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Abstract

We study how two Þat monies, one safe and one risky, compete in a decentralized trading environment.

The equilibrium value of the two currencies, their transaction velocities and agents� spending patterns are

endogenously determined. We derive conditions under which agents holding diversiÞed currency portfolios

spend the safe currency Þrst and hold the risky one for later purchases. We also examine when the reverse

spending pattern is optimal. Traders generally favor dealing in the safe currency, unless trade frictions and

the currency risk is low. As risk increases or trading becomes more difficult, the transaction velocity and

value of the safe money increases.

JEL: E4, E5, D7 Keywords: Money, Currency Substitution, Search.
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1. Introduction

Centuries ago the comedy writer Aristophanes lamented (in �The Frogs�) that �the full-bodied

coins that are the pride of Athens are never used while the mean brass coins pass hand to hand.�

Many observers have since debated on the organization of exchange when several monies, some

�superior� to others in some way, compete to sustain trade.

A long-held notion is that an inferior currency should circulate more widely than a superior

money. Those holding both monies would prefer spending the �bad� money as soon as they can,

and keep the �good� money for future purchases. Others have favored a differing notion: it is the

good currency that should circulate more widely. Hayek (1976) argued that this was the logical

outcome of currency competition. People would rather spend the good money Þrst, as it has greater

purchasing power, and keep the bad money to face future trade opportunities.1

These notions are conßicting, yet revolve around rational spending behavior. Thus, a key

challenge is to determine what fundamental factors inßuence the use of competing monies. That

is: if two currencies are accepted in trade, when will agents tend to spend the bad and hold the

good one for future purchases? When will they do the opposite? A large theoretical literature

has offered insight centered around arbitrary transaction costs or institutional restrictions on use

of monies (see Giovannini and Turtleboom, 1994). We complement it by studying currency use as

a result of decentralized and uncoordinated private decisions, absent currency-speciÞc transaction

costs and institutional restrictions.

To do so we consider an economic environment in which money is essential to conduct de-

centralized trade. There are two intrinsically different monies: a �bad� money characterized by

purchasing power risk and a �good� safe money. Both have explicit medium-of-exchange roles, and

their equilibrium values reßect their ability to facilitate spot trades of consumption goods. This

is formalized by modeling trade as a random search process among agents specialized in produc-

tion/consumption. They hold currency portfolios to buy goods via pairwise trades where prices are

determined via bilateral bargaining. In this context currencies compete on a �level� trading Þeld as

currency-speciÞc trade barriers, or direct government action, are absent.

1This is reminiscent of some developing economies where a good foreign money circulates more widely than the

bad domestic liabilities, or post-WWI Europe where �...the lack of a stable domestic means of payments was a serious

inconvenience...and foreign currencies therefore came to be desired...as a means of payment...Thus, in advanced

inßation, �Gresham�s Law� was reversed: good money tended to drive out bad...� (League of Nations, 1946, p.48).
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Our main contribution is to show how equilibrium spending patterns and transaction velocities

are driven by relative currency risk and trade difficulties.2 The basic mechanism is this. Changes

in relative risk alter the monies� relative values, hence the distribution of market prices. This, in

turn alters buyers� spending strategies, which affects economy-wide transaction patterns and the

relative transaction velocities of the currencies.

Our analysis proceeds in two parts. We Þrst prove that equilibria exist in which agents favor

spending the good currency, and hold on to the bad for subsequent trades. This equilibrium, tends

to arise if the bad money is quite risky and trade frictions are substantial, and produces the highest

velocity for the good money. We then ask if equilibria exist with the opposite pattern: agents prefer

spending the bad money and hold the good one for later transactions. While this may appear to

be an obvious strategy for the buyer, in fact it is harder to support as an equilibrium. While

spending the bad currency makes sense for the buyer, it effectively transfers the risk onto the seller.

The seller will not accept the risk without being compensated, via a higher price. This lowers the

buyer�s current consumption: a very risky money buys so little that the buyer prefers to spend the

good money instead. This equilibrium tends to exist if the risk on the bad currency is low and

trading is easy.

