
Chapman University Digital Chapman University Digital 

Commons Commons 

Pharmacy Faculty Articles and Research School of Pharmacy 

2012 

One-Pot Regioselective Synthesis of Tetrahydroindazolones and One-Pot Regioselective Synthesis of Tetrahydroindazolones and 

Evaluation of Their Anti-proliferative and Src Kinase Inhibitory Evaluation of Their Anti-proliferative and Src Kinase Inhibitory 

Activities Activities 

V. Kameshwara Rao 
Defence Research & Development Establishment 

Bhupender S. Chhikara 
University of Rhode Island 

Rakesh Tiwari 
Chapman University, tiwari@chapman.edu 

Amir Nasrolahi Shirazi 
Chapman University, shirazi@chapman.edu 

Keykavous Parang 
Chapman University, parang@chapman.edu 

See next page for additional authors 
Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles 

 Part of the Cell Biology Commons, Medical Biochemistry Commons, and the Medical Cell Biology 

Commons 

Recommended Citation Recommended Citation 
Rao, V. K., Chhikara, B.S., Tiwari, R., Nasrolahi Shirazi, A., Parang, K., Kumar, A. One-pot regioselective 
synthesis of tetrahydroindazolones and evaluation of their anti-proliferative and Src kinase inhibitory 
activities. Bioorg. Med. Chem. Lett. (2012) 22, 410-414. 
DOI:10.1016/j.bmcl.2011.10.124 

This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital 
Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized 
administrator of Chapman University Digital Commons. For more information, please contact 
laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/pharmacy_articles
https://digitalcommons.chapman.edu/cusp
https://digitalcommons.chapman.edu/pharmacy_articles?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/10?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/666?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/669?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/669?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


One-Pot Regioselective Synthesis of Tetrahydroindazolones and Evaluation of One-Pot Regioselective Synthesis of Tetrahydroindazolones and Evaluation of 
Their Anti-proliferative and Src Kinase Inhibitory Activities Their Anti-proliferative and Src Kinase Inhibitory Activities 

Comments Comments 
NOTICE: this is the author’s version of a work that was accepted for publication in Bioorganic & Medicinal 
Chemistry Letters. Changes resulting from the publishing process, such as peer review, editing, 
corrections, structural formatting, and other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it was submitted for publication. A definitive 
version was subsequently published in Bioorganic & Medicinal Chemistry Letters, volume 22, in 2012. DOI: 
10.1016/j.bmcl.2011.10.124 

Copyright 
Elsevier 

Authors Authors 
V. Kameshwara Rao, Bhupender S. Chhikara, Rakesh Tiwari, Amir Nasrolahi Shirazi, Keykavous Parang, 
and Anil Kumar 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
pharmacy_articles/104 

http://dx.doi.org/10.1016/j.bmcl.2011.10.124
http://dx.doi.org/10.1016/j.bmcl.2011.10.124
https://digitalcommons.chapman.edu/pharmacy_articles/104
https://digitalcommons.chapman.edu/pharmacy_articles/104


 

One-pot regioselective synthesis of tetrahydroindazolones and 
evaluation of their anti-proliferative and Src kinase inhibitory 
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Shirazi,b Keykavous Parangb,* Anil Kumara,* 
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bDepartment of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 

02881, USA 
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Abstract—A number of 2-substituted tetrahydroindazolones were synthesized by three-component condensation reaction of 1,3-

diketones, substituted hydrazines, benzaldehydes, and Yb(OTf)3 as a catalyst in [bmim][BF4] ionic liquid using a simple, efficient, and 

economical one-pot method. The synthesized tetrahydroindazolones were evaluated for inhibition of cell proliferation of human colon 

carcinoma (HT-29), human ovarian adenocarcinoma (SK-OV-3), and c-Src kinase activity. 3,4-Dichlorophenyl tetrahydroindazolone 

derivative (15) inhibited the cell proliferation of HT-29 and SK-OV-3 cells by 62% and 58%, respectively. 2,3-Diphenylsubstituted 

tetrahydroindazolone derivatives, 19, 25, and 33, inhibited the cell proliferation of HT-29 cells by 6572% at a concentration of 50 μM. 

In general, the tetrahydroindazolones showed modest inhibition of c-Src kinase where 4-tertbutylphenyl- (32) and 3,4-dichlorophenyl- 

(13) derivatives showed the inhibition of c-Src kinase with IC50 values of 35.1 μM and 50.7 μM, respectively. 

