2011

Inhibition of Multi-Drug Resistant HIV-1 Reverse Transcriptase by Nucleoside Beta-Triphosphates

Chandravanu Dash
Meharry Med College

Yousef Ahmadibeni
Columbus State University

Michael J. Hanley
University of Rhode Island

Jui Pandhare
Meharry Med College

Mathias Gotte
McGill University

See next page for additional authors

Follow this and additional works at: http://digitalcommons.chapman.edu/pharmacy_articles

Part of the Immune System Diseases Commons, Medical Biochemistry Commons, and the Other Chemicals and Drugs Commons

Recommended Citation
DOI: 10.1016/j.bmcl.2011.05.005

This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
Inhibition of Multi-Drug Resistant HIV-1 Reverse Transcriptase by Nucleoside Beta-Triphosphates

Comments
NOTICE: this is the author's version of a work that was accepted for publication in Bioorganic & Medicinal Chemistry Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Bioorganic & Medicinal Chemistry Letters, volume 21, issue 12, in 2011. DOI: 10.1016/j.bmcl.2011.05.005

The Creative Commons license below applies only to this version of the article.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright
Elsevier

Authors
Chandravanu Dash, Yousef Ahmadibeni, Michael J. Hanley, Jui Pandhare, Mathias Gotte, Stuart F. J. Le Grice, and Keykavous Parang
Inhibition of multi-drug resistant HIV-1 reverse transcriptase by nucleoside β-triphosphates

Chandravanu Dasha, Yousef Ahmadibenib,c, Michael J. Hanleyc, Jui Pandharea, Mathias Gotted, Stuart F.J. Le Gricee, and Keykavous Parangc

aCenter for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA

bDepartment of Chemistry, Columbus State University, Columbus, GA 31907 USA

cDepartment of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 USA

dDepartment of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2T5

eResistance Mechanisms Laboratory, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA

Abstract

Despite the success of potent reverse transcriptase (RT) inhibitors against human immunodeficiency virus type 1 (HIV-1) in combination regimens, the development of drug resistant RTs constitutes a major hurdle for the long-term efficacy of current antiretroviral therapy. Nucleoside β-triphosphate analogs of adenosine and nucleoside reverse transcriptase inhibitors (NRTIs) (3′-azido-2′,3′-dideoxythymidine (AZT), 3′-fluoro-2′,3′-dideoxythymidine (FLT), and 2′, 3′-didehydro-2′,3′-dideoxythymidine (d4T)) were synthesized and their inhibitory activities were evaluated against wild-type and multidrug resistant HIV-1 RTs. Adenosine β-triphosphate (1) and AZT β-triphosphate (2) completely inhibited the DNA polymerase activity of wild type, the NRTI multi resistant, and non-nucleoside RT inhibitors (NNRTI) resistant HIV-1 RT at 10 nM, 10 μM, and 100 μM, respectively.

During HIV-1 replication, the viral RNA genome is reverse transcribed into an integrated competent double stranded DNA by the virally encoded multifunctional enzyme reverse transcriptase (RT).1 HIV-1 RT remains a prime target for continued development of antagonists to inhibit virus replication and stem the devastating consequences of AIDS. HIV-1 RT is a heterodimeric enzyme composed of 66 and 51 kD subunits (p66 and p51) possessing RNA- and DNA-dependent DNA polymerase and RNase H activities.2 DNA polymerase activity is essential for the synthesis of a RNA:DNA heteroduplex from the single stranded viral RNA genome. RNase H hydrolyzes the RNA strand of the RNA:DNA heteroduplex generated during reverse transcription and creates the primer for plus strand
DNA synthesis. Thus, both DNA polymerase and RNase H activities of HIV-1 RT have been considered as potential targets for antiretroviral therapy.\(^3\)

Two classes of drugs belonging either to the nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) or to the non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been used in the clinic as part of the antiretroviral therapy against HIV/AIDS.\(^4\) NRTIs compete with the natural deoxynucleoside triphosphates (dNTPs) during DNA synthesis and act as chain terminators.\(^5\) In contrast, NNRTIs are non-competitive inhibitors that bind at an allosteric nonsubstrate binding site, which is distinct from the substrate binding site of HIV-1 RT.\(^6\) While the unique pharmacology of these inhibitors has rendered their use in highly active antiretroviral therapy (HAART) therapy, HIV-1 has the ability to develop drug resistance mutations for both NRTI and NNRTIs.\(^7\) Thus, design of novel lead compounds that can inhibit wild-type and drug resistant HIV-1 RTs is a subject of major interest in antiviral research.