In equilibriummoney holdings are heterogeneous across agents. As a result, agents have differing

valuations on additional units of money and this creates price dispersion across sellers. Currency

risk affects circulation of the currencies by altering the distribution of relative prices, i.e. real

exchange rates. Greater risk induces sellers to charge high prices if paid with the bad currency,

which ampliÞes the dispersion in real exchange rates. As the price charged by sellers increases with

currency risk, buyers increasingly spend the good money in a larger fraction of trade encounters.

Thus, greater risk on the bad money lowers its transaction velocity while raising the velocity of the

good money.

These Þndings offer insight in the patterns of monetary transaction observed in those developing

economies where a foreign money exists alongside the domestic. Our analysis suggests that the

level of �dollarization� can be kept low as long as the domestic currency risk is low and the trading

environment is well functioning. However, should currency risk get out of hand or the trading

2This is unlike prior search-theoretic work, where currency portfolios were not allowed, with the exception of Head

and Shi, (2000) and Craig and Waller (2001).

2



environment break down, a high degree of dollarization will be the outcome.

2. Economic Environment

The model is a divisible-goods version of Kiyotaki and Wright (1989) with multiple holdings of

money as in Camera and Corbae (1999), and two distinct currencies. Here we describe its key

features.

Time is continuous and unbounded. There is a continuum of inÞnitely lived agents and good

types, both normalized to one. Every agent specializes in consumption and production: he produces

one type of good and consumes a subset x ∈ (0, 1) of good types. Production of quantity q generates
disutility c(q) = q. Consumption of q units of a desired consumption good generates utility u(q),

with u0(q) > 0, u00(q) < 0, u0(0) =∞ and 0 ≤ u0(∞) ≤ 1 (more on this assumption, later).
Agents engage in decentralized exchange. They are randomly paired over time according to a

Poisson process with arrival rate α > 0. Barter is ruled out by assuming that in a match there is

probability x of single coincidence of wants but a zero chance of double coincidence. The existence

of alternative payments systems or Þnancial intermediaries is assumed away, so that intertemporal

trade is infeasible. Hence, decentralized spot monetary trade arises as a natural means to expand

allocations beyond autarky.

A fraction Mi ∈ (0, 1) of agents hold indivisible Þat money of type i = g, b (g stands for �good�
and b for �bad�). Individual money holdings are bounded by N ≥ 2, so that the total supply of

monies is Mg +Mb ∈ (0,N). Agents face the same trading environment, independent of their
portfolio holdings. However, the currencies have a key intrinsic difference. Money b has purchasing

power risk, while money g does not. A convenient way to model this feature (as proposed by

Li, 1995) is to assume existence of a �government� that randomly taxes agents� holdings of money

b. SpeciÞcally, with Poisson arrival rate α the agent�s entire holdings of money b are taken away

with probability τ ∈ (0, 1] by the government. This captures the idea that currency b is risky and
those holding it are prone to sudden losses of purchasing power. Money b is similarly re-injected

in the economy. The government buys goods from randomly encountered sellers with probability

η ∈ [0, 1] , paying with one unit of currency b.
The terms of trade are endogenously formed according to a take-it-or-leave-it bargaining pro-

tocol. SpeciÞcally, buyers offer sellers a trade of d units of currency for q goods, that the seller can
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accept or reject.

3. Stationary Equilibria with Currency Competition

To identify how economic fundamentals affect the relative circulation of currencies, we study mon-

etary equilibria where both currencies are accepted in trade. Clearly, non-monetary equilibria

exist.

At each date agents can be buyers or sellers who maximize utility from consumption by choosing

prices and currencies used to settle trades. These choices depend on the agents� portfolio holdings,

assumed observable, and the expected distribution of prices in the market. We focus on trade

patterns that are sustainable under symmetric and stationary pure Nash strategies. Hence, we

look for Þxed points in strategy space since equilibrium actions, and beliefs over actions, must

be time-invariant and identical across agents. We typify outcomes describing portfolios and price

distributions, and patterns of monetary trade. Hence, the strategies of those with �diversiÞed�

portfolios are crucial, as only these buyers can choose which currency to spend. With a large upper

bound N, there are many diversiÞed portfolios and thus a multitude of equilibrium transaction

patterns. Unfortunately, this impairs analytical clarity as the strategy set expands rapidly. Thus,

to simplify the analysis we take two steps.

