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Abstract

This paper addresses three concerns with ascending price Combinatorial Clock Auc-

tions (APCA); price guidance toward efficiency relevant packages, computational bur-

den, and susceptibility to collusive bidding. We propose a descending price Combi-

natorial Clock Auction (DPCA) with a newly devised pricing strategy to alleviate all

of these concerns. Mimicking bidding behavior of human subjects found in previous

laboratory experiments, agent-based simulations of a DPCA show improvements in ef-

ficiency resulting from better price guidance and a reduction in computational burden

when compared to an APCA.
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1 Introduction

An important feature of any auction is its ability to generate an efficient allocation of goods.

There exist many environments in which the goods being sold have complementary values

when purchased in combinations. In these circumstances traditional single unit auctions can

lead to inefficient allocations because of the risks associated with the exposure problem: when

a bidder submits bids on several single-items in anticipation of achieving a complementary

package value but then fails to win one or more of the requisite items. To combat this

problem Rassenti et al. (1982) proposed a sealed bid combinatorial auction for the selling

of airport landing and take-off slots in packages that were suitable for an airline interested

in the efficient daily routings of its planes from airport to airport at particular times. This

sealed bid combinatorial institution, however, places considerable burden on bidders. For

example, in a combinatorial auction with only ten items, where a bidder has positive value

for all individual items as well as any combination of them, there are 210−1, or 1023 possible

combinations for the bidder to place a bid on. In addition to the task of identifying and

submitting all possible bids, is the daunting task of value elicitation. Determining ones value

for an item and its possible synergistic value in combination with all possible other packages

of items can be a very expensive and time-consuming process. This fact is not of trivial

concern when designing auctions that will function in the real world.

This burden on bidders can be greatly reduced in an auction which provides price feed-

back. In recent years, several iterative combinatorial auction institutions have been designed

to improve bidding saliency, auction efficiency, and seller revenue; Milgrom (2000) proposed

The Simultaneous Ascending Auction (SAA) where goods are sold simultaneously with lin-

ear pricing and no package bids are accepted by the auctioneer, Porter et al. (2003) proposed

the Combinatorial Clock Auction (CCA) also uses simultaneous linear prices but allows for

package bids, Ausubel et al. (2004) proposes the two-stage clock-proxy auction which uses

the SAA in the clock phase, and then abandons linear pricing in the proxy-bidding stage

to enhance auction efficiency and revenue, and Goeree and Holt (2010) proposes the Hi-

erarchical Package Bidding auction, where the auctioneer pre-selects packages available for
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bidding. Each of these institutions has strengths and weaknesses, and each are designed to

help overcome specific issues. Evidence from laboratory and real world implementation has

shown that these iterative auctions are able to achieve high levels of efficiency and revenue

(see McAfee and McMillan (1996), Cramton (1997), Porter et al. (2003), Kwasnica et al.

(2005), Brunner et al. (2010), and Kagel et al. (2010) among others).

Kagel et al. (2010) (henceforth KLM) test a variant of the CCA proposed in Porter et al.

(2003) in a laboratory setting, and find the institution performs relatively well, albeit not as

well as Porter et al. (2003), but uncover an important distinction in the auction environment

that leads to a disparity in the institutional performance given the bidding behavior they

observe. The bidding behavior observed is a myopic strategy where bidders consistently bid

for their first and sometimes second most profitable package in each round of the auction.

Given this bidding behavior KLM discover easy and hard auction environments. Easy envi-

ronments are ones where myopic bidding leads to allocations that are 100% efficient.1 “Hard”

environments are ones where myopic bidding leads to allocations that are less than 100%

efficient. To achieve 100% efficiency in “hard” auctions bidders must bid on less profitable

packages somewhere during the course auction, something myopic bidding fails to do. We

will refer to this as the relevant package problem: when prices fail to direct bidders to their

efficiency relevant packages. Given the bidding interface used in KLM, the myopic bidding

found in these experiments is likely driven my strategic motives.

A different sort of myopic bidding is found in Scheffel et al. (2012). In laboratory testing

of a number of iterative combinatorial auctions they find that the biggest hindrance of

efficient allocations is not auction rules but the bidders’ restricted package selection. Bidders

pre-select packages in the first round of the auction and focus their bidding on this small

subset of profitable packages throughout the auction. This is different from the myopic

bidding in KLM because it involves limited switching of the packages that receive bidding

attention. An important difference of this study from that of KLM is that bidders are not

presented with a full summary of their potential package bids and must “elicit” package

1This measure of efficiency will be defined later in the paper.
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values through a search process. Because Scheffel et al. (2012) observe that bidders elicit a

very small percentage of their potential packages they posit that the static myopic bidding

they observe is a result of bidders cognitive limits rather than strategic motives.

Aside from this observed restrictive bidding and the associated relevant package problem

there are two other main concerns with iterative combinatorial auctions. The first is the

potential computational burden associated with running them. In order for an auction to

function appropriately it must have the ability to be completed in a reasonable amount of

time. Due to the potential for complex overlapping of package and single-item bids in a

combinatorial auction environment the dimensions of the branching tree associated with the

optimizations embedded in the these auctions can be substantial, creating uncertainty in

computation time. One solution to excessive computation times is to reduce the number

of optimization branches requiring examination through a restriction of the bidding space

which can eliminate complex overlapping bids. This can be achieved through shifting the

computational burden onto bidders, forcing them to solve which bids will combine optimally

with other stand-by bids to displace current winning bids as in Banks et al. (1989), or by pre-

packaging the items that bidders are allowed to submit bids on as in Goeree and Holt (2010).

Both methods may be undesirable. The first generates substantial bidding complexity and

the second relies on the auctioneer to predict decentralized information regarding desirable

bundles of items.2

The second major concern with iterative combinatorial auctions is the susceptibility of

ascending multi-unit auction institutions to collusive bidding. While collusion has not been

a main focus in combinatorial auction research there is a rich literature on collusion in

non-package multi-unit ascending price institutions.

In this paper we propose that a novel Descending Price Combinatorial Auction, hence-

forth DPCA, which will ameliorate all of the problems mentioned above. Namely, it will

better guide bidders to reveal their efficiency relevant packages, limit computation time by

reducing the number of bids submitted to successive the auction optimizations, and prevent

2For more discussion on computational issues and combinatorial auctions see Rothkopf et al. (1998) and
Fujishima et al. (1999)
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bid signaling and retaliatory bidding that lead to collusive behavior. From the running of

agent-based simulations in an environment that matches that of KLM, we find substantial

improvement on the relevant package problem and the computational burden problem. From

preceding literature we summarize evidence of collusion in multi-unit ascending auctions and

present the evidence for the collusion breaking power of descending price multi-unit auctions.

The remainder of this paper will be structured as follows; Section 2 will summarize

the relevant work completed on ascending price Combinatorial Clock Auctions, Section 3

will formalize the rules of the DPCA, Section 4 will summarize the testing undertaken using

agent-based simulations, present the results from the simulations, and summarize the support

for descending multi-unit institutions as a means to prevent collusion, and finally Section 5

will summarize our conclusions.

2 Ascending Price Combinatorial Auction Overview

To distinguish between the price direction of the two auctions we discuss in this paper we

will refer to the CCA proposed by Porter et al. (2003) as the ascending price Combinatorial

Clock Auction (APCA). The APCA version tested in KLM works in the following manner.

Prices for each item start at levels set by the auctioneer. In any given round bidders are free

to bid on any and all combinations of items or on single-items. If an item receives two or

more new bids, or if an item named in a provisionally winning bid is included in a different

new bid, then the items price is raised. At the end of each round the auctioneer runs an

optimization to determine which bids generate the highest revenue and it is these bids that

become the provisionally winning bids. When there is a round where no new bids are placed,

and hence no price increases, the auction is over. 3

The differences between this auction and the Porter et al. (2003) APCA are the use of the

XOR bidding rule, the announcement of provisional winners in each round of the auction,

3KLM uses a rule of two rounds with no bidding activity to determine the end of the auction. We leave
this rule out because we are using agent-based simulations.
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the auction ending rule, and the pricing mechanism.4 The XOR rule is a constraint that

allows the auctioneer to select at most one bid from each bidder when allocating goods. This

rule is presumably used to reduce some of the bidding complexity for bidders because they

do not have to worry about having multiple bids accepted, but it also adds a significant

strategic component to bidding.

2.1 APCA Environment

To allow us to piggyback on the laboratory behavior discovered in KLM, we employ the

same auction environment. A graphical representation can be seen in Figure 1.
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Figure 1: Diagram of item values and synergies for 6-item environment.

There are three bidders in this environment and either 4 or 6 items. Figure 1 displays the

6-item environment. The 4-item environment is the same but with items C and F removed.

In these environments the Regional bidders have items values randomly drawn from the

4The announcement of provisionally winning bids in each round does not affect our simulations because
we did not incorporate it into agent behavior. To match the KLM environment we incorporate their ending
rule, pricing mechanism, and XOR constraint into our simulations.
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uniform distribution [5, 75], and Global bidders have item values randomly drawn from the

uniform distribution [5, 45]. Package values are created by the summation of the item values

included in that package and the synergies that exist between adjacent items. For example,

in the six item auction the North Regional bidders package AB would be equal to: X1 + X2

+ Q, where X1 is the value for item A, X2 is the value for item B, and Q is the synergy value

obtained when both items are won together. In this environment, the package AC would be

equal to: X1 + X3, because only adjacent items produce synergies.

There are two synergy environments. In the low synergy environment, Regional bidders

draw their synergy values from the uniform distribution [5, 15] and in the high synergy

environment they draw from the uniform distribution [25, 35]. The Global bidder always

draws their synergy value from the uniform distribution [25, 35].

2.2 Efficiency Relevant Packages

If an auction has a unique efficient goods assignment, there exists a unique set of efficiency

relevant packages/items. Formally, KLM define it as follows:

Definition 1 In a total-bid maximizing package auction, let β denote the final bids in the

auction and (xa, τ) the auction outcome. If for all bidders i, vi(xi(N))−βi(xi(N)) ≤ vi(x
a
i )−

βi(x
a
i ), then the goods assignment xa is efficient:

N∑
i=1

vi(x
a
i ) = w(N). If the goods assignment

is unique, then the condition vi(xi(N))− βi(xi(N)) ≤ vi(x
a
i )− βi(xai ) is necessary as well as

sufficient for xa to be efficient.