Modified nucleoside triphosphates that mimic naturally occurring deoxyribo- and ribonucleoside triphosphates have been used as probes in several biochemical pathways involving DNA and RNA synthesis, and as potential diagnostic and therapeutic agents.\(^8,9\) The structural similarity of modified nucleotides to natural deoxyribo- and ribonucleoside triphosphates makes them useful reagents as substrates or inhibitors for DNA or RNA polymerases.\(^10,11\) A number of approaches have focused on modifications and/or substitutions on the base,\(^12,13\) carbohydrate\(^14-19\) and linear triphosphate moieties\(^20-25\) to design modified nucleotides for diverse applications in nucleic acid and antiviral research.

We have previously reported the synthesis of nucleoside 5′-O-α,β-methylene-β-triphosphates and 5′-O-β,γ-methylenetriphosphates and their potency towards the enzymatic function of wild-type HIV-1 RT.\(^26,27\) In continuation of our efforts to design a diverse array of modified nucleoside triphosphates as RT inhibitors, we herein report the synthesis of nucleoside β-triphosphate analogs (1–4) of adenosine and NRTIs, such as 3′-azido-3′-deoxythymidine (zidovudine, AZT), 3′-fluoro-3′-deoxythymidine (alovudine, FLT), and 2′, 3′-dideoxy-2′,3′-dideoxythymidine (stavudine, d4T) (Fig. 1) and their inhibitory activity against the DNA polymerase of wild-type and multidrug resistant RTs. To the best of our knowledge, this is the first report of the evaluation of nucleoside β-triphosphate analogs as RT inhibitors.

The synthesis of a β-triphosphitylating reagent from phosphorus trichloride has been previously reported by us in multi-step reactions.\(^28\) The reaction mixture containing β-triphosphitylating reagent was immediately used in coupling reactions with polymer-bound N-Boc p-acetoxybenzyl alcohol for the synthesis of a number of nucleoside β-triphosphates.\(^28\) Our research on the solid-phase synthesis of organophosphorous and organosulfur compounds revealed that the polymer-bound p-acetoxybenzyl alcohol containing amide linker (5) was more stable than polymer-bound N-Boc p-acetoxybenzyl alcohol even in basic conditions and was used to generate sulfonamides and other organophosphorus compounds in high yields and without the need for extensive purifications of final products.\(^29,30\) Thus, polymer-bound linker 5 instead of polymer-bound N-Boc p-acetoxybenzyl alcohol was selected for the reaction with β-triphosphitylating reagent 6 to generate a new polymer-bound β-triphosphitylating reagent 7 that was used for preparation of nucleoside β-triphosphates including two novel compounds 3 and 4 (Scheme 1).

Scheme 1 shows the synthesis of nucleoside 5′-O-β-triphosphates (1–4). The aminomethyl polystyrene resin-bound p-acetoxybenzyl alcohol (5, 3.85 g, 0.65 mmol/g) was subjected to reaction with the β-triphosphitylating reagent (6, ~10 mmol) in the presence of triethylamine.
(10 mmol) to produce the corresponding polymer-bound β-triphosphitylating reagent 7.

Unprotected nucleosides (e.g., adenosine (a), AZT (b), FLT (c), and d4T (d) were reacted
with polymer-bound reagent 7 in the presence of 5-(ethylthio)-1H-tetrazole to yield 8a–d.
Oxidation with t-butyl hydroperoxide followed by removal of the cyanethoxy group with
DBU, afforded the corresponding polymer-bound nucleoside 5′-O-β-triphosphotriesters
(10a–d). The cleavage of polymer-bound compounds was carried out under acidic
conditions (TFA). The linker-trapped resin (12) was separated from the final products by
filtration. The crude products had a purity of 87-93% (Table 1) and were purified by using
small C18 Sep-Pak cartridges and appropriate solvents to afford nucleoside 5′-O-β-triphosphates
(1–4) in 76-90% overall yield (calculated from polymer-bound reagent 7 in the
four-step reaction sequence) (Table 1). Only one type of monosubstituted compound was
produced with high selectivity as a result of this sequence possibly because of the rigidity of
polymer-bound β-triphosphitylating reagent 7. In case of adenosine, the most reactive
hydroxyl group of unprotected nucleoside reacted selectively with hindered polymer-bound
reagent 7 when an excess of nucleoside was used. The chemical structures of the final
products (1–4) were determined by nuclear magnetic resonance spectra (1H NMR, 13C
NMR, and 31P NMR), high-resolution time-of-flight electrospray mass spectrometry, and
quantitative phosphorus analysis.