First, we set N = 2 to keep heterogeneity tractable.3 If we let mj ∈ (0, 1) be the fraction of
agents with portfolio j then j ∈ J = {0, g, b, 2g, 2b, gb}: everyone has at most one type of money
except the mgb fraction who hold one unit of each currency. The advantage of doing this is that

equilibria hinge on the behavior of a single set of traders (buyers gb) and in equilibrium currency

exchange is absent.4 Second, we allow buyers to bid only for a seller�s goods, not for his goods and

money (e.g. as in Aiyagari et al., 1996). This is a natural way to model spot monetary transactions,

where money is used to buy goods, not �mixed baskets� of real and nominal objects. The equilibria

sustainable under �mixed� trades are studied in a related paper (Craig and Waller, 2001).

3Let n = 0, 1, 2, ...N be an agent�s total holdings of the two monies, in combined units. The monies� distribution

has a support with
PN+1

n=1 n = (N + 1)(1 + N/2) elements. As there are two distinct currencies, there are (n+1)!
n!

possible portfolio combinations that allow the agent to hold exactly n units (of either money).
4Suppose monies differ in values. Portfolio exchanges (one-for-one or two-for-one) are not mutually beneÞcial, as

one trader is worse off. One-for-one trades between agents with portfolios 2g and 2b are suboptimal for those having

the better valued money (the portfolio gb is worth less). The next section formalizes this intuition.
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3.1 Distributions and Strategies

In this environment the distribution {mj} must satisfy the following constraints:

m0 +mg +mb +m2g +m2b +mgb = 1

mg + 2m2g +mgb =Mg

mb + 2m2b +mgb =Mb

(1)

In a stationary equilibrium úmj = 0 ∀j ∈ J and the laws of motion depend on the trade pattern (as
shown in the Appendix). Since bad money is constantly removed and injected into the economy,

stationarity also requires that outßows and inßows of money b are equal, i.e.5

τ(mb + 2m2b +mgb) = η [m0 +mg +mb] . (2)

With regard to price formation and trading strategies we omit unnecessary detail (found in

Camera and Corbae, 1999) and focus on two key aspects. First, only agents with money can buy,

as barter is unfeasible and exchange must be quid-pro-quo. Agents with portfolio s ∈ {0, b, g} can
sell, while the proportion µ = m2g +m2b +mgb of agents holding two currency units, that we call

�rich buyers�, can only buy. Since agents without money can only sell we call them �poor sellers�,

while agents with one currency unit can buy or sell so they can be either �poor buyers� or �rich

sellers�. Second, take-it-or-leave-it bargaining implies the optimal offer pair (d, q) leaves the seller

with no net surplus. Thus, he is indifferent between accepting or rejecting it and in equilibrium he

accepts every offer meeting his reservation value.

To deÞne prices one must specify the equilibrium trade pattern. We focus on one in which it is

optimal to always engage in �small� nominal trades. Here buyers spend a single unit of money per

trade, d = 1, hence the price is 1/q. While other patterns are possible, this is relevant for a simple

reason. We want to determine conditions under which buyers choose to spend one currency over

the other. As N = 2, buyers with a diversiÞed portfolio face a non-trivial choice only when d = 1,

i.e. when they wish to spend only part of their money holdings.

In this context, buyers� spending choices are contingent on sellers� money holdings since they

affect the seller�s reservation value. For instance, we expect sellers to produce different amounts

for a unit of good money depending on whether or not they already hold a unit of good money.

5There are three parameters: τ , η,Mb. We set τ and Mb and let η endogenously adjust to satisfy (2).

5



Hence, we let qis denote the production exchanged by a seller with portfolio s for one unit of money

i = g, b, in equilibrium.

Note that qis depends only on the seller�s portfolio since every buyer makes the same nominal

offer d = 1 in equilibrium. However, buyers with undiversiÞed holdings {g, b, 2g, 2b} cannot choose
between monies but those with the diversiÞed portfolio gb can. Hence, to discuss trade strategies

we need to formalize the money choice of buyer gb. Conditional on d = 1, we let ps ∈ [0, 1] denote
the probability that this buyer chooses to spend money g when matched to a seller with portfolio

s. With probability 1−ps he spends the bad money. We let the vector p = (p0, pg, pb) describe this
buyer�s spending strategy, and let p∗ denote an equilibrium. Hence, there are eight possible pure

strategy vectors p∗, given d = 1.