Multi-component reactions (MCRs) have emerged as 
a powerful synthetic strategy in organic and medicinal 
chemistry to generate structurally diverse libraries of 
drug-like molecules.1 MCRs offer significant 
advantages over conventional linear-type syntheses, 
such as being rapid and one-pot reactions without the 
need to generate and purify intermediates. 

Tetrahydroindazolones (THIs) have a broad 
spectrum of biological and pharmacological activities.2 
Compounds with indazoles and indazolones scaffolds 
have been reported to exhibit herbicidal,3 anti-
inflammatory,4 anticancer,5 and antituberculosis 
activities.6 A tetrahydroindazolone scaffold containing 
SNX-2122 (a, Fig. 1) is a heat-shock protein 90 (HSP-
90) inhibitor,5a and it exhibits potent antiproliferative 
activities against HER2-dependent breast cancer cells.5b 
Tetrahydroindazole-based compound (b) in Fig. 1 is a 

potent inhibitor of Mycobacterium tuberculosis 
(MTB).6a  

 
Figure 1. Chemical structures of lead compounds containing 
tetrahydroindazolone scaffolds (a) SNX-2122: HSP90 inhibitor; (b) MTB 
inhibitor.  

Combretastatin A-4 (CA4) (Fig. 2) is a potent 

antiproliferative agent which acts through interaction 

with microtubules. Analogues of CA4 and several other 

derivatives where cis-double bond was replaced with a 

tetrazole, thiazole, imidazole, or oxazole rings have 

been synthesized and studied for evaluation of 

anticancer activities and establishing structure-activity 

relationships.7,8 THIs have also been previously reported 

possessing antitumor activity.9 The synthesized THIs 

have structural resemblance to the tetrazole, triazole, 

imidazole, or oxazole derivatives of CA4 that were 

shown to exhibit potent cytotoxicity and anti-tumor 

activity.7,8 We hypothesized that incorporation of 

crucial structural features of CA4 and THIs may 

generate lead compounds with anticancer properties 

(Fig. 2).  

Furthermore, phenylpyrazolopyrimidine derivatives, 

such as PP1 and PP210 have been reported as inhibitors 

of the Src family of tyrosine kinases (SFKs) that play 

prominent roles in multiple signal transduction 

pathways, which involve cell growth and 

differentiation. The nine members of non receptor SKFs 

(Src, Yes, Lck, Fyn, Lyn, Fgr, Hck, Blk, and Yrk) share 

a great deal of structural homology and are present in 

the cytoplasm.11 The expression of Src tyrosine kinase, 

the prototype of SFKs, is frequently elevated in a 

number of epithelial tumors compared with the adjacent 

normal tissues. Src reduces cancer cell adhesions and 

facilitates their motility,12 thus it is a key modulator of 

cancer cell invasion and metastasis.13 Heterocyclic THIs 



 

have some structural similarity with 

phenylpyrazolopyrimidine derivatives (Fig. 2), and were 

investigated to determine whether they can mimic PP1 

or PP2. 

 
Figure 2. Structural relativity of THIs to Combrestatin A-4 mimics and 
phenylpyrazolopyrimidines as anticancer agents and Src kinase inhibitors, 
respectively. 

In continuation of our efforts towards the synthesis 

of small molecules as anticancer agents and/or c-Src 

kinase inhibitors,14 herein we report the synthesis and 

evaluation of an array of 33 synthesized diversely 

substituted THIs. 

The most common method for the synthesis of THIs 
is simple condensation of arylhydrazines with 2-
acylcyclohexane-1,3-diones.15 However, this method 
results in regioisomeric mixtures of 
tetrahydroindazolone. There are only very a few 
methods for the synthesis of 2-substituted THIs. 
Separation of 2-substituted THIs from a mixture of 
isomers is challenging and, therefore, these compounds 
have not been much explored for biological activity. We 
have previously reported the synthesis of other 
heterocyclic compounds through MCRs catalyzed by 
metal triflates.16 One-pot three component regioselective 
synthesis of substituted THIs catalyzed by ytterbium 
triflate [Yb(OTf)3] in 1-butyl-3-methylimidazolium 
tetrafluoroborate ([bmim][BF4]) ionic liquid is shown in 
Scheme 1. 