Enzyme p66/p51 HIV-1 RT was purified according to the protocol described by Le Grice et
al. DNA-synthesis was measured on 40 nt DNA template annealed to a 5′ end-labeled 22
nt DNA primer as described previously. The inhibitory effects of nucleoside β-triphosphate analogs
1–4 were evaluated against the DNA polymerase activity of wild-type HIV-1 RT. The results of the inhibition assay are
presented in Fig. 2. Lane W represents the DNA polymerase activity of wild type HIV-1 RT
in the absence of any inhibitor, where the 32P-radiolabeled DNA primer was fully extended
to P+10. In the presence of the compounds 1–4, the DNA polymerase activity of HIV-1 RT
is greatly inhibited as reflected by the absence or reduced levels of P+10 bands (Fig. 2
panels A-D, lanes 1-6). β-Triphosphate analogs of adenosine (1) and AZT (2) completely
inhibited the DNA polymerase activity at 10 nM concentration (Fig. 2A and 1B, lane 1).
With β-triphosphate analogs of FLT (3) and d4T (4), DNA synthesis was severely reduced at
10-100 µM, but complete inhibition was not achieved at 1 mM concentration (Fig. 2C and
D, lanes 6). These data indicate that β-triphosphate analogs of adenosine and AZT are potent
inhibitors of wild-type HIV-1 RT. However, FLT and d4T analogs exhibit modest inhibitory
activity against HIV-1 RT. Thus, in addition to the modified triphosphate moiety, the nature
of nucleoside base is also significantly to optimal DNA polymerase inhibitory activity of
wild type RT.

Subsequently, we examined to determine whether these analogs have the ability to inhibit
NRTI resistant HIV-1 RT. To assess their inhibitory effects, we used the M184V/K65R/
Y115F RT. M184V confers high level resistance to lamivudine (3TC) and emtricitabine
(FTC), whereas the double mutant M184V/Y115F RT has decreased susceptibility to the
guanosine analogue, abacavir (ABC). Furthermore, K65R is associated with decreased
susceptibility to tenofovir (TFV). The results of DNA polymerase assays are presented in
Fig. 3. Lane W represents the DNA polymerase activity of M184V/K65R/Y115F RT in the
absence of any inhibitor. With compounds 1 and 2, a complete inhibition of M184V/K65R/
Y115F RT was achieved at 10 µM (Fig. 3 A-B, lane 4), although both compounds inhibited
wild-type HIV-1 RT at 10 nM concentrations (Fig. 2A-B). Surprisingly, compounds 3 and 4
completely inhibited the DNA polymerase activity of this enzyme at 100 µM (Fig. 3C
and 3D, lane 5), even though they did not show similar potency against wild-type HIV-1 RT.
The potency of these analogues against NNRTI resistant HIV-1 RT was also examined. NNRTIs bind in a non-competitive manner to a specific pocket of the HIV-1 RT, which is closely associated with, but distinct from, the substrate binding site. In our studies, we used HIV-1 RT with Thymidine Associated Mutations (TAMs) that confer resistance to NNRTIs.5 The results of the inhibitory activities of these compounds are presented in Fig. 4. Overall the nucleoside β-triphosphate analogs (1–4) showed lower potency against NNRTI resistant RTs in comparison to NRTI resistant RTs. Compounds 1 and 2 did not inhibit DNA polymerase activity of NNRTI HIV-1 RT significantly at 10 nM-10 μM (Fig. 4 panels A-B, lanes 1-4). However, they completely inhibited the NNRTI resistant RT at 100 μM (Fig. 4 panels A and B, lane 5). Although, compounds 3 and 4 impaired polymerase activity, complete inhibition was not achieved at concentrations up to 1 mM (Fig. 4C and D, lane 6).

β-Triphosphates analogs of adenosine (1) and AZT (2) potently inhibited wild-type (10 nM) and showed modest potency towards NRTI resistant RTs (10 μM) and NNRTI resistant RTs (100 μM). On the other hand, compounds 3 and 4 inhibited most of DNA polymerase activity of wild-type at 10-100 μM, but complete inhibition was not achieved at 1 mM, suggesting that in addition to the β-triphosphate moiety, the nature of nucleotide base plays a critical role in optimal wild type DNA polymerase inhibition. Interestingly, compounds 3 and 4 exhibited better potency towards NRTI resistant RTs (100 μM) when compared with wild type RT (1 mM), indicating that the presence of a β-triphosphate moiety and the nature of the base contribute to the inhibition of NRTI resistant RTs.