3.2 Value Functions and Reservation Prices

We can now describe the value of holding the different portfolios under the conjectured trade pattern

and price mechanism, i.e. when agents expect that
©
qis
ª
deÞne the terms of trade prevailing on

the market, and that buyers will adopt the spending strategies p∗ and d = 1. Given the recursive

structure of the model, the stationary value Vj from holding portfolio j ∈ J is derived using standard
dynamic programming techniques. Vj must satisfy

ρVi = x
P

s∈{0,g,b}
msu(q

i
s)− x(1− µ)(Vi − V0)− τ(Vi − V0)1{i=b}

ρV2i = x
P

s∈{0,g,b}
msu(qis)− x(1− µ)(V2i − Vi)− τ(V2i − V0)1{i=b}

ρVgb =maxps∈{0,1} x
P

s∈{0,g,b}
ms
£
psu(q

g
s ) + (1− ps)u(qbs) + ps(Vb − Vg)

¤
−x(1− µ)(Vgb − Vg)− τ(Vgb − Vg)

(3)

and V0 = 0, because of buyer-take-all. Here i = g, b, 1{i=b} = 1 and zero otherwise, and ρ = r/α is

the discount factor adjusted by the arrival rate. It measures the severity of the trading frictions in

the economy: as ρ goes to zero, frictions vanish.

The Þrst term on the right-hand side of the Þrst two lines is the expected ßow utility from

consumption. With probability xms the buyer meets a seller with portfolio s who can produce his

desired consumption good, he spends currency i and enjoys ßow utility u(qis). The second term is

the change in lifetime utility, as the buyer spends a unit of money with probability x(1− µ). For
those who hold bad currency, i = b, the third term is the expected loss due to purchasing power
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risk: the entire holdings of money b are lost with probability τ . Payoffs from being a seller do not

appear because they are zero, due to buyer-take-all bargaining.

For buyers holding gb, the last two lines can be similarly interpreted, once adjusted for the fact

that buyers gb can choose spend one currency or the other (the choice ps). Monies with different

values, Vb 6= Vg, entail different payoffs and gb buyers take this into account (third line). Not only
do they evaluate the expected ßow utility from spending money b or g, but they also consider the

opportunity cost of spending the good money and being left with the bad one (the term ps(Vb−Vg),
a loss if the good money has greater value). The fourth line accounts for all other expected lifetime

utility losses: those due to spending the good money, x(1−µ)(Vgb−Vg), and those due to currency
risk, −τ(Vgb − Vg).

It is useful to manipulate the value functions in (3) to show that the values of multi-unit

portfolios are a linear combination of the values of single-unit holdings. For i = g, b:

Vi =
Ai
1− µ

X
s∈{0,g,b}

msu(q
i
s) and V2i = (1 +Ai)Vi (4)

Vgb =
Ab
1− µ

X
s∈{0,g,b}

msps
h
u(qgs )− u(qbs) + Vb − Vg

i
+ Vb +AgbVg (5)

where Ab < Ag < Agb.6 It is immediate that, in a monetary equilibrium, the value of any portfolio j

is bounded below by zero. Also V2i ≤ 2Vi, Vgb ≤ max {V2g, V2b}, Vgb ≤ Vb+Vg, and (V2g−Vg)/Vg =
Ag > (V2b−Vb)/Vb = Ab, i.e. the marginal value of the risky currency declines faster than the good
currency.