In a protocol standardization experiment, when 5,5-
dimethylcyclohexane-1,3-dione (2), 4–chloro-
benzaldehyde (2), and 3,4-dichlorophenyl hydrazine (3) 
were reacted in ethanol at room temperature in presence 
of Yb(OTf)3 (20 mole %), the product 4 (R1 = Me, X = 
C, R2 = 3,4-Cl2Ph, R3 = 4-ClPh) (see AD for general 
synthesis in Scheme 1) was obtained in 20% yield. 
Further optimization of reaction condition was carried 
out by changing solvents, catalysts, and catalyst 
loading. As shown in Table 1, the use of 20 mol% 

Yb(OTf)3 in [bmim][BF4] gave the desired product 4 in 
high yield (88%) (entry 4). When Yb(OTf)3 was 
changed with other metal triflates such as Sc(OTf)3, 
Zn(OTf)2, Cu(OTf)2 or AgOTf the yield of 4 was 
moderate to good (Table 1, entries 7-10). The catalytic 
order Yb(OTf)3 > Zn(OTf)2 > Sc(OTf)3 > Cu(OTf)2 > 
AgOTf was established for the synthesis of 4 based on 
isolated yield in [bmim][BF4]. There was not much 
increase in yield of 4 on changing the amount of 
Yb(OTf)3 from 20 mol% to 40 mol% (Table 1, entries 
4-6). However, reducing the amount of Yb(OTf)3 
decreased yield of 4 to 51%. It should be noted that no 
product formation was observed in solvent free 
conditions; however 45% of 4 was formed in the 
absence of Yb(OTf)3. The structure of the compound 4 
was confirmed by 1H NMR, 13C NMR, and mass 
spectrometry. In 1H NMR three singlet peaks were 
observed at δ 2.81, 2.42 and 1.16 ppm for C7-CH2, C5-
CH2, and C6-(CH3)2, respectively along with other 
aromatic protons. It is worthy to mention that under 
these conditions only 2-substituted 
tetrahydroindazolones were obtained. 
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Scheme 1. Synthesis of substituted tetrahydroindazolones. 

 

Table 1. Optimization of reaction conditions for the model 
reaction.  

S. 

No 
Catalyst Moles (%) Solvent 

Time 

(h) 

Yield 

(%)a 

1 Yb(OTf)3 0 [bmim][BF4] 2.00 45 

2 Yb(OTf)3 10 - 2.00 NPb 

3 Yb(OTf)3 10 [bmim][BF4] 2.00 51 

4 Yb(OTf)3 20 [bmim][BF4] 2.00 88 

5 Yb(OTf)3 30 [bmim][BF4] 2.00 90 

6 Yb(OTf)3 40 [bmim][BF4] 2.00 89 

7 Zn(OTf)2 20 [bmim][BF4] 2.00 70 

8 Ag(OTf) 20 [bmim][BF4] 2.00 50 

9 Sc(OTf)3 20 [bmim][BF4] 2.00 60 

10 Cu(OTf)2 20 [bmim][BF4] 2.00 56 

11 Yb(OTf)3 20 [bmim][PF6] 2.00 65 

12 Mont. K-10 20 Ethanol 2.00 20 

13 pTSA 20 Ethanol 2.00 20 

14 Yb(OTf)3 20 Ethanol 2.00 20 

15 Yb(OTf)3 20 Toluene 2.00 NA 

16 Yb(OTf)3 20 THF 2.00 NA 
aIsolated yield, bNo product formed 

Under the optimized reaction conditions, various 
arylhydrazines, arylaldehydes, and 1,3-diones 



 

underwent one-pot reaction and afforded the 
corresponding 2-substituted THIs (436) (Table 2). 
Various benzaldehydes and arylhydrazines with electron 
withdrawing and donating substituents, such as nitro, 
halo, hydroxyl, methoxy, alkyl, and aryl, were used to 
establish the structure-activity relationships. 

Table 2: Synthesized 2-substituted THIs (436). 

X

X N
N

O

R3

R2

R1

R1

 

Compd R1 X R2 R3 
Yield 

(%)a 

4 CH3 C 3,4-Cl2C6H3 4-ClC6H4 88 

5 CH3 C 3,4-Cl2C6H3 4-NO2C6H4 85 

6 CH3 C 3,4-Cl2C6H3 C4H3S 73 

7 CH3 C 3,4-Cl2C6H3 4-CH3C6H4 83 

8 CH3 C 3,4-Cl2C6H3 3-OH,4-OMeC6H3 65 

9 CH3 C 3,4-Cl2C6H3 4-OHC6H4 70 

10 CH3 C 3,4-Cl2C6H3 C4H4N 80 

11 CH3 C 3,4-Cl2C6H3 4-OMeC6H4 74 

12 CH3 C 3,4-Cl2C6H3 C6H5 75 

13 CH3 C 3,4-Cl2C6H3 3-ClC6H4 82 

14 H C 3,4-Cl2C6H3 4-ClC6H4 82 

15 H C 3,4-Cl2C6H3 C4H3S 71 

16 H C 3,4-Cl2C6H3 4-CH3C6H4 78 

17 H C 3,4-Cl2C6H3 2-FC6H4 77 

18 H C 3,4-Cl2C6H3 4-OMeC6H4 70 

19 H C 3,4-Cl2C6H3 C6H5 72 

20 H C 3,4-Cl2C6H3 4-OHC6H4 65 

21 H C 3,4-Cl2C6H3 3-OH,4-OMeC6H3 60 

22 H C 3,4-Cl2C6H3 4-NO2C6H4 84 

23 H C 3-Cl, 4-CH3C6H3 3-OMeC6H4 77 

24 CH3 C 3-Cl, 4-CH3C6H3 4-ClC6H4 81 

25 CH3 C 3-Cl, 4-CH3C6H3 C5H4N 69 

26 CH3 C 3-Cl, 4-CH3C6H3 C4H4N 54 

27 CH3 C C6H11 C4H3S 78 

28 CH3 C C6H11 4-NO2C6H4 80 

29 CH3 O C6H11 4-ClC6H4 50 

30 H C C6H11 3-ClC6H4 76 

31 H C C6H11 4-CH3C6H4 76 

32 CH3 C 4-(CH3)3CC6H4 4-OMeC6H4 77 

33 CH3 C 4-(CH3)3CC6H4 3,4-(OMe)2C6H3 81 

34 CH3 C 4-(CH3)3CC6H4 4-ClC6H4 77 

35 CH3 O 4-(CH3)3CC6H4 4-ClC6H4 48 

36 CH3 C 4-(CH3)3CC6H4 4-CH3C6H4 79 

aIsolated yield 

The chemical structures of all synthesized 

compounds were elucidated by 1H NMR, 13C NMR, and 

mass spectroscopy (Supporting information). A single 

peak for two protons of C7-carbon at around 2.8 ppm 

confirmed formation of only a single isomer. These 

values are in agreement with the literature report for 

regioselective formation of 2-substituted THIs.15d 

Furthemore, regioselective formation of 2-substituted 

THIs was confirmed by X-ray crystalographic data for 

compound 6 (CCDC 848784) and 27 (CCDC 850178). 

The ORTEP view for compound 6 (Fig 3A) and 27 (Fig 

3B) clearly shows that 3,4-dichlorophenyl and 

cyclohexyl group are at N-2 position in 6 and 27, 

respectively. 

(A) (B) 

 

 

Figure 3. ORTEP view of molecular structure of compound (A) 6 and 

(B) 27. 

The regioselective formation of N-2-substituted THI 

indicates that hydrazine first attacks at carbonyl group 

of diketone. Based on the product formation the reaction 

is believed to proceed through the formation of 

hydrazone followed by attack of aldehyde to give aldol 

product, which undergoes nucleophilic addition as 

shown in Scheme 2. It appears that ionic liquid helps in 

stabilization of charged intermediate generated by 

coordination of Yb(OTf)3 to aldehydes and diones. 

Furthermore, the acidic C-2 proton of imidazolium ionic 

liquid also facilitates the enolization of dione.  
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Scheme 2: Plausible mechanism for synthesis of THIs. 

All the synthesized compounds (436) were 

evaluated for their effect on proliferation of ovarian 

adenocarcinoma cells (SK-OV-3) and colon 

adenocarcinoma (HT-29), two human cancer cells lines 

that overexpress c-Src.17 Doxorubicin (Dox) and DMSO 

were used as positive and negative controls, 

respectively. The results for cell proliferation at 50 µM 

after 72 h for compound 430 are shown in Fig. 4. All 

the compounds were more active against HT-29 



 

cells than SK-OV-3 cells. Compounds 19, 25, and 

33 inhibited the cell proliferation of HT-29 cells by 65-

72% while they were not effective against SK-OV-3. 

Compounds 15, 16, and 27 showed 48-62% and 49-58% 

inhibition in the cell proliferation of HT-29 and SK-

OV-3 cells, respectively. The presence of C4H3S- 

substituent as R3 or 3,4-dichlorophenyl or tolyl as R2 is 

critical for maximum anti-proliferative activity as seen 

in compounds 15 and 16. 
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Figure 4. Inhibition of HT-29 and SK-OV-3 cell proliferation by compounds 433 (50 µM) after 72 h incubation. The results are shown as the percentage 
of the control DMSO that has no compound (set at 100%). All the experiments were performed in triplicate.

Synthesized substituted THIs were evaluated for c-

Src kinase inhibitory activity. The results of Src kinase 

inhibitory activity of compounds (433) are shown in 

Table 3. Among all the compounds, 12, 13, 19, 30, 31, 

and 32 showed modest inhibition of Src kinase with 

IC50 values in the range of 35-69 µM.  
Compounds 32 and 13 were found to show the 

highest Src kinase inhibitory activities with IC50 values 
of 35.1 and 50.7 M, respectively, among all the 
compounds. Molecular modeling and minimization of 
compounds 32 and 13 was used to explore and compare 
with the binding mode of these compounds when 
compared with PP1 within the ATP-binding site of the 
enzyme (Fig. 5). The backbone tetrahydroindazolone in 
32 and 13 and pyrazolopyrimidine in PP1 occupied a 
similar pocket in ATP-binding site of Src. The 
modeling studies indicated that 3,4-dichlorophenyl and 
4-(tert)butylphenyl at R2 position in 13 and 32, 
respectively, occupy and fit the hydrophobic binding 
pocket similar to tolyl group of PP1 with slightly 
different orientations of phenyl groups (Fig. 5). The 4-
methoxyphenyl and 3-chlorophenyl at R3 position of 32 
and 13, respectively, are oriented far from the large 
cavity that is formed from side chains of helix αC and 
helix D, where the triphosphate group of ATP usually 
binds similar to that of t-butyl group of PP1, thus 
suggesting that substitution at R3 position of THIs does 

not generate any advantageous in Src kinase inhibition 
through interactions with adjacent amino acids in the 
ATP binding site. 

Table 3. Src kinase inhibitory activity of substituted 

THIs (436).  

Compd. IC50 (µM)a Compd. IC50 (µM)a 

4 86.0 22 150 

5 150 23 82.7 

6 150 24 131.8 

7 150 25 74.3 

8 150 26 150 

9 66.6 27 77.3 

10 150 28 150 

11 94.1 29 150 

12 62.1 30 58.4 

13 50.7 31 57.7 

14 81.0 32 35.1 

15 150 33 150 

16 150 34 150 

17 150 35 150 

18 150 36 150 

19 65.8 rniropsoruato  0.6 

20 150 PP2 0.5 

21 150   
aThe concentration at which 50% of enzyme activity is inhibited. 



 

These data suggest that further structural 

modifications in tetrahydroindazolone scaffold is 

required to convert them to more potent Src kinase 

inhibitors such as phenylpyrazolopyrimidine derivatives 

PP1 and PP2. Poor correlation between inhibition of Src 

kinase and the cell proliferation could be due to the 

differential cellular uptake and alternative mechanisms 

in anti-proliferative activities of the compounds.  

 

 
Figure 5. Comparison of structural complexes of Src kinase with 
different THIs derivatives. 32 (yellow), PP1 (blue), and 13 (red)) based 
on molecular modeling. The compounds and side chains of amino acids 
are rendered in stick styles. Compounds are in the lowest energy 
conformers predicted. The Figure is drawn using the Accelrys 
visualization system. 

In conclusion, an ecofriendly and regioselective 

method was developed for the synthesis of 2-substituted 

THIs by one-pot three-component coupling reaction of 

benzaldehydes, arylhydrazines, and 1,3-diones using 

Yb(OTf)3 as a catalyst in ionic liquid. To the best of our 

knowledge, this is the first report of one-pot synthesis 

and evaluation of THIs as Src kinase inhibitors and 

anticancer agents. The synthesized compounds were 

evaluated for c-Src kinase inhibitory activity and 

compound 32 showed moderate inhibition of Src kinase 

with IC50 value of 35.1 µM. Compounds 15 and 16 

consistently inhibited the cell proliferation of SK-OV-3 

and HT-29 cells by 49-62% at a concentration of 50 

μM. Further structure-activity relationship studies are 

required for optimizing the Src kinase inhibition and 

anti-proliferative activities of THIs. 
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