In case of NRTIs, drug resistance affects the binding and rate of incorporation of the incoming nucleotide analog and primarily involves residues in direct contact with the incoming NRTI triphosphate. These residues include K65R, L74V, Y115F, M184V/I, and Q151M that cause steric hindrance to the proper binding of these inhibitors in the HIV RT active site.34 In contrast, NNRTI resistant mutations (TAMs) in HIV-1 RT are located in the allosteric site residues that prevent binding of the inhibitors. We assume that these nucleoside β-triphosphate analogs have the ability to compete with the dNTP binding site of HIV-1 RT, thereby conferring potent inhibitory activity against NRTI resistant RTs. However, the potency of these analogs is limited towards the NNRTI resistant RT, indicating that they cannot effectively bind to the allosteric site of the RT.

Our data revealed that, β-triphosphate analogs of adenosine and AZT were highly potent against the wild-type and NRTI/NNRTI resistant RTs in comparison to the FLT and d4T analogs. Thus, these analogs could potentially serve as lead molecules for designing inhibitors that can inhibit an array of drug resistant HIV-1 RTs. Further investigations are underway to determine the exact mechanism of inhibition of polymerase activity of wild type and NRTI resistant HIV-1 resistant RT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

K. P. acknowledges the National Science Foundation, Grant Number CHE 0748555 for the financial support and National Center for Research Resources, NIH, and Grant Number 1 P20 RR16457 for sponsoring the core facility. C. D. acknowledges NIH Grant # R00DA024558, and R03DA30896 and Faculty start up funds from Vanderbilt-Meharry CFAR.
References

32. Dash C, Fisher TR, Prasad VR, Le Grice S. J Biol Chem. 2006; 281:27873. Reactions were initiated in the presence or absence of the compounds by adding 10 mM enzyme to a mixture containing 50 mM template/primer, dNTPs (200 μM), Tris-HCl (10 mM, pH 8.0), NaCl (80 mM), and MgCl₂ (6 mM), and terminated after 10 min by adding an equal volume of a formamide-based gel-loading buffer at 37 °C. Reaction products were fractionated by high-voltage electrophoresis

Bioorg Med Chem Lett. Author manuscript; available in PMC 2012 June 15.
through 10% (w/v) polyacrylamide gels containing 7 M urea in Tris/borate/EDTA buffer. After drying, gels were subjected to autoradiography and/or phosphorimaging analysis using a Molecular Imager FX phosphorimager. [PubMed: 16867979]

Figure 1.
Chemical structures of nucleoside 5'-O-β-triphosphates (1–4).
Figure 2.
DNA polymerase activity of HIV-1 RT. The 32P-radiolabeled primer is marked as P, whereas the fully extended product is marked as P+10. Lane W represents DNA polymerase activity in the absence of any inhibitor. DNA polymerase activities in presence of inhibitors are presented in Panel A (compound 1), B (compound 2), C (compound 3), and D (compound 4). Lane 1 (10 nM), lane 2 (100 nM), lane 3 (1 μM), lane 4 (10 μM), lane 5 (100 μM), and lane 6 (1 mM).
Figure 3.
DNA polymerase activity of NRTI resistant HIV-1 RT mutant M184V/K65R/Y115F. The 32P-radiolabeled primer is marked as P, whereas the fully extended product is marked as P+10. Lane W represents DNA polymerase activity in the absence of any inhibitor. DNA polymerase activities in presence of inhibitors are presented in Panel A (compound 1), B (compound 2), C (compound 3), and D (compound 4). Lane 1 (10 nM), lane 2 (100 nM), lane 3 (1 μM), lane 4 (10 μM), lane 5 (100 μM), and lane 6 (1 mM).
Figure 4.
DNA polymerase activity of NNRTI Resistant HIV-1 RT. The \(^{32}\)P-radiolabeled primer is marked as P, whereas the fully extended product is marked as P+10. Lane W represents DNA polymerase activity in the absence of any inhibitor. DNA polymerase activities in presence of inhibitors are presented in Panel A (compound 1), B (compound 2), C (compound 3), and D (compound 4). Lane 1 (10 nM), lane 2 (100 nM), lane 3 (1 μM), lane 4 (10 μM), lane 5 (100 μM), and lane 6 (1 mM).
Scheme 1.
Synthesis of polymer-bound β-triphosphitylating reagent 7 and nucleoside 5’-O-β-triphosphates 1–4 using polymer-bound linker 5.
Table 1
Overall isolated yields and purity of crude products for nucleoside 5'-O-β-triphosphates (1–4).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Overall yield (%) calculated from 7</th>
<th>Purity of crude products (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>88</td>
</tr>
</tbody>
</table>