As prices need not provide an indication of efficiency relevant packages, the sufficient

condition required to fulfill vi(xi(N))−βi(xi(N)) ≤ vi(x
a
i )−βi(xai ) in an ascending institution

is for participants to submit bids for all packages where their price of package j is less than

bidder i’s value for that package in each round of the auction.5 This is the source of the

sub-efficient allocations in ”hard” environments in KLM; bidders failed to submit bids on

5Only if price increments were small enough to divide the bids of close valuations into separate rounds
would this behavior guarantee an efficient allocation.
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profitable, efficiency relevant, packages early in the auction and by the time the price vector

indicated to bidders which packages were their relevant ones prices were too high to submit a

bid on them. When bidders are not fully revealing, the APCA can therefore lead to inefficient

allocations.

Using simulations with myopic bidding agents KLM discover which valuation/synergy

environments are easy, producing an outcome that is 100% efficient, and environments that

are hard, producing an outcome that leads to lower than 100% efficiency. They use these

simulation results to choose which environments to test in the laboratory with incentivized

subjects.

2.3 Previous Results

Testing these environments in the laboratory KLM find that bidders do follow a myopic

bidding strategy and submit bids on many fewer packages than the total number of packages

available to them. A bidders most profitable package attracts the most attention, while the

second most profitable attracts considerably less attention. In addition, they find that the

same behavior is displayed across the easy and hard environments.6

Given the relative ease of bidding in these laboratory auctions (bidders know precisely all

of their values and can trivially submit multiple package bids7) it seems likely that bidders

are employing some strategy in this myopic bidding. These strategies may coincide with

the bidder’s knowledge of the provisional winners and may be an attempt to prevent the

auctioneer from using the XOR constraint to allocate anything but their best package at a

particular vector of prices. It is important to note though is that whether these laboratory

subjects are strategically under-revealing or not, bidders in the real world are likely to employ

some degree of myopic behavior when faced with the task of value elicitation. Indeed, in

a laboratory test of an ACPA where subjects must uncover their values through a search

6They cannot reject the null hypotheses that bidding is directed to the most profitable and second most
profitable packages with equal frequencies in the easy and hard environments.

7All information regarding packages and items are presented to bidders in a very salient table and in
order to submit a bid one simply needs to check a box.
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process Scheffel et al. (2012) finds that subjects choose a small subset of packages to bid

on early in the auction and that this is the main hindrance in achieve efficient allocations.

The purpose of using clock auctions in these multi-unit auctions is to reduce the burden on

bidders, which explicitly means that one expects them to submit fewer bids to the auction

than the total number of profitable bids available to them. Thus the failure of prices to

guide bidders to efficiency relevant packages observed in KLM and Scheffel et al. (2012) are

important considerations when attempting to design a combinatorial clock institution that

leads to efficient allocations.

In this paper we appeal to the similarities observed in KLM between the bidding behavior

in their laboratory experiments and that encoded in their simulations. They find that the

performance of simulations with myopic bidders can qualitatively predict the distinction of

easy and hard environments with human subjects.

3 Descending Price Combinatorial Auction

As a descending price auction the DPCA item prices begin at levels set by the auctioneer

and decrement until the market cleared. However, the combinatorial environment presents

difficulties regarding how to implement a value-maximizing price decrementing and stopping

rule. In the DPCA if an item price strictly stopped decrementing as soon any bid was

submitted that included that item, significant blocking of potentially efficient allocations

would occur. On the other hand, stopping prices for highly valued items at high levels

produces the price signals needed to guide participants to their efficiency relevant packages.

DPCA employs a mechanism that intelligently brakes prices decrementing. Figure 2 displays

a flow chart of the DCPA mechanism.

After each round a primary optimization is run to determine the optimal allocation of

items given all of the bids previously submitted and the XOR constraint applicable to each

bidder. If the market clears from this allocation (all items sell) then the auction is over.

(Notice, a universal bid on all items ends the auction!) If the market does not clear then
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Figure 2: Flow chart of DPCA mechanism

some price(s) must be decremented. The price decrementing mechanism works as follows;

in every round where the market does not clear and at least one bid has been initially

submitted, a secondary optimization is run to determine the best prices to decrease.8 The

secondary optimization simply embellishes the primary optimization by adding to it a set of

“dummy bids for all single-items that could possibly be submitted in the next round at the

next decremented price levels. Although the primary optimization did not clear the market,

the optimal allocation resulting from this secondary pricing optimization (shown below) will

always clear the market and include one or more of the dummy single-item bids at the

tentatively decremented prices. Whichever single-item bids are included in this allocation

are the items that are selected to have their prices decremented in the next round.

8There is no need to run the optimization until the first bid is submitted to the auction. Until that point
all prices fall in unison, though perhaps at different rates.
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maximize
xij

N∑
i=1

J∑
j=1

pjxij

subject to
N∑
i=1

J∑
j=1

aijkxij ≤ 1,

J∑
j=1

xij ≤ 1,

xij, aijk ∈ {0, 1} .

Where pij is the price associated with each bid x, for bidder i′s package j and where aijk

indicates which items k are included in bidder i′s package j. Given this pricing rule prices on

all items included in any non-dummy bids accepted as winners by the secondary optimization

will temporarily stop decrementing. This intelligent price-braking, which encourages the

submission of the missing bids with the greatest potential to be efficiency relevant, is key to

the DPCAs effectiveness.

3.1 Auction Environment

To allow us to draw useful comparisons to the results reported in both the laboratory and

simulation testing completed by KLM we construct the same simulation environment out-

lined in Section 2. To test efficiencies in both institutions we employ both a 4-item and

6-item environment with three bidders in each and we randomly draw values and synergies

from the uniform distributions specified above. In addition to the environment studied in

KLM, we also study the same environments, but with double the bidders, i.e. two north

regional bidders, two south regional bidders, and two global bidders.

For the simulations we construct twenty package files that include all the possible packages

for each regional and global bidder and randomly draw the synergies corresponding to those

packages. We also construct fifty value files that draw random item values for all three

bidders. Thus when we combine all package and value files we have a thousand distinct

auction environments. These environments are static across the paired four or six item, high
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or low synergy, ascending or descending auctions.

3.2 Bidding Strategy

The obvious question when thinking about a descending version of a combinatorial clock

auction is what strategy should the bidders be implementing? Vickrey (1961) solves the

theory for the optimal bid, Bi, in a single-item sealed bid (or descending) auction:

Bi =
N − 1

N
Vi

Where, N is the number of bidders in the auction and Vi is the private value for bidder i. The

bidding strategy in combinatorial environments becomes much more complicated. While it

has not been theoretically proven, the Bayesian Nash Equilibrium bid shave in a DPCA

likely depends on the number of bidders in the market competing for each item a bidder is

interested in, what packages those competing bidders are interested in, the number of bidders

in the market for the items in those packages, the values/synergies of the packages you are

interest in, the values/synergies of your competitors for those items, and the values/synergies

of their competitors on other items.

This paper is not focused on optimal bidding strategies, but on a comparison between

auction formats. However, in order to accurately comment on the performance of auctions,

specifically on the efficiency of allocation, we need to make them close to theoretically equiva-

lent. We rely on results from the APCA simulations to do this. In the easy APCA simulation

results, we can compute the difference between the selling prices of each package/item and

each winning bidders private value. Finding the average bid shave (winning price/valuation)

for each winning bidder over numerous auctions will provide a close estimate to the theoret-

ically optimal bid shave that would make these auctions revenue equivalent. 9 Because the

optimal bid shave may be different for regional as opposed to global bidders, we compute the

9Consider the following intuitive example of a second price single unit auction where values are drawn
randomly from a uniform distribution. If the bidders are bidding their value in a second price auction, then
the computed average bid shave for the first price auction will converge toward N−1

N Vi.
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average bid shave separately for each bidder and use these as the bid shaves for the bidders

in the matched DPCA environment.

3.3 Efficiency

We compute efficiency in the following manner,

Efficiency =
Va − Vrandom
V ∗ − Vrandom

Where, Va is the sum of the private values for the winners of the auction, V ∗ is the sum

of the values of the efficiency maximizing allocation in the system, and Vrandom is derived

by the mean values from 1000 random feasible allocations of items to bidders with positive

values in each of the 1000 value/package environments. This procedure was followed for each

distinct environment.

3.4 Simulations

The simulations we employ are straightforward. For each of the environments constructed

the agents are assigned their item values, packages, and synergies to compute their package

values. In each round of the auction the myopic agents take the vector of prices and compute

their most profitable package and submit a bid only for that package. All other packages

receive no bids. We record all of the bids throughout the simulations and compute the

efficiency of each environment for both the APCA and DPCA using the winning bids of the

auctions.

3.5 Hypotheses

Using a descending vector of prices we expect the DPCA to produce higher efficiencies than

the APCA given myopic bidding. As prices fall in the DPCA agents will submit bids on their

most efficiency relevant packages first, stopping or “slowing those prices, making those items

out of reach for non-efficiency relevant packages. The items with prices that continue falling

12



will become the more profitable and attract efficiency relevant bids to items where resolving

the combinatorial misfit problems promise the strongest gain. The DPCA will direct bidders

toward those efficiency relevant packages/items while avoiding the price blocking problem

encountered in the APCA because bidders can always make bids on packages/items that

may not be their highest valued. Of course, the DPCA prices will not be a perfect guide

to bidders because we set all prices to start at some arbitrary level and decrement at a

pre-fixed rate. Some improvement could no doubt be made in dynamically tempering the

pricing algorithm, just as could be in the APCA, but we chose to compare them in their

simplest common implementation. Thus we do not expect the DPCA to produce an absolute

case-by-case improvement in efficiency, but we do expect a meaningful improvement in the

average efficiency produced.

The computation time associated with combinatorial auctions is a concern when attempt-

ing to implement an auction on a reasonable amount of time. Integer optimizations are part

of both the ascending and descending institutions. The larger the objective function (more

items and packages) in these optimizations, the longer they will take to solve. In ascending

auctions the auctioneer sets the starting price at some level below where she believes the

final item sale prices will be. As a consequence the CCA picks up many bids along the way

that are irrelevant to the efficient allocation because packages/items would only be profitable

for many bidders at low prices. In a descending environment, however, prices are set above

where the auctioneer believes the final item sale prices will be. As the prices reach levels

where it becomes profitable for participants to submit a bid it is much more likely that many

of those bids are going to be efficiency relevant. We time each of the thousand auctions under

each institution. The APCA contains only one optimization for each round of the auction,

the one that determines if the market is cleared and who the provisional winners are. The

DPCA contains two optimizations per round, the first to test for market clearing and the

second (a slight embellishment for which the first provides an excellent starting solution) to

determine new prices, but these optimizations need only be run once the original bid has
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been submitted to the system.10 Under myopic bidding behavior it is expected that there

will be little difference in computation time in the ascending and descending institutions,

simply because there is only one bid from each bidder in each round and the calculations

are computationally trivial for modern codes and hardware. Therefore we also tested an

environment where bidders employ an all-revealing strategy; a bid is submitted on all prof-

itable packages in every round of the auction. We hypotheses that the auction run times

will be slower for the APCA than the DPCA when agents are bidding in an all revealing

fashion because of the relative increase in size of the objective function caused by ascending

prices.11 To test how computational time grows with increased numbers of bidders and items

we construct larger auction environments. In addition to the 4-item and 6-item environment

KLM use we construct a 12-item environment. Also, as above, we double the competition

from three to six bidders. In the environment where agents are fully revealing we expect the

disparities between the APCA and DPCA to grow with both the number of bidders, and

the number of items in the auction.

4 Testing

As mentioned above a thousand unique value/package environments are tested in the APCA

and repeated in the DPCA. To test the extent of the relevant package problem we run

those environments with myopic bidding behavior in the matching versions of the ascend-

ing/descending institutions. Again, there are 4 unique value/package environments for both

the three and six-bidder environments. One for the low synergy 4-item, one for the high

synergy 4-item auction, one for the low synergy 6-item auction, and finally one for the high

10We time the entire length of each auction for this reason. This however means that background code
running setup and database retrieval and storage in the simulations is also timed. This piece of the code,
however, is the identical for both the APCA and the DPCA. Thus, the important fact in the computation
times reported below is not so much the absolute value of the computation time, but the relative differences
between the ascending and descending institution.

11Some preprocessing of bids prior to optimization could reduce computation time, however institutional
rules can prevent significant shortening of objective functions. For example, the XOR constraint would
prevent one from eliminating dominated bids from the objective function because the system is restricted to
taking only one bid from each participant.
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synergy 6-item auction.

Besides the complex problem of choosing what packages/items to bid on and when in a

APCA, the bidding task is quite simple: continue to bid on a package or item until the price

passes your value. This feature of ascending auctions makes them less susceptible to “noisy

bidding behavior, where a bidder strays from the theoretically optimal second price auction

bidding strategy. However, because theoretically optimal bidding in a descending auction

requires deciding how far to let prices drop before submitting a bid, there can be significant

noise detected in bidding.

In order to test the robustness of the efficiencies found in the DPCA, we incorporate

some noise into the simulated agents bidding function. To use a reasonable measure of noisy

bidding we take the laboratory data from first price auctions in Harrison (1989). Those

familiar with the experimental first price auction literature are aware that most laboratory

subjects have a strong tendency to overbid. This overbidding is typically explained by some

measure of risk aversion. We assume no overbidding in our DPCA simulations (risk aversion

would improve its revenue performance) and are more interested in getting a reasonable

measure of the noise present in recorded bidding behavior. We use the standard deviations

of first price bids reported by Harrison (1989) to test the robustness of the DPCA. To

program this noisy bidding behavior into our agents we construct a beta distribution for

each bidder with a mean bid shave corresponding to the amounts found from the easy

ascending auctions and a standard deviation from the Harrison (1989) results.12 Therefore,

in every auction every bidding agent draws once from his beta distribution and applies this

bid shaving strategy to all bids on all items/packages during that auction.

4.1 Results: Relevant Package Problem

As hypothesized, the DPCA does not suffer as much as the APCA from lower efficiencies

under myopic bidding because descending prices better guide bidders to their efficiency

12From the Harrison (1989) results we use the average standard deviation from the assumed risk neutral
cases and we do not use data from the experiments where subjects are bidding against a RNNE bidder.
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relevant packages. In all environments without noisy bidding, and all but one environment

with noisy bidding, the DPCA improves on the APCA in terms of higher average efficiencies

and a higher number of allocations that are 100% efficient. Table 1 reports the results from

the three-bidder ascending and descending clock auctions, Table 2 reports the statistical

testing from the three-bidder environment, Table 3 reports the efficiency results from the

six-bidder ascending and descending clock auctions, and finally Table 4 reports the statistical

testing from the six-bidder environment.

APCA DPCA DPCA
Efficiency Efficiency Efficiency

(no error) (Beta error*)

4-Item Auction Low Synergy Mean 90.69% 96.73% 95.06%
(std. error) (22.91%) (10.96%) (15.38%)

% of auctions
74.10% 84.20% 80.90%

100% efficient

High Synergy Mean 91.15% 98.90% 96.27%
(std. error) (20.40%) (5.93%) (14.87%)

% of auctions
75.90% 91.60% 85.30%

100% efficient

6-Item Auction Low Synergy Mean 95.65% 97.36% 96.51%
(std. error) (13.33%) (10.04%) (12.16%)

% of auctions
78.80% 82.30% 81.20%

100% efficient

High Synergy Mean 90.89% 98.03% 95.45%
(std. error) (17.41%) (5.97%) (11.64%)

% of auctions
66.50% 83.80% 76.60%

100% efficient
* indicates simulation where bids are drawn from a beta distribution with mean corresponding to

bid-shave found in easy ascending auctions and standard deviation take from Harrison (1989),

std. dev= 0.0683

Table 1: Three-Bidder Auction Efficiencies

When the agents in the DPCA are equipped with noisy bidding functions, the average
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Statistical Significance Practical Significance

Paired z-score p-value Effect size
Environments approximations (two-tailed)

4-Item Low Synergy -9.67 0.00 0.29
4-Item High Synergy -12.03 0.00 0.39
6-Item Low Synergy -5.81 0.00 0.17
6-Item High Synergy -12.90 0.00 0.42
4-Item Low Synergy* -6.21 0.00 0.19
4-Item High Synergy* -7.97 0.00 0.22
6-Item Low Synergy* -3.14 0.00 0.08
6-Item High Synergy* -7.97 0.00 0.26
* indicates environments where the descending auction in the matched pair incorporates

noisy bidding. z-score approximations reported from Wilcoxon Signed-Rank test, where

H0: APCA Efficiency=DPCA Efficiency.

Effect size = | mean of paired difference in efficiencies
standard deviation of paired difference in efficiencies |

Table 2: Statistical Testing for Three-Bidder Results

efficiency of the allocations falls, but still significantly outperforms the APCA in both the

average efficiency and number of auctions reaching 100% efficiency in all but the six-bidder

six-item low synergy environment where a myriad of nearly optimal solutions exists. These

results confirm the hypothesis that the prices in the DPCA will better guide bidders to their

efficiency relevant packages.

In addition, we also find that the difference in performance between the APCA and

DPCA is greatest in the high synergy environments. This is likely due to the fact that in

the low synergy environments the added value of efficiency relevant price guidance is much

lower than in high synergy environments where there exists an increased probability that, if

it can be found, a unique combination of high synergy bids from various bidders can produce

a significant increase in surplus generated. Clearly major consideration should be given to

implementing a DPCA when high synergies are a feature of the bidding environment.
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APCA DPCA DPCA
Efficiency Efficiency Efficiency

(no error) (Beta error*)

4x2-Item Auction Low Synergy Mean 95.10% 98.48% 96.07%
(std. error) (9.68%) (3.69%) (8.16%)

% of auctions
67.10% 79.10% 69.30%

100% efficient

High Synergy Mean 96.42% 99.48% 97.18%
(std. error) (8.08%) (2.74%) (7.06%)

% of auctions
74.30% 87.70% 76.80%

100% efficient

6-Item Auction Low Synergy Mean 97.48% 98.14% 96.59%
(std. error) (6.09%) (4.73%) (7.63%)

% of auctions
73.90% 75.80% 70.20%

100% efficient

High Synergy Mean 92.97% 98.43% 96.32%
(std. error) (11.00%) (3.74%) (7.38%)

% of auctions
54.80% 75.10% 64.00%

100% efficient
* indicates simulation where bids are drawn from a beta distribution with mean corresponding to

bid-shave found in easy ascending auctions and standard deviation take from Harrison (1989),

std. dev= 0.0683

Table 3: Six-Bidder Auction Efficiencies

4.2 Results: Computational Burden

Table 5 and Table 6 report the average auction time for each institution under both the

myopic and reveal all strategies for the three-bidder and six-bidder environments respectively.

The myopic bidding environment shows little difference in average auction computation

time between the APCA and the DPCA, column 1 and 2 in Table 5 and Table 6 provide the

comparisons.13 When more bids are placed in the system under the reveal-all strategy the

13The increased time in both the APCA and DPCA myopic bidding environments in the larger auctions is
a result of the increased time required to run the background code in the simulations. As mentioned earlier,
this background code is the same for both institutions, which is why the relative difference in computation
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Statistical Significance Practical Significance

Paired z-score p-value Effect size
Environments approximations (two-tailed)

4-Item Low Synergy -9.18 0.00 0.34
4-Item High Synergy -10.78 0.00 0.35
6-Item Low Synergy -2.87 0.00 0.13
6-Item High Synergy -14.18 0.00 0.51
4-Item Low Synergy* -2.35 0.02 0.09
4-Item High Synergy* -2.39 0.00 0.07
6-Item Low Synergy* 2.13 0.03 0.11
6-Item High Synergy* -7.82 0.00 0.29
* indicates environments where the descending auction in the matched pair incorporates

noisy bidding. z-score approximations reported from Wilcoxon Signed-Rank test, where

H0: APCA Efficiency=DPCA Efficiency.

Effect size = | mean of paired difference in efficiencies
standard deviation of paired difference in efficiencies |

Table 4: Statistical Testing for Six-Bidder Results

APCA slows significantly in contrast to the DPCA, column 3 and 4 in Table 5 and Table 6

provide the comparisons.

In the three-bidder reveal-all environment, the APCA average auction computation time

goes from a minimum of 0.156 seconds to a maximum of 90.38 seconds, an increase by a

factor of 580. Where the DPCA average auction computation time goes from a minimum of

0.055 seconds to a maximum of 0.818 seconds, an increase by a factor of 15. In the six-bidder

reveal-all environment, the APCA average auction computation time goes from a minimum

of 0.304 seconds to a maximum of 571.55 seconds, and increase by a factor of 1880. Where

the DPCA average auction computation time goes from a minimum of 0.067 seconds to a

maximum of 1.526 seconds, an increase by a factor of 23. Only some of the computation times

in Tables 5 and 6 pose any real concern for an auctioneer, as the environments tested are

quite small, but results are intended to be indicative of how the computation time required

in the APCA grows, non-linearly, as the number of bidders and items grow.

times between the APCA and DPCA remain unchanged with myopic bidding in the larger environments
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Time take to complete auction
(measured in seconds)

Myopic bidding Reveal-all bidding
APCA DPCA APCA DPCA

4-Item Low Mean 0.083 0.060 0.156 0.055
Auction Synergy (std. error) (0.016) (0.020) (0.026) (0.020)

High Mean 0.083 0.060 0.167 0.058
Synergy (std. error) (0.018) (0.019) (0.033) (0.021)

6-Item Low Mean 0.106 0.068 0.413 0.064
Auction Synergy (std. error) (0.016) (0.019) (0.069) (0.018)

High Mean 0.105 0.080 0.445 0.073
Synergy (std. error) (0.015) (0.025) (0.069) (0.021)

12-Item Low Mean 2.633 1.888 88.953 0.759
Auction Synergy (std. error) (0.224) (0.256) (16.523) (0.101)

High Mean 2.648 2.035 90.384 0.818
Synergy (std. error) (0.212) (0.382) (17.879) (0.140)

Notes: Times reported are generated using the Timing function in

Mathematica, and are the elapsed time from the first round to the end

of the last round in each auction. Descending auctions use the same bid

shaves as used above with no bidding error incorporated.

Table 5: Computation Times for Three-Bidder Environment

Of course, the results in Table 5 and Table 6 do not imply that every possible auction

environment would require more computation time if implemented as a APCA rather than

as a DPCA. Clearly, in the case where all bidders are fully revealing, the number of bids

collected by the APCA includes all those submitted in the DPCA, so the APCA problem size

is always larger. However for given price incrementing/decrementing rules and a particular

bidding strategy, one could construct a contrary example where, in the effort to determine

the auction winners, more high valued bids would be accumulated during a DPCA than low

valued bids in the comparable APCA, producing a higher computation time in the DPCA.

tested.
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Time take to complete auction
(measured in seconds)

Myopic bidding Reveal-all bidding
APCA DPCA APCA DPCA

4-Item Low Mean 0.122 0.069 0.304 0.067
Auction Synergy (std. error) (0.017) (0.020) (0.045) (0.020)

High Mean 0.126 0.070 0.326 0.068
Synergy (std. error) (0.022) (0.020) (0.055) (0.020)

6-Item Low Mean 0.168 0.086 1.039 0.076
Auction Synergy (std. error) (0.021) (0.021) (0.138) (0.019)

High Mean 0.189 0.102 1.236 0.093
Synergy (std. error) (0.028) (0.028) (0.191) (0.023)

12-Item Low Mean 7.184 3.767 539.4 1.381
Auction Synergy (std. error) (0.479) (0.612) (99.11) (0.227)

High Mean 7.687 4.213 571.6 1.526
Synergy (std. error) (0.881) (0.799) (57.11) (0.242)

Notes: Times reported are generated using the Timing function in

Mathematica, and are the elapsed time from the first round to the end

of the last round in each auction. Descending auctions use the same bid

shaves as used above with no bidding error incorporated.

Table 6: Computation Times for Six-Bidder Environment

But these value/strategy environments would need to be highly structured: they very rarely

occur in randomly generated value sets with myopic bidding. The environment constructed

by KLM is one reasonable structural representation of a combinatorial auction environment

that requires competitive bidders to coalesce through aggressive bidding in order to win. We

think it a fair representation of a large genre of combinatorial resource allocation problems

extant in the real world.
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4.3 Collusion: Evidence from previous literature

Because there has been very little use of combinatorial auctions in both the laboratory and

in the real world, there is limited evidence supporting collusive bidding behavior. There is,

however, significant evidence of collusion in the Simultaneous Ascending Auction (SAA), a

close relative of the APCA proposed by Milgrom (2000).

There exist several instances of collusive bidding behavior in real world multi-unit auc-

tions. For a thorough summary of these cases see Klemperer (2002), and Cramton and

Schwartz (2000). Most examples of real world collusive bidding involve the easily detectable

signaling using particular bid digits: additional auction rules can prevent this and it is not

a strategy available in any clock auction.

But Brown et al. (2009) demonstrates robust tacit collusion in a laboratory setting with

the SAA institution. The tacit collusion evolved in a “collusion incubator environment under

the ascending prices, but failed to form, or was broken, by a descending price version of the

auction. In addition, KLM report on at least one case of collusive behavior in conducting

the APCA auction where all items were sold at the auctions initial starting prices.

As highlighted by Brown et al. (2009), collusion evolves in these ascending institutions

because of the ability to signal other participants by using public bids and because of the

ability to punish non-cooperative bidders by using retaliatory bidding to increase prices on

items in which they are interested. Brown et al. (2009) shows that making bids anonymous

in an ascending auction helps prevent collusive bidding, but this may not be a desirable

institutional feature in the real world.14 However, in a descending auction there is simply

nothing a competitor can do once a (known) rival submits his initial (high) bid. In a DPCA

a single bidder who bids on the entire package of all items stops the auction immediately.

If implicitly collusive behavior allows prices to fall low enough any bidder can place a full

coverage bid with no retaliation possible. A bid submitted on less than the entire package

reserves those items for the bidder at those prices unless alternative overlapping packages

14In wireless spectrum auctions the FCC is required to report bidder IDs on provisionally winning bids in
each round.
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that better fit the other bids are introduced. The strategic problem for implicit colluders

becomes much more difficult to solve. The collusion breaking nature of descending prices in

multi-unit auctions suggests the DPCA will perform well in this dimension.

5 Discussion

Iterative clock auctions provide useful price feedback for bidders in complex combinatorial

environments. We outline three main concerns with the APCA institution, the relevant

package problem, computational burden, and susceptibility to collusion, and conclude that

the DPCA improves in all these areas. Because the sheer number of possible combinations

of items in combinatorial environments the cost associated with value elicitation and the

strategic incentives when submitting bids, bidders are likely to submit a small number of

bids in each round of the auction and let prices guide them to their most profitable pack-

ages/items. Experiments by KLM and Scheffel et al. (2012) document this myopic bidding

behavior in laboratory APCA environments. This myopic bidding behavior can cause some

environments to produce low efficiency allocations. These environments occur because bid-

ders efficiency relevant packages are not their most profitable ones at low prices and later

in the auction when prices get high enough they are no longer able to submit bids on their

relevant packages. The descending prices of the DPCA do not create this blocking problem,

and therefore generally lead to more efficient allocations. Our simulations confirm this re-

sult: using myopic bidding agents the DPCA produces average efficiencies that are higher

(statistically significant at 1%) than the APCA. These differences are magnified in favor of

the DPCA when high synergies exist. To test the robustness of these improvements over

the APCA we employ noisy bid functions for agents in the DPCA and find that while the

disparity in performance is less, the DPCA still performs better than the APCA in all but

one environment where the APCA performs insignificantly better at 1%. In addition to

the relevant package problem concerns exist on the computational burden associated with

combinatorial auctions. In each round of the APCA integer optimizations are required to
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determine the optimal allocation of goods. In auctions with a large number of bidders and

items this computation time can prevent auctions from completing in a reasonable amount

of time. To measure this burden we record the computational time required to complete each

of the thousand auctions in all institutions. The average auction time for the APCA and the

DPCA are very similar when myopic bidding behavior is used by the bidding agents. How-

ever, when an all-revealing bidding strategy is used the disparity in average auction time

between APCA and the DPCA grows substantially, with the DPCA requiring much less

computational time. This is due to the fact that the APCA collects more bids throughout

the auction rounds via low prices, resulting in a larger objective function. This disparity

in computation time grows with both the number of items and number of bidders in the

auction.

And finally, we lean on previous field and laboratory data to reiterate that ascending

multi-unit auctions can be susceptible to collusive bidding behavior. The key components of

reaching a cooperative bidding strategy are bid signaling, and retaliatory bidding. Descend-

ing price institutions greatly limit or destroy these components. Brown et al. (2009) show

that robust tacit collusion can evolve in ascending price multi-unit auction environments,

but does not evolve, or is destroyed by descending price auctions. Because of the collusion

resistance of multi-unit descending environments we expect the DPCA to show much less

susceptibility to collusion than the APCA.

It is our hope that the improved performance of the DPCA suggested by our simulations

can help combinatorial auctions reach a higher level of prominence in real world use. Issues

stemming from computational and bidding uncertainty have caused many to shy away from

the use of combinatorial auction mechanisms and toward more traditional auctions. We find

little rationale for the continued use of non-combinatorial auctions in environments with

item complementarities (synergies) exist. The increased simplicity of bidding in traditional

auctions is nothing the APCA or DPCA cannot provide; bidders are free to submit bids for

individual items if they wish. In addition, salient mechanisms allowing bidders to submit

logistic constraints can eliminate the risk of undesirable over-allocations. The use of pack-
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age bidding allows bidders to freely express interest in aggregations of items without the

financial risk associated with non-package auctions that leave bidders to riskily attempt to

assemble a package of individual items typically subject to a potpourri of institutional rules.

Additionally, the rationale that non-package auctions function well in environments with low

synergies or in environments that we can be embellished with a few pre-selected packages,

leaves the auctioneer responsible to pre-determine decentralized information. While combi-

natorial auctions carry with them some concerns for practitioners and auctioneers it is our

hope that the DPCA implemented and tested in this paper, with its innovative descending

price guidance system, helps to alleviate the concerns with package auctions and allows them

a wider audience of use.
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