Since the seller earns no surplus his production cost (in ßow disutility) must equal his valuation

of the money received. For i, k = g, b and i 6= k, in a dual-currency equilibrium the seller�s

reservation quantities are:

qi0 = Vi, q
i
i = V2i − Vi, and qik = Vgb − Vk with qis > 0. (6)

For example, a buyer trading with a poor seller (who has no money) receives qi0 = Vi for a unit of

money i. This is because the poor seller assigns value Vi−V0 = Vi to money i. Hence, she is willing
to sustain up to Vi disutility from producing in exchange for one unit of money i, beyond which

6Ab =
x(1−µ)

ρ+τ+x(1−µ) < Ag =
x(1−µ)

ρ+x(1−µ) < Agb =
τ+x(1−µ)

ρ+τ+x(1−µ) < 1 so that limρ→0Ag = Agb = 1, Ab < 1 if τ > 0.
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she rejects the trade. The same reasoning applies to the reservation quantities of rich sellers (those

with one unit of money), qii and q
i
k. Notice also that, given a currency offer, poor sellers produce

more than rich sellers as rich agents value an extra unit of money the least, V2i − Vi < Vi.
3.3 Optimal Spending Strategies

To study individual optimality of a trade pattern where d = 1 and p = p∗, we take three steps.

Given p∗, d = 1 is optimal if agents want to spend one unit of money but no more. Hence,

rich buyers must receive more surplus from spending one unit rather than both when meeting poor

sellers. That is, for holders of portfolios 2i and gb, we need:

u(qi0) + Vi − V2i > u(�q) + V0 − V2i
max

©
u(qg0) + Vb, u(q

b
0) + Vg

ª− Vgb > u(�q) + V0 − Vgb
(7)

where i = g, b. Here qi0 satisÞes (6), while �q and �q denote the out-of-equilibrium production of

poor sellers for, respectively, two units of money i or one of each type. Buyer-take-all implies

�q = V2i − V0, and �q = Vgb − V0, their ßow utility losses must equal their lifetime utility gains, even
out-of-equilibrium.

Second, given p∗, d = 1 is optimal if the surplus received from spending one unit of money

is larger than that from walking away. In short, the seller�s reservation price cannot be too high.

Since rich agents value extra money the least, it follows that (i) rich buyers trade at a high price

whenever poor buyers do and (ii) poor buyers buy from poor (low price) sellers whenever they buy

from rich (high price) sellers. With two kinds of poor buyers (holding i = g, b) and rich sellers

(holding k = g, b) all buyers spend always at least one unit of money, if four inequalities hold,

summarized by:

u(qik) + V0 − Vi > 0. (8)

When trading with rich sellers, whose reservation price 1/qik is high, the buyer�s loss from spending

one money i, V0 − Vi, must exceed the utility from consumption.

Finally, given d = 1, buyer gb spends only one of his two currencies. Since we are focusing on

pure spending strategies and there are three types of sellers, s ∈ {0, g, b}, then the surplus earned
from spending one currency must be larger than spending the other:

ps =

 1 if u(qgs) + Vb − Vgb > u(qbs) + Vg − Vgb
0 otherwise

(9)
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We now can deÞne a monetary equilibrium with currency competition.

DeÞnition. A symmetric stationary dual-currency equilibrium with d = 1 is
©
Vj ,mj , q

i
s, ps

ª
∀j,i,s

that satisfy (1)-(3), (6)-(9) and úmj = 0.

3.3.1 The Role of Preferences

A key decision for buyer gb is what to do in matches with poor sellers. If he spends the good

money, he will do so also in matches with richer sellers, where he faces less favorable terms of trade.

Substituting the reservation quantity of the poor seller, qi0 = Vi, in (9) we see that p0 = 1 if

u(Vg)− Vg > u(Vb)− Vb.

The buyer enjoys u (Vi) ßow utility from spending money i, while the seller suffers Vi ßow disutility

from production. Thus the ßow surplus from spending one money i is S(Vi) = u(Vi) − Vi. As
the buyer captures it entirely, he spends the money i that maximizes S(Vi). Hence the form of

preferences and the currencies relative values are key.7 Two cases may arise, in general.

If S(Vi) is ever-increasing, p0 = 1 only if Vg > Vb, that is the good money must have the greatest

purchasing power. The buyer will spend the safer money whenever possible since the surplus he

receives is increasing in the currency�s value. Conversely, p0 = 0 requires Vg ≤ Vb; the buyer will
spend the risky currency money Þrst if its transaction value is higher than the safe money. If S(Vi)

is hump-shaped, however, Vg > Vb can sustain p0 = 0. If S(Vi) falls for high Vi, it might be better

to spend the bad money although it buys less. Doing so has a higher surplus.

In studying existence of equilibria, this insight on the preference structure is developed using

two convenient utility functions. The Þrst, u(q) = qσ + q with 0 < σ < 1, exhibits decreasing

relative risk aversion and S(Vi) = V σi is ever-increasing. The second, u(q) = qσ, is CRRA and

S(Vi) = V
σ
i − Vi is hump-shaped with unique maximum at �V = σ

1
1−σ < 1.

4. Existence of Equilibria: Two SigniÞcant Cases
7Technically, the surplus in this match has two components, but only one is affected by the buyer�s spending

choice. The Þrst is the net ßow utility u(qi0) − qi0 : it depends on the buyer�s spending choice i = g, b. The second is
the net continuation utility Vb + Vg − Vgb − V0: it is independent of the buyer�s spending choice.
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We proceed by studying the equilibria where p∗ = (1, 1, 1) and p∗ = (0, 0, 0). These vectors

are the extreme cases of the strategy spectrum of buyer gb: he always spends one money type,

g or b, regardless of which seller he meets. This provides insight on the factors affecting the

competition between currencies. We then build on this intuition via numerical analysis of the

remaining equilibria, where the buyer�s spending choices vary with the sellers he meets. We call the

p∗ = (0, 0, 0) case the �bad-money� equilibrium, as buyers with diversiÞed portfolios always spend

the risky money rather than the good.8 The �good-money� equilibrium has p∗ = (1, 1, 1).

Existence of equilibrium is proved via a constructive approach. Given the conjecture d = 1

and p = p∗, we solve for equilibrium value functions, prices, and distributions, providing parameter

conditions sufficient to ensure that the conjectured strategies are individually optimal.

4.1 The �Good-Money� Equilibrium

Here we determine conditions under which d = 1 is individually optimal and buyers with portfolio

gb always prefer spending the good money, p∗ = (1, 1, 1).

To provide conditions sufficient for existence of a unique stationary distribution we follow a

Liapunov function approach (as in Zhou, 1997).9 One can prove, using (4)-(6), that Vgb = Vg+AbVb.

The upshot is currency exchange does not take place in matches between buyers 2b and 2g since one

of them would not swap a unit of his money for another, sincemin {V2b, V2g} < Vgb < max {V2b, V2g}.
Using (6), it then follows qgb = Vg − (1 − Ab)Vb and qbg = qbb = AbVb. Thus, in studying the dual-
currency equilibrium, where both monies have a positive value, we concentrate on cases where

Vg > (1−Ab)Vb, which is necessary for qgb > 0.10 We can now state the following:

Proposition 1. Consider the good-money equilibrium. If ρ and σ are sufficiently small, then

(i) for u(q) = qσ + q, then there exists a unique equilibrium such that Vg > Vb.

(ii) for u(q) = qσ, the equilibrium does not exist.

8This is a common occurrence in developing and transitional economies: dollars are used in some transactions and

the risky home currency in others. Several models have been proposed to account for this phenomenon (e.g. Chang,

1994, Uribe, 1997, Sibert and Liu, 1998, or Engineer, 2000). Their key element of commonality is that, unlike our

model, the foreign currency is assumed to have a relatively higher �transaction cost� associated with its use.
9The proof is lengthy; it is available from the authors as a technical appendix.
10 It is easy to show that there exists a non-monetary equilibrium Vb = Vg = 0, and a unique equilibrium Vg > Vb = 0

that can be thought as the limiting case of currency competition where only the good money circulates. Vb > Vg = 0

is never an equilibrium.
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Thus, if the good-money equilibrium exists the good money is more valuable. The equilibrium

is easily sustained if the trading surplus is monotonically increasing in the transaction�s value,

otherwise it is not. These results hinge on two elements.

First d = 1 must be optimal. The reason is that the currency choice of buyers gb matters

only when they do not wish to spend their entire holdings. This requires small ρ and σ (see also

Proposition 2 in Camera and Corbae, 1999). The intuition is, when trade frictions are low, sellers

charge similar prices so buyers are willing to spend at least one unit rather than searching for a

better deal.11 Furthermore, if σ is low, marginal utility diminishes rapidly so agents spend at least

one unit of currency, but not two. