbqs’ and Ka’ denote the Kbqs and Ka values of the most efficacious agonist 

(standard agonist).  For analysis of less efficacious agonists (test agonists) and the condition of q 

= 1, equation 13 can be rearranged into the following form: 

  !"#$%&#" = !!"!

!!!!!!"#
! !! !"!!!

!"!"#
!!"!!!!!"# !!!!!!"# !!!!!"#

!  14 

in which, RAi (intrinsic relative activity) denotes the Kbqs value of a test agonist expressed 

relative to that of the standard agonist (Kbqs’).  Thus, RAi is a relative measure of the microscopic 

affinity constant of the active state of the receptor as described previously: 

 !"! =
!!
!!
! =

!!"#
!!"#
!  15 

In this equation, Kb’ denotes the Kb value of the most efficacious agonist. 

For implementing this type of analysis, equation 13 is fitted to the concentration-response 

curves of the standard agonist, measured in the absence and presence of reduced receptor 

expression or partial receptor inactivation, and equation 14 is fitted to the concentration-response 

curves of the test agonists.  Global nonlinear regression analysis is used, sharing the estimates of 

Kbqs’, KE-obs, Msys and m among the data, and obtaining unique estimates of the other parameters 

for each ligand.  The analysis can be done without measuring the concentration-response curve 

of the standard agonist after partial receptor inactivation, but this omission will prevent the 

estimation of the Ka values of the test agonists.  In this case, equation 13 is simplified by 

constraining q to one. 
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2.2  Analysis of data: parameters of the receptor population 

The derivation of equations describing the response as a function of the empirical parameters 

of the receptor population is described in this section.  Ultimately, the parameters of the receptor 

population are estimated by fitting these equations to functional data using nonlinear regression 

analysis. 

The scheme in Figure 2a can be described without concern for the state of the receptor as 

shown in Figure 2b.  This scheme is known as the allosteric ternary complex model, and it 

describes the behavior of the receptor population (F. J. Ehlert, 1988a).  The parameter K1 denotes 

the observed affinity constant (inverse molar units, M-1) of the orthosteric ligand in the absence 

of the allosteric ligand, and K2 denotes the corresponding constant for the allosteric ligand.  The 

constant α denotes the scalar change in affinity of each ligand for the ternary complex caused by 

the binding of the other ligand.  The fractional amount of the population of each receptor 

complex (R, DR, RA and DRA) in the active state is defined as observed efficacy (εsys, ε, εA, and 

β1ε, respectively), and these variables are evaluated relative to the maximal amount of receptor 

complex in the active state as defined by the variable Tmax in equation 35.  For the case of one 

orthosteric and one allosteric binding site per receptor complex, each efficacy term is constant 

for any level of receptor occupancy.  The equation for fractional receptor activation ((εsys + εDR 

+ εARA + β1εDRA)/RT) can be solved using an approach analogous to that described previously 

(F. J. Ehlert & Griffin, 2008): 

  ! = !!"!!!!!"!!!"#! !!!!!!!
!!!"!!!"! !!!"#!

  16 

To derive an equation for the analysis of concentration-response curves the total population 

stimulus (T) from equation 16 is substituted into the transducer function (equation 2): 

  !"#$%&#" = !!"!

!! !!!"!!!"! !!!"#!
!!"!!!!!"!!!"#! !!!!!!!

!  17 



 

	   13	  

in which, 

 ! = !
!!!!"#

 18 

 !! =
!!

!!!!"#
 19 

 !!"! =
!!"!

!!!!"#
 20 

For the condition of no detectable constitutive activity, equation 17 reduces to a form 

equivalent to that previously described by Gregory and coworkers (2010): 

  !"#!"#$% = !!"!

!! !!!"!!!"! !!!"#!
!!!"!!!"#! !!!!!!!

!  21 

For the condition of a lack of constitutive receptor activity and an allosteric ligand having no 

activity by itself, equation 17 reduces to that described previously (F. J. Ehlert, 2005): 

  !"#$%&#" = !!"!

!! !!!"!!!"! !!!"#!
!"#! !!!!!!!

!  22 

In many instances, it is impossible to estimate the individual parameters, K1 and τ, but it is 

possible to estimate the composite parameter, τK1.  Thus, the following form of equation 17 is 

useful for this situation: 

  !"#$%&#" = !!"!

!! !!!"!!!"! !!!"#!
!!"!!!!!"!!!∗! !!!!!!!

!  23 

In this equation, R denotes the product, τK1.  As described under Appendix (see equation 62), 

both τK1 and the composite microscopic parameter, Kbqs, are equivalent. 

More of the population parameters for allosteric interactions can be estimated if some of the 

orthosteric sites are inactivated with a ligand that behaves as a neutral antagonist when bound 

irreversibly.  The total stimulus function for this condition represents the sum of the stimuli from 

the residual unaffected receptors and the receptors whose orthosteric sites have been irreversibly 

blocked.  Their relative contributions are denoted as q and 1- q and are derived analogously to 

that described above for the receptor state analysis involving receptor inactivation (equation 6): 
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  ! = !!"!!!!!"!!!"#! !!!!!!!
!!!"!!!"! !!!"#!

+ 1− ! !!"!!!!!"!
!!!"!

  24 

Substituting equation 24 into the transducer function (equation 2) yields an equation for the 

response under the condition of partial receptor inactivation: 

  !"#$%&#" = !!"!

!! !
!!"!!!!!"!!!"#! !!!!!!!

!!!"!!!"! !!!"#!
! !!!

!!"!!!!!"!
!!!"!

  
!!  25 

The corresponding equation for reduced receptor expression is: 

  !"#$%&#" = !!"!

!! ! !!!"!!!"! !!!"#!
!!"!!!!!"!!!"#! !!!!!!!

!  26 

As described below, we analyzed the simulated responses of allosteric and orthosteric ligands 

independently.  For the condition of no allosteric ligand (A = 0), equation 25 reduces to (F. J. 

Ehlert, Suga, et al., 2011a): 

  !"#$%&#" = !!"!

!! !
!!"!!!"#!
!!!"!

! !!! !!"!  
!!  27 

This equation can be rearranged into the following form for the estimation of Kb by taking 

advantage of equation 115 (Appendix), which describes Kb as a function of τ, K1 and τsys: 

  !"#$%&#" = !!"!

!! !
!!"!! !!!"!

!!!"!
! !!! !!"!  

!!  28 

The corresponding equation for reduced receptor expression is: 

  !"#$%&#" = !!"!

!! ! !!!"!
!!"!! !!!"!

  
!  29 

For the condition of no constitutive activity, equation 28 reduces to: 

  !"#$%&#" = !!"!

!! !!!"!
!"#$!

  
!  30 

This equation can be rearranged into the following form: 
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  !"#$%&#" = !!"!

!! !!!"!
!"∗!   

!  31 

in which R denotes the product, τK1, as described above.  For the case of comparing the τK1 

value of one agonist, relative to that of a standard agonist (τ’K1’), the following equation is 

useful: 

  !"#$%&#" = !!"!

!! !!!"!
!∗!∗!"!

  
!  32 

in which, RAi is defined as: 

  !"! =
!!!
!!!!!

= !!!
!!!!!

  33 

In this equation, the parameters designated with a prime symbol denote those of the standard 

agonist.  It can be shown that RAi is also a relative measure of the microscopic affinity constant 

of an agonist for the active state of a receptor, expressed relative to that of a standard agonist, as 

described previously (Tran, et al., 2009) and by equation 15 and the equivalency of τK1 and Kbqs. 

Equations 31 and 32 can also be used to estimate the RAi values of both orthosteric and 

allosteric ligands when the latter are tested in the absence of other ligands (F.J. Ehlert, 2008; F. J. 

Ehlert, Suga, & Griffin, 2011b; Figueroa, Griffin, & Ehlert, 2008; Griffin, Figueroa, Liller, & 

Ehlert, 2007).  They are also valid for the case of reduced receptor expression with no 

constitutive activity. 

 

2.3  Simulation of agonist concentration-response curves 

The simulation of theoretical concentration-response curves involved three steps: 1) generating 

a receptor activation function using a modification of the quaternary complex scheme, 2) 

substituting this function into a transducer function to generate theoretical responses, and 3) 

adding a random error. 

The quaternary complex scheme (F.J. Ehlert, 2008; F. J. Ehlert & Rathbun, 1990), defined at 

the level of receptor states (active, Rs* and inactive, Rs), was used to simulate activation of the 
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receptor population.  This scheme describes the interactions among agonist (D), receptor (R), G 

protein (G) and guanine nucleotide (X).  We expanded our scheme to include an allosteric ligand 

for the receptor (A) and active and inactive states of the G protein (G*
s and Gs, respectively).  It 

was assumed that Rs
* exhibits high affinity for Gs

* and that GDP (X) exhibits high affinity for Gs.  

These conditions are consistent with the crystal structures of GαiGβγ bound with GDP 

(Lambright, et al., 1996; Wall, et al., 1995) and that of the β2-adrenoceptor bound with agonist 

and GαsGβγ (Rasmussen, et al., 2011). 

A simple form of the quaternary complex scheme for allosterism is shown in Figure 3a where 

only the sum of the active and inactive states of receptor (R) and G protein (G) are illustrated 

(i.e., R = Rs + Rs
* and G = Gs + Gs

*).  The scheme was expanded to account for the four possible 

combinations of states of the receptor and G protein (Figure 3b).  We solved this scheme 

numerically to predict the amount of receptor-G protein complex in the active state bound with 

guanine nucleotide in the presence of various concentrations of allosteric and orthosteric ligand 

and guanine nucleotide.  It was assumed that the eight possible combinations of Gs
*X bound with 

receptor and ligands could support guanine nucleotide exchange.  The summation of these 

receptor complexes is designated as the total stimulus (T).  Using reasonable parameter 

estimates, however, only the DRs
*Gs

*X, Rs
*AGs

*X, DRs
*AGs

*X (ligand-activated) and Rs*Gs*X 

(constitutively active) complexes accumulate in appreciable amounts.  The method for solving 

this scheme is described under “Appendix”. 

To convert the total stimulus into a response, the reverse engineering approach described by 

Black and Leff (1983) was used (equation 2).  Using a given set of parameter values, we solved 

the quaternary complex scheme for allosterism (equation 37 in the Appendix) numerically and 

substituted the result for T in equation 2 to simulate the response.  These calculations were 

repeated for various concentrations of allosteric and orthosteric ligands. 

A random error was added to the theoretical response values to simulate experimental 

variation.  First, a constant value equivalent to 0.2 of Msys was added to all of the simulated data 

because many responses exhibit a background measurement (e.g., basal fluorescence, cAMP or 
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[3H]inositolphosphates) in the absence of receptor expression.  A random error having a range of 

40% of the measurement plus background (± 20%) was added.  Then the background value was 

subtracted to avoid confusion between it and the constitutive stimulus.  The net result is that the 

response values have greater than a 48% random error (i.e., ± 24%).  For each analysis, we 

simulated four replicates, and the figures illustrate the mean ± SEM of these replicates. 

 

2.4  Nonlinear regression analysis 

Both simulated and experimental data were analyzed by global nonlinear regression analysis 

using Prism (GraphPad Software, San Diego, CA) or Excel (Microsoft, Mountain View, CA) and 

selected equations described above.  For this analysis, the regression equations were rearranged 

so that the microscopic constants (Ka, Kb, Ke, Kf and Kq) and some of the population parameters 

(i.e., K1, K2, α, γ1, τ, τA and τsys) were expressed as logarithms (e.g., Ka = 10log Ka).  The estimates 

of these log parameters are given in the text ± their asymptotic standard error.  For the analysis 

of the independent effects of the ligands (Figure 8), each replicate set of simulated data was 

analyzed, and the mean ± SEM of each parameter estimate is reported. 

As shown in the Appendix, it is possible to express the population and microscopic constants 

in terms of the graphical parameters (EC50, Emax, etc.) of the concentration-response curves for 

the case of m = 1.  These equations can be used for calculating initial parameter estimates for 

nonlinear regression analysis regardless of whether m = 1. 

In some cases it is impossible to estimate some of the microscopic and macroscopic 

(population) parameters in a given scheme. In these instances, we searched parameter space by 

constraining either Ka (receptor state analysis) or K1 (population analysis) to a range of values 

and estimated the other parameters that minimized the residual sum of squares (RSS).  Only those 

parameters whose estimates were constant over the domain that yielded a least-squares fit are 

reported. 
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3.  Results 

3.1  Quaternary complex scheme for allosterism 

We used equation 2 and the method described in the Appendix to generate receptor activation 

functions.  Examples of these are shown in Figure 4 for the case of a positive (Kf/Ke = 10) 

allosteric modulator and a highly efficacious (Kb/Ka = 104) agonist.  The value of the 

isomerization constant (Kq) was 10-4, and the concentration of guanine nucleotide (X) was 10-3 M.  

For the cases shown in Figure 4, fractional constitutive receptor activation (εsys) is barely 

detectable, but it can be enhanced by increasing the isomerization constant of the unoccupied 

receptor (Kq). 

Each of these receptor-activation functions can be analyzed using a one-site equation to 

estimate the observed affinity constant of the orthosteric ligand (K1).  This was done for the 

simulated condition of no modulator using the following equation: 

 ! = !!"!!!"#!
!!!!!

  34 

in which, ε, denotes the efficacy of the orthosteric agonist, and εsys, the constitutive stimulus.  

In all cases, the Hill slopes were equivalent to one as determined by regression analysis with a 

logistic equation.  The values of log K1 and ε for the agonist were (4.16) and (0.21), respectively. 

Maximal receptor activation approaches a value of 1.0 for the two-state scheme (Figure 2a, 

equation 2) at high concentrations of an agonist with a sufficiently high ratio of Kb/Ka.   In 

contrast, the maximum of the quaternary complex scheme for allosterism is often less than one 

and depends on the ratio of G protein to receptor, the concentration of guanine nucleotide, and 

the various parameters in the model.  For the simulations in Figure 4, maximum receptor 

activation with an agonist having infinite selectivity for the active state (Kb/Ka = ∞) is 0.68. 

Although the maximum of the quaternary complex scheme for allosterism is less than 1.0, the 

regression equations developed to analyze downstream responses are based on a simple two-state 

scheme having a maximum of 1.0.  This discrepancy gives rise to a difference between the KE 
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value used to simulate downstream responses and the observed estimate of KE (KE-obs) determined 

by regression analysis of the simulated data.  The relationship between KE and KE-obs is given by: 

  !!!!"# =
!!
!!"#

  35 

in which Tmax represents the fractional maximum of the quaternary complex function for an 

agonist having infinite efficacy (0.68 for the example in Figure 4).  The theoretical KE-obs values 

for the simulations described below were calculated using equation 35. 

There is also a discrepancy between the Kq value used to simulate the receptor activation 

function and the Kq-obs parameter of the simple scheme shown in Figure 2a.  The latter theoretical 

value can be calculated numerically or estimated by fitting the receptor activation function 

(equation 1) to the control curve in Figure 4 with Kb and Ka constrained to their theoretical values 

and the maximum to 0.68.  Using the latter approach, the theoretical value of log Kq-obs was 

determined (-4.35).  This observed value is reduced from that used to simulate the data (log 

Kq, -4.0) because of the influence of G protein and guanine nucleotide. 

 

3.2  Analysis of simulated allosteric interactions, two-state scheme 

We simulated agonist concentration-response curves for three conditions: 1) control, 2) after 

reduced receptor expression or after partial receptor inactivation with a ligand that behaves as a 

neutral antagonist when bound irreversibly (irreversible neutral antagonist), and 3) in the 

presence of various concentrations of allosteric ligand after reduced receptor expression or 

partial receptor inactivation.  All of the parameters used to simulate data are given in the 

corresponding figure legends. 

Simulated data for a positive allosteric modulator are shown in Figures 5a and b for conditions 

of reduced receptor expression and partial receptor inactivation, respectively.  If there is no 

constitutive activity and the allosteric ligand lacks an effect by itself, then it is impossible to 

estimate Kb and Kq-obs, but it is possible to estimate Kbqs.  In addition, there is little difference 
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between the effects of reduced receptor expression or partial receptor inactivation in this 

situation. 

The data in Figure 5a were analyzed by global nonlinear regression analysis using equation 8, 

which yielded the following parameter estimates: q, 0.059 ± 0.016; log Ka, 4.02 ± 0.09; log Kbqs, 

5.48 ± 0.04; log Ke, 5.11 ± 0.08; log Kf, 6.54 ± 0.08; log KE-obs, -1.65 ± 0.16; Msys, 1.01 ± 0.02 and 

m, 1.75 ± 0.24.  Similarly, the data in Figure 5b were also analyzed using equation 8, and the 

following parameter estimates were obtained: q, 0.059 ± 0.016; log Ka, 4.12 ± 0.09; log Kbqs, 5.52 

± 0.04; log Ke, 5.00 ± 0.08; log Kf, 6.46 ± 0.08; log KE-obs, -1.92 ± 0.15; Msys, 0.95 ± 0.02 and m, 

1.73 ± 0.24.  All of these estimates are nearly the same as those used to simulate the data: q, 

0.05; log Ka, 4.0; log Kbqs, 5.48; log Ke, 5.0; log Kf, 6.5; log KE-obs, -1.83; Msys, 1.0 and m, 1.5. 

We also simulated data for an allosteric agonist for conditions of reduced expression (Figures 

6a and b) and partial receptor inactivation (Figure 6c).  The data for reduced expression are 

shown in two panels for clarity – panel a shows the control curves for the orthosteric and 

allosteric agonists and panel b shows their interaction under conditions of reduced receptor 

expression. 

The data in Figure 6a and b were analyzed simultaneously by global nonlinear regression 

analysis using equation 11.  This analysis yielded the following parameter estimates:  q, 0.063 ± 

0.013; log Ka, 4.14 ± 0.08; log Kb, 7.93 ± 0.11; log Ke, 5.02 ± 0.05; log Kf, 7.17 ± 0.07; log Kq-obs, 

-4.09 ± 0.22; log KE-obs, -1.69 ± 0.13; Msys, 0.96 ± 0.02 and m, 1.80 ± 0.13.  Similarly, the data in 

Figure 6c were analyzed (equation 7), and the following parameter estimates were obtained: q, 

0.056 ± 0.011; log Ka, 3.97 ± 0.08; log Kb, 7.90 ± 0.15; log Ke, 5.08 ± 0.09; log Kf, 7.19 ± 0.07; 

log Kq-obs, -4.07 ± 0.26; log KE-obs, -1.64 ± 0.12; Msys, 1.05 ± 0.02 and m, 1.63 ± 0.17.  All of these 

estimates are nearly the same as those used to simulate the data: q, 0.05; log Ka, 4.0; log Kb, 7.0; 

log Ke, 5.0; log Kf, 7.2; log Kq-obs, -4.35; log KE-obs, -1.83; Msys, 1.0 and m, 1.5. 

Finally, we simulated data for a negative allosteric modulator at a receptor exhibiting 

constitutive activity under conditions of reduced receptor expression (Figures 7a and b) and 

partial receptor inactivation (Figure 7c).  The control concentration-response curves for the 
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orthosteric and allosteric ligands (panel a) and those of the agonist measured in the presence of 

various concentrations of the modulator after reduced receptor expression (panel b) were 

analyzed by global nonlinear regression analysis using equation 11, and the following parameter 

estimates were obtained:  q, 0.013 ± 0.004; log Ka, 4.09 ± 0.08; log Kb, 6.95 ± 0.11; log Ke, 6.02 

± 0.06; log Kf, 5.07 ± 0.06; log Kq-obs, -2.27 ± 0.20; log KE-obs, -2.13 ± 0.17; Msys, 1.03 ± 0.02 and 

m, 1.63 ± 0.20.  Similarly, the data in Figure 7c were analyzed using equation 7, and the 

following parameter estimates were obtained: q, 0.019 ± 0.004; log Ka, 3.93 ± 0.08; log Kb, 6.88 

± 0.14; log Ke, 6.19 ± 0.12; log Kf, 4.84 ± 0.12; log Kq-obs, -2.35 ± 0.18; log KE-obs, -2.11 ± 0.15; 

Msys, 1.07 ± 0.02 and m, 1.07 ± 0.18.  All of these estimates are nearly the same as those used to 

simulate the data: q, 0.01; log Ka, 4.0; log Kb, 7.0; log Ke, 6.0; log Kf, 5.0; log Kq-obs, -2.41; log 

KE-obs, -2.26; Msys, 1.0 and m, 1.5. 

 

3.3  Analysis of simulated allosteric interactions, population scheme 

In many instances, the nature of allosteric modulation of receptor function is inconsistent with 

a two-state scheme.  Nonetheless, allosterism can always be analyzed at the more superficial 

level of the average behavior of the receptor population (ensemble average).  In this section, we 

summarize the analysis of the simulated data in Figures 5 – 7 using the population scheme 

(Figure 2b, equations 25 and 26). 

As described in the Appendix, each population parameter of the receptor activation function 

(τsys, K1, τ, K2, τA, α, β and γ) can be expressed as a function of microscopic constants (see 

equations 55 – 61, 63 – 66, 68).  The theoretical population parameters were calculated from the 

microscopic constants used to simulate the data, and these are given below. 

The data in Figure 5a were reanalyzed using the population model for reduced receptor 

expression (equation 26) with the estimates of τsys and τA constrained to zero (i.e., log τsys = -20 

and log τA = -20) because this simulation represents data for a receptor lacking constitutive 

activity and a modulator lacking an effect by itself.  Global nonlinear regression analysis of the 

data yielded the following parameter estimates: q, 0.049 ± 0.009; log K1, 4.17 ± 0.08; log τ, 1.33 
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± 0.08; log K2, 5.07 ± 0.06; log γ1, 1.50 ± 0.07; log α, 1.08 ± 0.08; Msys, 1.01 ± 0.02 and m, 1.57 

± 0.13.  Similarly, global nonlinear regression analysis of the data in Figure 5b was analyzed by 

the population model for partial receptor inactivation (equation 25) and the following parameter 

estimates were obtained: q, 0.044 ± 0.008; log K1, 4.17 ± 0.08; log τ, 1.38 ± 0.09; log K2, 4.92 ± 

0.07; log γ1, 1.59 ± 0.08; log α, 1.01 ± 0.10; Msys, 0.96 ± 0.02 and m, 1.47 ± 0.12.  All of these 

estimates are nearly the same as those used in the simulation:  q, 0.05; log K1, 4.16; log τ, 1.32; 

log K2, 5.00; log γ1, 1.5; log α; 1.02; Msys, 1.0 and m, 1.5. 

We also analyzed the simulation for an allosteric agonist using the population model (Figure 

6).  Global nonlinear regression analysis of the data in Figure 6a and b using equation 26 with 

τsys constrained to zero (log τsys = -20) yielded the following parameter estimates:  q, 0.062 ± 

0.013; log K1, 4.31 ± 0.09; log τ, 1.22 ± 0.09; log K2, 5.02 ± 0.06; log τA, -0.26 ± 0.05; log γ1, 

2.15 ± 0.09; log α, 1.67 ± 0.09; Msys, 0.96 ± 0.02 and m, 1.80 ± 0.17.  Similarly, global nonlinear 

regression analysis of the data in Figure 6c using the population model for partial receptor 

inactivation (equation 25) yielded the following parameter estimates: q, 0.056 ± 0.011; log K1, 

4.21 ± 0.09; log τ, 1.26 ± 0.09; log K2, 5.08 ± 0.10; log τA, -0.32 ± 0.04; log γ1, 2.11 ± 0.12; log 

α, 1.73 ± 0.11; Msys, 1.05 ± 0.02 and m, 1.62 ± 0.16.  All of these estimates are nearly the same as 

those used in the simulation:  q, 0.05; log K1, 4.16; log τ, 1.32; log K2, 5.0; log τA, -0.33; log γ1, 

2.20; log α, 1.69; Msys, 1.0 and m, 1.50. 

Finally, we reanalyzed the data in Figure 7 using the population model.  Global nonlinear 

regression analysis of the simulated data in Figure 7a and b with the population model for 

reduced receptor expression (equation 26) yielded the following parameter estimates:  q, 0.017 ± 

0.007; log τsys, -0.13 ± 0.08; log K1, 4.85 ± 0.11; log τ, 1.91 ± 0.20; log K2, 6.03 ± 0.06; log 

τA, -0.87 ± 0.19; log γ1, -0.94 ± 0.08; log α, -0.56 ± 0.07; Msys, 1.02 ± 0.01 and m, 1.79 ± 0.29.  

Similarly, global nonlinear regression analysis of the data in Figure 7c using the population 

model for partial receptor inactivation (equation 25) yielded the following parameter estimates: 

q, 0.019 ± 0.004; log τsys, -0.23 ± 0.05; log K1, 4.61 ± 0.09; log τ, 2.01 ± 0.17; log K2, 6.17 ± 

0.12; log τA, -1.59 ± 0.44; log γ1, -1.32 ± 0.21; log α, -0.61 ± 0.10; Msys, 1.08 ± 0.02 and m, 1.08 
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± 0.22.  All of these estimates are nearly the same as those used in the simulation:  q, 0.01; log 

τsys, -0.15; log K1, 4.69; log τ, 2.16; log K2, 6.0; log τA, -1.15; log γ1, -1.0; log α, -0.55; Msys, 1.0 

and m, 1.50. 

Knowing the sensitivity constant of the signaling pathway (KE-obs), the τ values from the 

population analysis (i.e., τ, τA and τsys) and the microscopic constants, it is possible to estimate 

the efficacy of the ligands and the constitutive activity of the signaling pathway using equations 

18 – 20 and 57 – 59 (Appendix).  These calculations yield efficacy estimates for the orthosteric 

(ε) and allosteric (εA) ligands and the free receptor (constitutive activity, εsys) for the data from 

Figure 5b (ε, 0.29) 6c (ε, 0.42; εA, 0.011; εsys, 8.1 × 10-5) and 7c (ε, 0.80; εA, 2.0 x 10-4; εsys, 4.5 × 

10-3).  Note that in the last case, which involves an allosteric inverse agonist, efficacy (εA) is less 

than constitutive activity (εsys).  The same would be true for the case of an orthosteric inverse 

agonist (F. J. Ehlert, Suga, et al., 2011a). 

 

3.4  Analysis of the independent activity of ligands 

The nature of the interaction between orthosteric and allosteric ligands depends on their 

selectivity for active and inactive states and the isomerization constant of the receptor.  Thus, the 

microscopic constants estimated for an allosteric interaction between a pair of orthosteric and 

allosteric ligands should be the same as those estimated from their independent effects provided 

that the same active state of the receptor mediates the response in both situations.  In this section, 

we address this issue. 

The independent effects of some of the ligands used in the simulations are plotted again in 

Figure 8 for convenience.  The data include the orthosteric and allosteric agonists from Figure 6a 

(panel a); and Figure 6c (panel b) and the orthosteric agonist and negative allosteric modulator 

from Figure 7a (panel c) and Figure 7c (panel d). 

The data in Figure 8a were analyzed by global nonlinear regression analysis using equations 

13 and 14 as described under Methods.  Regression analysis yielded estimates of q (0.047 ± 

.010), Msys (0.98 ± 0.02), m (1.49 ± 0.14), log Kbqs, (5.50 ± 0.03) and the log Ka and log RAi 
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values of the allosteric agonist (4.79 ± 0.08 and -1.02 ± 0.05).  Similarly, regression analysis of 

the simulated data in Figure 8b yielded the following parameter estimates:  q (0.06 ± .02), Msys 

(1.04 ± 0.02), m (2.04 ± 0.35), log Kbqs (5.46 ± 0.03) and the log Ka and log RAi values of the 

allosteric agonist (5.13 ± 0.14 and -0.60 ± 0.20).  All of these are reasonable estimates of the 

theoretical values used to simulate the data for the interactive effects of the ligands shown in 

Figure 6: q, 0.05; Msys, 1.0; m, 1.5; log Kbqs 5.48, log RAi (log Kf/Kb), -1.0 and the log Ka, of the 

allosteric ligand (log Ke) 5.0. 

The data in Figure 8c were analyzed using equation 9.  Regression analysis was done sharing 

all of the parameters except Ka, Kb and q.  The Ka and Kb values of the orthosteric agonist were 

shared under control and receptor inactivation conditions, whereas unique values were estimated 

for the negative allosteric modulator.  The parameter q was estimated for the condition of 

receptor inactivation and constrained to 1.0 otherwise.  Regression analysis yielded estimates of 

Msys, (1.00 ± 0.02), m (1.46 ± 0.16), q (0.010 ± 0.002), the log Kb value of the orthosteric agonist 

(7.11 ± 0.05) and the log Kb and log Ka values of the negative allosteric modulator (4.77 ± 0.28 

and 5.94 ± 0.091).  The data in Figure 8d were analyzed in an analogous manner but with 

equation 12.  Global nonlinear regression analysis yielded estimates of Msys, (1.09 ± 0.05), m 

(1.44 ± 0.66), q (0.024 ± 0.004), the log Kb value of the orthosteric agonist (7.03 ± 0.34) and the 

log Kb and log Ka values of the negative allosteric modulator (4.35 ± 0.66 and 5.83 ± 0.14). 

With the exception of the Kb value of the allosteric ligand, the latter values are nearly the same 

as those used to simulate the data for the interactive effects of the ligands illustrated in Figure 7: 

q, 0.01; Msys, 1.0; m, 1.5; log Kb value of the orthosteric agonist, 7.0; and the log Kb and Ka values 

of the allosteric ligand (log Kf and Ke), 5.0 and 6.0, respectively.  An accurate value for the Kb of 

a negative allosteric modulator is difficult to estimate whenever the responses measured in the 

presences of maximally effective concentrations of the modulator are negligible.  This rationale 

explains the error in this parameter noted above. 
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3.4  Analysis of data from the literature 

We analyzed two examples of data from the literature involving allosteric modulation of M1 

and M2 muscarinic receptor function to determine if the two-state scheme shown in Figure 2 

adequately described the allosteric effects. 

The data in Figure 9a were estimated from a published figure by Canals and coworkers (2012).  

These investigators studied the effects of various concentrations of BQCA (1-(4-

methoxybenzyl)-4-oxo-1,4-dihydro-3-quinoline carboxylic acid) on the concentration-response 

curves of carbachol for eliciting activation of a chimeric G protein containing the carboxyl 

terminus of Gαi1,2 in a yeast cell expressing the human M1 muscarinic receptor.  We analyzed the 

data using receptor state equation 3 with all of the parameters shared during global nonlinear 

regression analysis.  This analysis yielded estimates of log Kb (8.05 ± 0.13), log Ke (4.49 ± 0.09), 

log Kf (6.49 ± 0.09), Msys (103 ± 1.5%) and m (0.85 ± 0.06).  Because the interaction was not 

measured with reduced receptor expression or partial receptor inactivation, it was impossible to 

estimate Ka, Kq-obs and KE-obs.  By searching parameter space, it was possible to estimate the 

domain of log Ka (log Ka ≤ 4.4), however.  In addition, regression analysis with equation 5 

yielded estimates of log Kbqs (5.76 ± 0.06), and hence, log Kq-obs/KE-obs (-2.28 ± 0.15). 

The second example is from our prior work on the allosteric effect of gallamine on 

oxotremorine-M-mediated inhibition of forskolin-stimulated cAMP accumulation in CHO cells 

expressing the human M2 muscarinic receptor (Figure 9b) (F. J. Ehlert & Griffin, 2008).  

Concentration-response curves for oxotremorine-M were measured under control conditions and 

after partial inactivation of the receptor population with 4-DAMP mustard (N-(2-chloroethyl)-4-

piperidinyl diphenylacetate).  Under the latter condition, responses were measured in the absence 

and presence of gallamine (0.01 and 0.1 mM).  The data were analyzed by a modified form of 

equation 7 to account for an inhibitory response, receptor inactivation, and no constitutive 

activity: 
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In this equation, P1 denotes the amount of cAMP accumulation elicited by forskolin in the 

absence of other drugs, and in this case, Msys denotes the maximal fractional inhibition of cAMP 

accumulation elicited by an agonist with infinity efficacy.  Regression analysis yielded estimates 

of the microscopic constants log Kb (8.21 ± 1.08), log Ke (5.65 ± 0.18) and log Kq (-2.60 ± 1.12) 

as well as the transducer parameters of log KE-obs (-1.00 ± 0.26), Msys (0.62 ± 0.09), m (1.042 ± 

0.29) and P1 (101± 2.21).  The estimates of the microscopic affinity constants of the orthosteric 

and allosteric ligand for the inactive state of the receptor (Ka and Ke, respectively) were 

essentially equivalent to zero (large negative log values), however.  These microscopic constants 

yielded reasonable estimates of the observed affinity constants for the orthosteric (log K1 = 5.61) 

and allosteric (log K2 = 5.65) ligands.  The calculated estimate of log γ1 was a large negative 

number, corresponding essentially to γ1 = 0.  Prior estimates of log γ1 are in the range of -2, 

however.  Thus, the two-state scheme does not provide a satisfactory fit to the data, when 

compared to the results of other studies where higher concentrations of gallamine were 

investigated. 

We also attempted to fit the regression equation to the data with the log Ka value for 

oxotremorine-M constrained to a range of values estimated in prior studies on M2 receptor-

mediated inhibition of cAMP accumulation in HEK 293 cells (log Ka = 4 – 5).  It was impossible 

to obtain a good fit to the data with this constraint, and the calculated value for the log observed 

affinity constant of gallamine (log K2, 2.4 – 5.1) was much lower than that estimated in prior 

functional studies (~ 6.0). 

When the population scheme was fitted to the data, a good fit was obtained.  The estimates of 

log γ1 and log α were unreliable because of the limited range of concentrations of gallamine.  

Constraining log γ1 to values (1.8 – 2.3) estimated in prior studies (F. J. Ehlert, 1988b; F. J. 

Ehlert & Griffin, 2008) did not worsen the fit and yielded estimates of log α essentially 

equivalent to log γ1.  Thus, from the population perspective, gallamine appears to reduce the 

affinity of oxotremorine-M while having little effect on its efficacy. 
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4.  Discussion 

As described previously (F. J. Ehlert, 2000; F. J. Ehlert & Rathbun, 1990; Tran, et al., 2009), 

the quaternary complex scheme is useful for simulating receptor activation at a GPCR.  It is 

based on the assumption that the signal elicited by the agonist-receptor complex is proportional 

to the fraction of the complex in the active state associated with GDP-bound G protein.  This 

species catalyzes guanine nucleotide exchange and is, therefore, proportional to the activating 

stimulus that elicits downstream responses. 

This scheme was solved for equilibrium conditions, yet during receptor signaling, the G 

protein achieves steady state.  The factor that drives the system away from equilibrium is the 

GTPase activity of the G protein, which converts GTP to GDP.  But because both of these 

guanine nucleotides have the same effect on agonist binding to many GPCRs (Berrie, Birdsall, 

Burgen, & Hulme, 1979; Childers & Snyder, 1978; Freedman, Poat, & Woodruff, 1981), the 

agonist-receptor complex should be at equilibrium, which justifies the use of the model for the 

purposes described in this report. 

In this study, we have added allosteric ligands and active and inactive states of the G protein to 

our scheme.  The latter modification allows the modeling of two counterintuitive phenomena: 1) 

guanine nucleotide-insensitive agonist binding and 2) little change in the amount of G protein 

associated with receptor upon agonist activation.  The former can occur when the equilibrium 

between active and inactive states of the free G protein is shifted far to the inactive state and the 

latter whenever the inactive GDP-bound form of the holo G protein is precoupled to the receptor.  

These two phenomena can explain 1) the lack of prominent GTP effects on agonist affinity for 

Gq-coupled receptors (Katz & Miledi, 1970) and 2) some unexpected changes in agonist-

mediated resonance energy transfer between receptors and G proteins (Derksen, 1965; 

Lindemann & DeFelice, 1981).  As described previously, our scheme also adequately simulates 

GTP-sensitive agonist binding and agonist-induced formation of the receptor-G protein complex 

(F. J. Ehlert, 2000; F. J. Ehlert & Rathbun, 1990; Tran, et al., 2009). 
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We have shown through simulation that it is possible to estimate microscopic constants under 

specific conditions.  This approach was taken for two reasons – to describe our method of 

analysis and to prove that microscopic constants can be estimated from functional data.  The 

latter goal can be achieved more directly with an analytical proof.  In the Appendix, we show 

that it is possible to calculate the population parameters and microscopic constants from the 

graphical parameters of the concentration-response curves for the condition where the transducer 

slope factor (m) in the operational model (equation 2) is equal to one.  We have derived 

equations for the graphical parameters (see Figure 10) in terms of the population parameters of 

the allosteric ternary complex model (see Figure 2b).  Then we solve these equations to express 

the population parameters in terms of the graphical parameters.  Finally, using the relationships 

between microscopic and population parameters, the microscopic constants can be estimated 

from the population parameters.  We verified the equations by using them to analyze theoretical 

data without error like those shown in Figure 10. 

These equations illustrate what can be estimated from a given set of data.  For example, it is 

difficult to obtain a reliable estimate of Msys using a partial agonist and the method of partial 

receptor inactivation.  The estimation of Msys requires an accurate calculation of the difference 

between the EC50 values of the agonist measured before and after receptor inactivation (i.e., EC1 

– EC2; see equations 96 and 148).  This difference is difficult to estimate accurately because 

treatment of the receptor population with an irreversible antagonist mainly reduces the Emax of a 

partial agonist while having little effect on EC50.  The solution is to analyze the data 

simultaneously with a full agonist. 

We also derived equations for expressing Kbqs and Ka in terms of the graphical parameters of 

the concentration-response curves when these are estimated independently from data like that 

illustrated in Figure 8, for example, for the condition of m = 1 (see Appendix).  We previously 

described analogous equations for expressing relative (RAi) and absolute estimates of Kb in terms 

of the graphical parameters of the concentration-responses curves of orthosteric agonists (F. J. 

Ehlert, Suga, et al., 2011a; Griffin, et al., 2007).  All of these equations can be used to calculate 
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the microscopic affinity constants of allosteric agonists and inverse agonists when the 

concentration-response curves are measured independently.  If there is a difference between 

parameters estimated from the independent and interactive effects of the orthosteric and 

allosteric ligands, then it is likely that the interacting ligands select for different active states of 

the receptor. 

Although the equations derived under “Appendix” only apply to the condition of m = 1, second 

messenger responses often exhibit concentration-response curves with Hill slopes of one (n = 1, 

and hence, m = 1).  Thus, these equations are useful in many cases, not withstanding the more 

robust approach of using the nonlinear regression methods that we describe in this report.  More 

importantly, these equations can be used to calculate initial parameter estimates for the nonlinear 

regression analyses when the transducer slope factor, m, differs from 1.0.  This would enable the 

development of a computer program for the analysis that requires no input from the investigator 

other than the raw data and the appropriate regression equation. 

The minimum data necessary for estimating all of the population and microscopic parameters 

include the concentration-response curves of the orthosteric ligand measured under control 

conditions and after reduced receptor expression or partial receptor inactivation in the absence 

and presence of various concentrations of allosteric ligand.  For the case no constitutive activity, 

an allosteric agonist is required for estimation of microscopic constants, but not population 

parameters.  If used in conjunction with reduced receptor expression, the concentration-response 

of the allosteric agonist under control conditions is also required for estimation of microscopic 

constants for the case of no constitutive activity.  The concentration of allosteric ligand should 

vary from a low value causing only about a two-fold shift in the concentration-response curve of 

the orthosteric ligand to a high value that saturates the allosteric site and elicits a near maximal 

effect.  These conditions are likely to reveal an allosteric change in the Emax of the orthosteric 

ligand, which is essential for estimating Kq-obs and KE.  If none is seen, then the ligand might not 

conform to a two-state scheme, and in such a case, only the population parameters can be 

determined. 
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For example, gallamine causes a large allosteric reduction in the observed affinity of some 

agonists for the M2 muscarinic receptor without affecting efficacy (F. J. Ehlert, 1988b; F. J. 

Ehlert & Griffin, 2008).  This mechanism is clearly inconsistent with a two-state scheme as 

described under “Results” in connection with Figure 9b.  The mechanism is also difficult to 

rationalize with a multi-state scheme, and we have suggested that perhaps gallamine regulates a 

relay site on the muscarinic receptor and not the orthosteric binding pocket (F. J. Ehlert & 

Griffin, 2008). 

Hulme (2003) has suggested that a residue in helix four in the human M1 sequence (W157; 

W155 in M2) might function as a docking site where acetylcholine first binds before shuttling to 

the orthosteric site.  In a recent modeling study based on the crystal structure of the M2 

muscarinic receptor, it was shown that the antagonist tiotropium interacts with W155 on the M2 

receptor when traversing to and from the orthosteric site (Kruse, et al., 2012).  Perhaps this relay 

process undergoes allosteric modulation by gallamine.  Because the population scheme is 

unconstrained by microscopic constants, it yields appropriate parameter estimates for a relay 

model.  In this case, the estimate of the population affinity constant (Kobs) is actually a weighted 

composite of the affinities of the relay and orthosteric sites (F. J. Ehlert & Griffin, 2008). 

It is often assumed that the value of the observed affinity constant (Kobs) of an agonist for a 

GPCR in its native context is nearly the same as that of its microscopic affinity constant for the 

inactive state because high intracellular concentrations of GTP greatly shift the equilibrium 

between the active and inactive states in the direction of the inactive state (F. J. Ehlert, 2000; 

Strange, 2007).  There is circumstantial evidence, however, that in some instances the value of 

Kobs is substantially greater than Ka.  When estimated by the method of partial receptor 

inactivation, log Kobs values of 3.74 ± 0.14 and 4.00 ± 0.13 were estimated for carbachol and 

oxotremorine-M in experiments on human M3 muscarinic receptor-mediated phosphoinositide 

hydrolysis in HEK293 cells (F. J. Ehlert, Suga, et al., 2011a).  With regard to M3 muscarinic 

receptor-mediated contraction in mouse ileum, the same method of analysis yielded much higher 

log Kobs values of 5.49 ± .14 and 5.73 ± .14 for carbachol and oxotremorine-M, respectively 
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(Tran, et al., 2009).  In CHO cells stably transfected with the human M2 receptor, analysis of 

carabachol- and oxotremorine-M-mediated inhibition of cAMP accumulation yielded log Kobs 

values of 5.36 ± .18 and 6.54 ± 0.14, respectively, yet the log binding affinities of these agonists 

in homogenates of the rat and rabbit myocardium are only about 4.0 and 5.4 when measured in 

the presence of GTP (0.1 mM) (F. J. Ehlert, 1985; F. J. Ehlert & Rathbun, 1990).  Thus, in 

functioning receptosomes of the ileum and CHO cells, but not HEK 293 cells, the local 

concentration of GTP may be less than that required to saturate G proteins. 

In cellular homogenates, of course, the concentration of GTP can be manipulated, and the 

estimate of Kobs can be much greater than that of Ka whenever the concentration of guanine 

nucleotides is less than saturating.  Even under the latter condition, it is theoretically possible for 

Kobs to exceed Ka.  This issue has relevance to common assays employing tissue and cellular 

homogenates, like adenylate cyclase and [35S]GTPγS binding.  Not surprisingly, when functional 

and binding assays were carried out at the same concentration of GTP, similar values of Kobs 

were estimated for a given agonist at the M2 muscarinic receptor in the heart (F. J. Ehlert, 1987). 

We previously described an approach for estimating the Ka values of a series of agonists 

through analysis of their concentration-response curves independently of allosteric modulation 

(F. J. Ehlert, Griffin, et al., 2011).  The analysis involved first constraining the sensitivity 

constant (KE-obs) in the operational model to the largest value that yielded a least-squares fit for 

the most efficacious agonist in a series (i.e., estimate of KE-obs when ε = 1.0) and then using a 

regression scheme to estimate the Ka values of less efficacious agonist.  This approach yields 

reasonable Ka values for agonists provided that their efficacies are less than one-half that of the 

most efficacious agonist.  The method described in this report employing regression equations 13 

and 14 (see Figure 8) is an improvement and also yields estimates of the standard error of log Ka. 

The same analysis also yields an estimate of the RAi value of an agonist, which represents the 

product of the affinity and efficacy of the agonist expressed relative to that of another agonist 

(standard agonist).  RAi is also equivalent to the corresponding ratio of Kb values.  The theoretical 

basis for this estimate was first described by Ehlert et al. (1999) using a response clamp analysis 
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(null method) as well as in subsequent publications where explicit methods on how to calculate 

this parameter are given (F.J. Ehlert, 2008; F. J. Ehlert, Suga, et al., 2011b; Griffin, et al., 2007).  

A similar method for estimating the same parameter has been recently described by Kenakin and 

coworkers (2012). 

We have described our methods from the perspective of the orthosteric agonist.  The analysis 

can also be done from the opposite perspective – that is, measuring the effect of an orthosteric 

ligand on the concentration-response curve of an allosteric agonist.  The same equations are 

used, except that the concentration of allosteric ligand would represent the main independent 

variable.  Measuring the effect of an orthosteric inverse agonist on the concentration-response 

curve of an allosteric agonist provides a means of estimating the affinity of the inverse agonist 

for the active state of the receptor, which is difficult to estimate in the absence of allosteric 

modulation if the inverse agonist has high selectivity for the inactive state (F. J. Ehlert, Suga, et 

al., 2011a). 

Our method enables the estimation of the isomerization constant of the receptor (Kq-obs) and the 

parameters of the transducer function (KE-obs, Msys and m, equation 2) for signaling pathways in 

cell lines, primary cells and tissues.  Knowing these constants, one could estimate the Kb and Ka 

values of agonists and inverse agonists (orthosteric or allosteric) by regression analysis of their 

concentration-response curves using a simplified form of equation 3 (for the condition A = 0) 

with Kq-obs and the parameters of the transducer function constrained to their previously 

determined values.  Alternatively, global nonlinear regression analysis of the concentration-

response curves with the data for the allosteric modulation of a full agonist could be done. 

The active state of a GPCR is an adaptation that enables the rapid transfer of information 

through its complementary signaling protein (e.g., G protein).  It is the first cause of all 

downstream events.  Thus, the affinity constant of an agonist for the active state is an ideal 

measure of agonist bias provided that its value is sufficiently greater than that of the inactive 

state.  Arguing from the perspective of the receptor population, several authors conclude that G 

proteins determine the activity of agonists.  While the abundance and type of G protein can 



 

	   33	  

certainly modify observed affinity (K1 or K2) and efficacy (ε) of an agonist for a particular 

signaling pathway, it seems unlikely that the interaction has any effect on Kb and Ka.  Rather, G 

proteins provide a window for monitoring the activity of different effector-selective states of the 

receptor (F. J. Ehlert, Suga, et al., 2011a).  Our method provides a means of estimating the 

affinity of agonists for these states. 

Studies on structure-activity relationships often involve an attempt to relate modification in 

agonist structure to a change in activity usually estimated as EC50 or observed binding affinity 

(K1).  For a highly efficacious agonist, however, there is no real receptor structure the has an 

affinity constant of K1.  Rather, there are at least two types of complexes (active and inactive), 

and our method provides the appropriate affinity constants for these (Kb and Ka).  Hence, a more 

fundamental understanding of structure-activity relationships can be achieved using our analysis.  

It also provides a means to validate in silico computations of the affinity constants of a ligand for 

crystal structures of active and inactive receptor states. 

One final point is that we have explained our method by considering the simple example of a 

receptor with one active and one inactive state.  Our approach can be modified to account for 

more than one active state (see Tran et al. (2009) and Ehlert & Griffin (2008)).  With sufficient 

data, including different responses and effector-selective agonists, it should be possible to 

resolve the microscopic constants of two or three active states. 
 

5.  Appendix 

5.1  Numerical solution to the quaternary complex scheme for allosterism 

The activation function for the quaternary complex scheme for allosterism (Figure 3c) 

represents the sum of the receptor complexes associated with the active state of the guanine 

nucleotide-occupied G protein divided by the sum of all of the receptor complexes (RT): 

  ! = !"!∗!!∗!!!"!∗!"!∗!!!!∗!"!∗!!!!∗!!∗!!!"!!!∗!!!"!!"!∗!!!!!"!∗!!!!!!∗!
!!

  37 
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Four sets of receptor complexes contribute to RT.  The first includes all receptor complexes in 

which the receptor and G protein, if the latter is associated with the receptor, are in the inactive 

state: DRs, RsA, DRsA, Rs, DRsGs, RsAGs, DRsAGs, RsGs, DRsGsX, RsAGsX, DRsAGsX and RsGsX.  

The second includes the same complexes but with each protein in the active state.  The third 

includes only those complexes having both the active state of the receptor and the inactive state 

of the G protein.  The fourth set is analogous to the third except that the G protein is in the active 

state and the receptor is in the inactive state. 

Each receptor complex can be expressed as a function of microscopic constants, the inactive 

state of the free receptor concentration, and various ligand concentrations.  The microscopic 

constants are defined as: 
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Note that, at the level of receptor states, the affinity of a ligand is determined solely by the 

state of the protein to which it binds and is independent of whether other ligands or proteins are 

associated with its binding protein.  For example, the microscopic affinity constant, Ka, defines 

all of the following equilibria: 
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Using the microscopic constants described above, it is possible to derive an equation for each 

receptor complex described in equation 37.  For example: 
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The resulting equations for all of the receptor complexes are substituted into equation 37.  In 

our calculations, we substituted the following expression for the free concentration of G protein 

(Gs): 
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 52 

In which the ratio, GT/RT, denotes the ratio of total G protein (GT) to total receptor (RT). 

Thus, by using substitutions for each receptor complex, it is possible to solve equation 37 for a 

given set of values for the microscopic constants, concentrations of the various ligands (D, A and 

X), and ratio of GT/RT. 

When the ratio, GT/RT, is not large, however, the free concentration of G protein (Gs) in the 

plasma membrane decreases with an increase in receptor occupancy by agonists.  To correct for 

this reduction in Gs, we used the following iteration procedure to determine the relative amount 

of free G protein: 

 !!!! = !! +
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In this equation, Gi and Gb denote the ratio of free and bound G protein to total receptor, 

respectively, for the current iteration, and Gi+1 denotes the corresponding ratio for the subsequent 

iteration.  Gb is calculated as the subset of RT that includes the 16 possible receptor complexes 

that contain a state of R (Rs or R*
s) bound to a state of G (Gs or G*s) divided by RT.  Using this 

iteration procedure, the value of Gi reached a constant value within about three iterations, and we 

routinely carried out the calculation for 12 iterations. 

The total stimulus for the condition of partial receptor inactivation was calculated with the 

following equation: 

 ! = !!"#$%&'( + !!"#$% 54 
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In this equation, Tresid and Tinact denote the stimulus functions for the residual and alkylated 

receptors, respectively.  The function for Tresid is equivalent to the right side of equation 37 

multiplied by q, which denotes the fraction of the receptor population not alkylated by the 

irreversible antagonist.  Tinact is also equivalent to the right side of equation 37 after eliminating 

all of the variables for receptor complexes containing the orthosteric ligand (D) and multiplying 

the result by 1 – q.  For the condition of reduced receptor expression, the total stimulus is equal 

to Tresidual. 

 

5.2  Relation between the population parameters and microscopic constants 

The relationships between most of the population parameters and the microscopic constants 

(equations 55 – 61, 63, 64,66) have been described previously (F. J. Ehlert & Griffin, 2008; F. J. 

Ehlert, Suga, et al., 2011a) and are listed below for convenience.  The observed affinity constant 

of the orthosteric (K1) and allosteric (K2) ligands for their sites on the receptor is given by: 
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The equations for the parameters τ, τA and τsys are given by: 
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Using these functions for Kobs (i.e., K1 or K2), τ, τA and τsys, it can be shown that 
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The compound parameter, Kbqs, is equivalent to (see equations 4, 55 and 57): 

 !!"# = !!! 62 

The constant describing the reciprocal allosteric change in observed affinity (α) that each 

ligand has on the other is given by: 
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 63 

The scalar change in the efficacy of the orthosteric ligand caused by the allosteric ligand (β1) 

and that of the orthosteric ligand on the efficacy of the allosteric ligand (β2) are given by: 
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The product of the scalar changes in the affinity (α) and efficacy (β1) of the orthosteric ligand 

(αβ1 = γ1) induced by the allosteric ligand is given by: 
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!!!!!!!!!"#
!!!!!!!!!"#

 66 

By making the appropriate substitutions for K2 and γ1 (equations 58 and 68, respectively), it 

can be shown that: 

 !!!! = !! 67 

This rather simple relationship explains why γ1 is one of the easiest parameters to estimate 

from functional data.  The estimates of γ1 for the various simulations are all in close agreement 

with the ratio, Kf/Ke.  Finally, the scalar effect of the orthosteric ligand on the αβ2 value of the 

allosteric ligand (γ2) is given by: 

 !! =
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 68 

By analogy with equation 67, it follows that: 

 !!!! = !! 69 
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5.3  Solution for the microscopic constants and population parameters in terms of graphical 

parameters – partial receptor inactivation 

When the transducer slope factor in the operational model is equivalent to one (m = 1), the 

microscopic constants and population parameters of the operational model for allosterism can be 

expressed in terms of the graphical parameters of the concentration-response curves.  In this 

section, we summarize these equations for the case involving partial receptor inactivation. 

First, we derive equations for the graphical parameters of the concentration-response curves in 

terms of the population parameters of the operational model for allosterism (equation 17).  The 

graphical parameters (see Figure 10) include the basal response in the absence of agonist (B1), 

the EC50 value (EC1) and maximal response of the agonist (E1).  In the presence of arbitrary and 

maximally effective concentrations of allosteric modulator, the corresponding variables are B4-i, 

EC4-i and E4-i and B4, EC4 and E4, respectively.  For the conditions of partial receptor inactivation 

or reduced receptor expression and no allosteric ligand, the analogous parameters are denoted as 

B2, EC2 and E2, respectively.  For the condition of arbitrary and maximally effective 

concentrations of allosteric modulator after partial receptor inactivation or reduced receptor 

expression, the analogous parameters are B3-i, EC3-i and E3-i and B3, EC3 and E3, respectively. 

The ratio of E4-i/EC4-i divided by that measured in the absence of allosteric modulator (E1/EC1) 

sheds light on the influence of allosteric modulators on the concentration-response curve of an 

agonist when m = 1 (F. J. Ehlert, 2005).  Figure 10b shows a plot of this ratio (E4-iEC1/E1EC4-i) 

against the concentration of allosteric modulator.  When m = 1, this ratio is equivalent to the 

product of the scalar changes in the affinity and efficacy of the orthosteric ligand cause by the 

allosteric ligand (RA).  The concentration of modulator causing a half-maximal increase in this 

ratio is defined as A50, which is more easily appreciated on the plot of the normalized RA value 

(RAnorm) in Figure 10c.  RAnorm is defined below (equation 89).  For the condition of partial 

receptor inactivation or reduced receptor expression, the analogous RA estimate (E3-iEC2/E2EC3-i) 
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is denoted as RAQ (Figure 10e), its normalized value as RAQnorm (Figure 10f), and the 

concentration of allosteric ligand causing a half-maximal change in RAQ as AQ50. 

The equation for the maximal response to an agonist (Emax) without receptor inactivation (q = 

1) can be derived by taking the limit of equation 17 as D approaches infinity for the condition of 

a lack of allosteric modulator (E1, A = 0) and the presence of a maximally effective concentration 

of allosteric modulator (E4, limit as A approaches infinity): 
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For the condition of partial receptor inactivation (0 < q < 1), the analogous limits (equation 25) 

yield the parameters E2 and E3: 
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For the condition of an arbitrary concentration of allosteric modulator in the absence (E4-i) and 

presence of partial receptor inactivation (E3-i), the appropriate limits yield the following 

equations: 
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The constitutive response of the receptor, in the absence (B1) or presence (B2) of partial 

receptor inactivation, can be derived by solving equation 17 for the condition of D = 0 in the 

absence of allosteric ligand (A = 0): 
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In the absence of orthosteric agonist, the response to a maximally effective concentration of 

allosteric ligand, in the absence (B4) or presence (B3) of partial receptor inactivation, can be 

derived by taking the limit as A approaches infinity when D = 0: 
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The corresponding approach yields the equation for an arbitrary concentration of allosteric 

modulator, in the absence (B4i) and presence (B3i) of partial receptor inactivation: 
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EC50 values of the orthosteric agonist can be derived from the following relationship for the 

half-maximal response (response50): 

  !"#$%&#"!" = 0.5 ! + !!"#   79 

in which B denotes the basal response measured in the absence of orthosteric ligand.  If the 

operational model (Equation 25) is substituted for resonse50 and the appropriate equations are 

substituted for the basal response (B1, B3 or B3-i) and Emax (E1, E2, E3, E3-i, E4 or E4-i), then solving 

the equation for D yields an equation for the EC50 value of the orthosteric ligand.  These are 

given next for the condition of no allosteric ligand, 
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no allosteric ligand and after partial receptor inactivation, 
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in the presence of a maximally effective concentration of allosteric modulator, 
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in the presence of an arbitrary concentration of allosteric modulator, 



 

	   41	  

  !"!! =
!!!!! !!!! !!!"!
!! !!!!!!! !!!!!

  83 

in the presence of partial receptor inactivation and a maximally effective concentration of 

allosteric modulator, 
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and finally, in the presence of receptor inactivation and an arbitrary concentration of allosteric 

modulator 
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 The product of the changes in the affinity and efficacy of the orthosteric ligand caused by 

the allosteric ligand (RA) is a useful measure of allosteric effects.  When the transducer slope 

factor in the operational model is equal to one (m = 1), the RA value is given by the following 

equation for the case of no receptor inactivation: 
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Substituting in equations 70, 74, 80 and 83 for the Emax (E1 and E4i) and EC50 (EC1 and EC4i) 

values yields an equation for the RA value for the case of no receptor inactivation (q = 1): 
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Taking the limit of this equation as A approaches infinity yields the RA value at a maximally 

effective concentration of allosteric ligand (RAmax) 
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The normalized RA (RAnorm) value is defined as: 
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Using equations 87 – 89, the normalized RA value can be expressed in terms of population 

parameters: 

  !"!"#$ = !!! !!!!
!!!!"!!!!! !!!!

  90 

This equation shows that if the modulator lacks activity by itself (τA = 0) and there is a lack of 

constitutive activity (τsys = 0), then RAnorm is a measure of receptor occupancy by the allosteric 

modulator.  An analogous relationship has be shown for the normalized change in binding 

affinity caused by an allosteric ligand (Lazareno & Birdsall, 1995).  Solving equation 89 for 

RAnorm = 0.5 yields the concentration of allosteric ligand that causes a half-maximal change in 

RAnorm (A50): 
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Note that A50 is equivalent to 1/K2 whenever both τsys and τA are equivalent to zero. 

A useful parameter related to the RA value, but measured under conditions of receptor 

inactivation (RAQ), can be defined for the case of m = 1: 
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Substituting in the appropriate equations (74, 77, 83 and 87) for Emax and EC50 yields: 

  !"# =
!!!!"! !!!"!! !!!!!!!!"! !! !!!!! !!!!!!! !! !!!"!! !!!!!!!!"!

!!!!! !!!!"!!!!! !!!! !!"!!! !!!!"!
  93 

Taking the limit of this equation as A approaches infinity yields the RAQ value at a maximally 

effective concentration of allosteric ligand (RAQmax): 

  !"#!"# =
!!!!!! !!! !! !!!!"!
!!!! !!"!!! !!!!"!

  94 

The normalized RAQ value (RAQnorm) is defined in a manner analogous to that of RAnorm: 

  !"#!"#$ = !"#!!
!"#!"#  !!

  95 
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After substituting in equations 94 and 95 for RAQ and RAQmax, this equation can be used to 

solve for K2 as described below. 

Having defined the graphical parameters of the relevant concentration-response curves in 

terms of the population parameters, we can solve these equations for the population parameters: 

  !!"! =
!!!"!!!!!"!
!"!!!"!

  96 

  !!"! =
!! !"!!!"!

!"! !!!!! !!"! !!!!!
  97 

  ! = !"! !!!!!
!"! !!!!!

  98 

  ! = !! !"!!!"!
!"! !!!!!

  99 

  !! =
!!!!!

!"! !!!!! !!"! !!!!!
  100 

  !! =
!! !"!!!"!

!!!"!!!!!"!!!! !"!!!"!
  101 

  !! =
!"! !!!!! !!"! !!!!!

!!" !"! !!!!! !!"! !!!!!
  102 

  !! =
!!!"! !!!"!!!!!"!!!! !"!!!"!
!!!"! !!!"!!!!!"!!!! !"!!!"!

  103 

  ! = !!!"!!!!!"!!!! !"!!!"! !!!"!!!!!"!!!! !"!!!"!
!"! !!!!! !!!"!!!!!"!!!! !"!!!"!

  104 

Equations for α, γ1 and K2 can be derived that do not involve graphical parameters for 

allosteric modulation in the absence of receptor inactivation (i.e., not involving A50, E4 and EC4): 

  ! = !!!"!!!!!"!!!! !"!!!"! !!!"!!!!!"!!!! !"!!!"!
!"! !!!!! !!!"!!!!!!!!!! !"!!!"!

 105 

  !! =
!! !!!!!!!!

!! !!!!! !!!"!!!!!"!!!! !"!!!"!
!
!"!

  106 

in which 

  !! = !!!"! − !!!"! + !! !"! − !"!   107 

  !! = −!! !! − !! !! − !! !"!!  108 

  !! = !!!! !! + !! + !! + !! !!!! − 2!!!!!! − !! !! + !! !! !"!!"!  109 
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  !! = !! !! − !! !! − !! !"!!  110 

To derive an equation for K2 that does not include A50, E4 and EC4, the substituted form of 

equation 95 is set equal to 0.5 and the variable A is replaced with AQ50.  The latter represents the 

concentration of allosteric ligand causing a half-maximal change in RAQnorm.  The resulting 

equation is solved for K2 to yield: 

  !! =
!!! !!!!!

!
  111 

in which, 

 ! =
!!!!!"! ! !!! !!!! !!!!"! ! !!!! !!!!"! !! ! !! !!!!"! !!!!! ! !!!! !!!!"!

!"!" !!!! !!! !!!!"! !!!"! !!!! !! !!"!!!! !!!!"! !!! !! !! !!!!"! !!!!!
  112 

  ! = − !!!!"!
!"!"! !!!!

  113 

Equations 97, 98, 99, 101, 105 and 106 can be substituted for the corresponding population 

parameters in this equation so that ultimately, K2 is expressed in terms of graphical parameters. 

To solve the microscopic constants in terms of graphical parameters, equations 55 – 61 and 63 

and 66 are first solved to express the microscopic constants in terms of population parameters: 

  !! =
!!!! !!!!
!! !!!!!"!

  114 

  !! =
!!!
!!"!

  115 

  !! =
!! !!!!!!!
!! !!!!"!

  116 

  !! =
!!!!
!!"!

  117 

  !!!!"# =
!!"! !!!!!!!!"!

!! !!!!"! !!"!!!!
  118 

  !!!!"# =
!!!!!!!!"!

!!!!!!!!!!!"!!!!!!"! !!!!
  119 

Equations for Kb and Kq-obs can be derived that do not depend on a measureable value of τsys: 
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  !! =
!!!!!
!!

  120 

  !!!!"# =
!! !!!!!!"!!!!!

!!!! !!!!"!!! !!!!!"! !!!!

!! !!!! !!!!!! !!!!!"!
  121 

The equations for the population parameters, expressed in terms of the graphical parameters 

(equations 96 – 106 and 111), can be substituted into the foregoing equations (i.e., 114 – 121) for 

microscopic constants to express the latter in terms of graphical parameters.  In the case of Kb 

and Kf, the resulting equations are simple: 

  !! =
!!

!"!!!
  122 

  !! =
!!

!"!!!
  123 

  !! =
!!

!!"!!
  124 

 

5.4  Solution for the Ka and Kbqs’ values in terms of the graphical parameters of the 

concentration-response curves of orthosteric and allosteric ligands measured independently – 

partial receptor inactivation 

As described under “Results” the Kbqs’ value of the most efficacious agonist and the Ka values 

of all less efficacious ligands in a series can be estimated from the independent concentration-

response curves of a group of orthosteric and allosteric ligands.  To prove this for the case of m = 

1 and including the situation of no measureable constitutive activity, we begin by solving the 

graphical parameters shown in Figure 10 in terms of microscopic constants. 

Although sometimes immeasurably small, the equation for the basal response in the absence of 

ligands (B1) can be derived by taking the limit of equation 5 as D approaches 0: 

  !! =
!!"!!!!!"#

!!!!"#!!!!!"# !!!!!!"#
  126 
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Taking the limit of equation 13 as D approaches infinity yields an equation for the maximal 

response of the most efficacious agonist in a series (standard agonist) for the case of no receptor 

inactivation (E1, q = 1) and partial receptor inactivation E2, 1 > q > 0): 

  !! =
!!!!!!"# !!"!!!"#

!

!!!!!!"#
! !!!!!!"# !!!!!!"#

  127 

  !! =
!!!!!!"# !!"!!!"#

! !!!!!!"# !!!!!!!!"# !!!

!!!!!!"#
! !!!!!!"# !!!!!!"#

  128 

In these two equations, Ka’ and Kbqs’ denote the Ka and Kbqs values of the standard agonist.  The 

EC50 values of the standard agonist for the condition of no receptor inactivation (EC1) and partial 

receptor inactivation (EC2, 0 < q < 1) can be derived by substituting in the appropriate values for 

B (B1, equation 126) and Emax (E1 or E2, equations 127 and 128, respectively) in equation 79 and 

solving for EC50: 

  !"! =
!!!!"#!!!!!"# !!!!!!"#

!!!!"# !!!!!!"#
! !!!!!!"# !!!!!!"#

  129 

 !"! =
!!!!!!"# !!!!"#!!!!!"# !!!!!!"#

!!"#
! !!!!"# !!!!!!"# !!!!"# !!!!!!"# !!!!!!!"# !!!! !!!!"# !!!!!!"# !!!!!!!!"#

  130 

The Emax value (E12) of an agonist (test agonist) having an efficacy less than that of the standard 

agonist can be derived by taking the limit of equation 14 as D approaches infinity: 

  !!" =
!!!!!!"# !!"!!!"#!"!

!!!!!"# !!!!!!"! !!!!!!"# !"!
  131 

in which RAi is defined by equation 15. 

The equation for the EC50 value of the test agonist can be derived from equation 79 using 

substitutions for B (equation 126), Emax (equation 131) and response50 (equation 15): 

  !"!" =
!!!!"#!!!!!"# !!!!!!"#

!!!!"# !!!!!"# !!!!!!"# !"!! !!!!!!"#
  132 

As described previously, RAi is a measure of the product of affinity and efficacy of an agonist 

expressed relative to that of a standard agonist.  It is also a relative measure of Kb (Kb/Kb’) (see 
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also equation 14).  When the transducer slope factor in the operational model is equivalent to 1.0, 

RAi is given by the following equation: 

  !"! =
!!"!"!
!!!"!"

  133 

Using this equation for RAi and the appropriate equations for Msys (equation 96) and q 

(equation 98), it is possible to solve equations 126 – 132 for Ka and the Kbqs’: 

 !! =
!"! !!"!!"! !!"! !!!!!"

!"!!"!" !!!!! !!"!"!"! !!!!!
  134 

  !!"#! =
!! !"!!!"!

!"! !!!"!!!! !"!!!"! !!!!"!
  135 

 

5.5  Solution for the microscopic constants and population parameters in terms of graphical 

parameters – reduced receptor expression 

As described in the prior two sections the microscopic constants and population parameters of 

the operational model for allosterism can be expressed in terms of the graphical parameters of 

the concentration-response curves when ever the transducer slope factor is equivalent to one.  In 

this and the following sections, we summarize these equations for the case involving reduced 

receptor expression. 

For the case of reduced receptor expression, the graphical parameters of the concentration-

response curves, expressed in terms of population parameters, are the same as those described 

above for partial receptor inactivation with the exception of the following: 

 !! =
!!"!!!!"!
!!!"!"!

  136 

  !! =
!!"!!"!
!!!"!

  137 

  !!! =
!!"!! !!!!!!!!"!
!!!!! !!!!! !!!!"!

  138 

  !! =
!!"!!"
!!!"

  139 

  !! =
!!"!!"!!
!!!"!!

  140 
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  !!! =
!!"!! !!!!!!!!
!!!"!!!! !!!"!!

  141 

  !"! =
!!!"!"!
!! !!!"

  142 

  !"! =
!!!!!

!! !!!"!!
  143 

 !"!! =
!!!!! !!!!! !!!!"!
!! !!!"!!!! !!!"!!

    144 

  !"# = !!!!!!! !!!!!"!
!!!!! !!!!! !!!!"!

  145 

  !"#!"# =
!! !!!!!"!

!!!!!
  146 

  !"#!"#$ = !!! !!!!!
!!!!! !!!!! !!!!"!

  147 

The equations for the graphical parameters can be solved to yield the population parameters: 

  !!"! =
!!!"! !!!!! !!! !!!"!!!!!"!

!! !"!!!"!
  148 

  !!"! =
!!!! !"!!!"!

!!!!! !!!"!!!!!"!
  149 

  ! = !! !!!!! !!!"!
!! !!!!! !!!"!

  150 

  ! = !!! !"!!!"!
!"! !!!!! !!!!!

  151 

  !! =
!!!!!

!!!"!!!!!"!
  152 

  !! =
!!!!!!"! !!!!! !"!!!"!

!!!"! !!!!! !!!"! !!!!! !!"! !! !!!!!!!! !!!!!
  153 

  !! =
!"! !! !!!!!!!! !!!!! !!!!"! !!!!!

!!" !!!!! !!!"!!!!!"!
  154 

  !! =
!"#!"# !!!!! !!!"!!!!!"!

!!!"! !!!!! !!"! !! !!!!!!!! !!!!!
  155 

  ! = !"#!"#!! !!!"!!!!!"! !!!"! !!!!! !!!!!!"!!!!!"! !!!!!!!!
!!!"! !!!!! !!!"! !!!!! !!"! !! !!!!!!!! !!!!!

  156 

To solve the microscopic constants in terms of graphical parameters, the former are first solved 

in terms of the population parameters (see equations 114 – 121).  Next, the equations for the 

population parameters, expressed in terms of graphical parameters (97 – 105), are substituted 



 

	   49	  

into equations 114 – 121 so that the microscopic constants can be expressed in terms of graphical 

parameters.  In some instances, the solutions are simple: 

  !! =
!! !!!!!

!"!"!! !!!!!
  157 

  !! =
!"#!"#
!"!"

  158 

 

5.6  Solution for the Ka and Kbqs’ values in terms of the graphical parameters of the 

concentration-response curves of orthosteric and allosteric ligands measured independently – 

reduced receptor expression 

As described under “Results” the Kbqs’ value of the most efficacious agonist and the Ka values 

of all less efficacious ligands in a series can be estimated from the independent concentration-

response curves of a group of orthosteric and allosteric ligands.  To prove this for the case of 

reduced receptor expression and including the condition of no measureable constitutive activity, 

we first solve the graphical parameters shown in Figure 10 in terms of microscopic constants.  

These solutions are the same as those described above for the case of partial receptor inactivation 

(Equations 126, 127, 129, 131 – 133) except for the following: 

  !! =
!"!"!!!"#

! !!!!!!"#
!!!!!!"#

! !!!!!!"# !!!!!!"#
  159 

  !"! =
!"!!!"#!!!!!"# !!!!!!"#

!!!!"# !!!!!!"#
! !!!!!!"# !!!!!!"#

  160 

Using the equation for RAi (equation 133) and the appropriate equations for Msys (equation 148) 

and q (equation 150), it is possible to solve equations 126, 127, 129, 131 – 133, 159 and 160 for 

Ka and the Kbqs’.  The equation for Kbqs’ is equivalent to that for the case of partial receptor 

inactivation (equation 135) and that for Ka is: 

 !! =
!"! !!"!!"! !!"! !!!!!"

!"!!"!" !!!!! !!"!"!"! !!!!!
  161 
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Figure Captions 

Figure 1:  Two-state scheme for receptor-G protein interactions.  The active and inactive 

states of the receptor and G protein, bound with GDP, are shown.  The microscopic affinity 

constants of the agonist for active and inactive states of the receptor are denoted by Kb and Ka, 

respectively.  The equilibrium between the active and inactive states of the receptor is defined by 

the constant, Kq-obs.  The sensitivity constant, KE-obs, defines the relationship between receptor 

activation and the downstream response. 

Figure 2:  Allosteric ternary complex scheme defined at the level of receptor states (a) and the 

receptor population (b).  a, Two-state scheme for allosteric interactions.  The cube of equilibria 

illustrates the binding of orthosteric (D) and allosteric (A) ligands to distinct sites on a receptor in 

equilibrium between active (Rs*) and inactive (Rs) states.  The isomerization constant of the 

unoccupied receptor is denoted by Kq-obs.  The microscopic affinity constants of the orthosteric 

(Kb and Ka) and allosteric (Kf and Ke) ligands for the active and inactive states of the receptor, 
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respectively, are shown.  b, Population scheme for allosteric interactions.  The square of 

equilibria shows the different types of receptor complexes in the receptor population and the 

binding of orthosteric and allosteric ligands to them.  The observed affinity constant of the 

orthosteric ligand for the receptor population in the absence of allosteric ligand is denoted by K1.  

The analogous constant for the allosteric ligand is denoted by K2.  The constant, α, denotes the 

mutual scalar effect of each ligand on the observed affinity constant of the other ligand.  The 

constants, εsys, ε, ε* and εA, denote the fractions of the populations of receptor species (R, DR, 

DRA and RA, respectively) in the active state. 

Figure 3:  Quaternary complex scheme for allosterism:  The scheme describes the equilibrium 

between receptor and G protein and their attendant ligands.   These include orthosteric (D) and 

allosteric (A) ligands for the receptor and guanine nucleotide (X) for the G protein.  a,  The two 

central concentric squares of equilibria represent the quaternary complex scheme of Ehlert (F. J. 

Ehlert, 2000; F. J. Ehlert & Rathbun, 1990).  It has been expanded to include the binding of 

allosteric ligand.  Not all of the possible one-step transitions between receptor complexes are 

shown, but those that are shown can account for the equilibrium levels of all of the receptor 

complexes.  Some of the transitions not shown are clearly feasible (e.g., RAGX ↔ DRAGX).  b,  

Quaternary complex scheme for allosterism at the level of receptor states.  Each plane of 

equilibria is analogous to that shown in panel a except that the receptor and G protein are defined 

at the level of active (Rs
*, Gs

*) and inactive (Rs, Gs) states as designated to the left of the scheme.  

Again, only a minimum number of transitions are shown that are sufficient to calculate of the 

equilibrium levels of the various states of the receptor complexes. 

Figure 4:  Simulations of the total stimulus function for a highly efficacious agonist in the 

presence of a positive allosteric modulator.  The simulations were done using equation 37 in the 

Appendix with the following values for the log microscopic constants of the agonist (log Ka and 

log Kb) and allosteric modulator (log Ke and log Kf): 4.0, 8.0, 5.0 and 6.5, respectively.  The 

values of the log isomerization constant (log Kq) of the unoccupied receptor, the ratio of G 

protein to receptor (GT/RT) and log concentration of guanine nucleotide (log X) were -4.0, 3.0 
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and -3.0, respectively.  The other microscopic constants, which are described in the Appendix, 

and their log values for this simulation were log Kg, -5; log Kh, -6; log Kj, -6; log Kk, 2.5; log Kl, 

9.0; log Km, 5.0 and log Kr, -4.  The points represent the simulated total stimulus values and the 

curves represent the global least-squares fit of equation 34 to the data. 

Figure 5:  Simulation of the effects of a positive allosteric modulator and reduced receptor 

expression (a) or partial receptor inactivation (b) on the responses of a highly efficacious 

agonist.  The values of the parameters of the transducer function of the operational were: Msys, 

1.0; KE, 10-2 and m, 1.5.  The values of the microscopic constants and other parameters for this 

simulation are the same as in Figure 4.   The plots show simulations of the concentration-

response curve of an agonist in the absence and presence of various concentrations of allosteric 

agonist for the case of a decrease in the population of orthosteric sites to only 5% (q = 0.05) by 

reduced receptor expression (a) or partial receptor inactivation (b).  In addition, a concentration 

response curve was simulated for control conditions.  The points represent the mean values ± 

SEM of four simulations, and the curves represent the global least squares fit (equation 8).  

Figure 6:  Simulation of the effects of an allosteric agonist and reduced receptor expression (a 

and b) or partial receptor inactivation (c) on the responses of a highly efficacious agonist.  a, 

The concentration-response curves of the orthosteric and allosteric agonists are shown for control 

conditions.  b, Simulations of the concentration-response curve of an agonist in the absence and 

presence of various concentrations of allosteric agonist for the case of the reduced receptor 

expression to 5% (q = 0.05).  c,  The concentration-response curve of the agonist was simulated 

for control conditions and for the condition of partial receptor inactivation (q = 0.05) in the 

absence and presence of various concentrations of allosteric agonist.  The values of the 

microscopic constants of the orthosteric ligand, the quaternary complex scheme, and the 

operational model are the same as those in Figure 4.  The log values of the microscopic constants 

(log Ke and log Kf) of the allosteric agonist were 5.0 and 7.2, respectively.  The points represent 

the mean values ± SEM of four simulations, and the curves represent the global least squares fit 

of equations 11 (a and b) and 7 (c) to the simulated data points.  
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Figure 7:  Simulation of the effects of reduced receptor expression (a and b) and partial 

receptor inactivation (c) (q = 0.01) on negative allosteric interactions at a receptor exhibiting 

constitutive activity.  a, The concentration-response curves of the orthosteric and allosteric 

ligands are shown for control conditions.  b, The concentration-response curves of the agonist 

were simulated in the absence and presence of various concentrations of the negative allosteric 

ligand for the case of reduced receptor expression to only 5% (q = 0.05).  c,  The concentration-

response curve of the agonist was simulated for control conditions and for the condition of 

partial receptor inactivation (q = 0.05) in the absence and presence of various concentrations of 

allosteric ligand.  The log values of the microscopic constants (log Ka and log Kb) of the 

orthosteric agonist were 4.0 and 7.0, respectively.  The corresponding values (log Ke and log Kf) 

of the negative allosteric ligand were 6.0 and 5.0, respectively.  The values of the constants of 

the operational model are the same as those in Figure 4, and those of the quaternary complex 

scheme are also the same as those of Figure 4 except for log Kg, -6.0; log Kk, 1.5 and log Kq, -2.5.  

The points represent the mean values ± SEM of four simulations, and the curves represent the 

global least squares fit of equations 11 (a and b) and 7 (c) to the simulated data points. 

Figure 8:  Simulation of the independent effects of orthosteric and allosteric ligands.  The 

concentration-response curves of ligands from some of the prior simulations are plotted for the 

condition of no interacting ligand.  The source of the simulated concentration-response curves is 

indicated in parentheses.  a, A highly efficacious agonist and an allosteric agonist (Figure 6a).  b,  

A highly efficacious agonist and an allosteric agonist (Figure 6c).  c,  A highly efficacious 

agonist and a negative allosteric ligand (Figure 7a).  d, A highly efficacious agonist and a 

negative allosteric ligand (Figure 7c). 

Figure 9:  Allosteric modulation of M1 muscarinic receptor-mediated signaling through a 

chimeric Gpa1/Gαi1,2 chimera in yeast (a) and of M2 muscarinic receptor-mediated inhibition of 

forskolin-stimulated cAMP accumulation in CHO cells (b).  a,  The concentration-response 

curves of carbachol in the absence and presence of various concentration of BQCA.  The data 

have been estimated from Figure 5A in Canals et al. (2012) and reproduced with permission.  b, 
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The concentration-response curves of oxotremorine-M were measured following partial receptor 

inactivation with 4-DAMP mustard and in the absence and presence of two concentrations of 

gallamine.  A control concentration-response curve was also measured without gallamine or 

receptor inactivation.  The data have been reproduced from Figure 5f in Ehlert and Griffin (2008) 

with permission.  

Figure 10:  Graphical parameters for allosteric modulation:  a, The EC50 value and maximal 

response of an orthosteric ligand measured in the absence (EC1 and E1) and presence of arbitrary 

(EC4-i and E4-i) and maximally effective (EC4 and E4) concentrations of allosteric modulator are 

shown.  The corresponding values for the basal response in the absence of orthosteric ligand are 

denoted by B1, B4-i and B4.  b,  The log ratio of E4-iEC1/E1EC4-i is plotted against the log allosteric 

ligand concentration.  When m = 1, the value of this ratio is equivalent to the relative change in 

the product of affinity and efficacy of the orthosteric agonist caused by the allosteric ligand (RA), 

the maximum value of which is denoted as RAmax.  c,  The normalized RA value (RAnorm) is 

plotted against the log concentration of allosteric ligand.  A50 denotes the concentration of 

allosteric ligand causing a half-maximal change in RAnorm.  d, The EC50 value and maximal 

response of an orthosteric ligand measured after partial receptor inactivation and in the absence 

(EC2 and E2) and presence of arbitrary (EC3-i and E3-i) and maximally effective (EC3 and E3) 

concentrations of allosteric modulator are shown.  The corresponding values for the basal 

response in the absence of orthosteric ligand are denoted by B1, B3-i and B3.  For comparison, the 

control concentration-response curve of the orthosteric ligand and its associated parameters (EC1 

and E1) are also shown.  e,  The log ratio of E3-iEC2/E2EC3-i is plotted against the log allosteric 

ligand concentration.  When m = 1, this ratio is denoted as RAQ, the maximum value of which is 

denoted as RAQmax.  f,  The normalized RAQ value (RAQnorm) is plotted against the log 

concentration of allosteric ligand.  AQ50 denotes the concentration of allosteric ligand causing a 

half-maximal change in RAQnorm. 
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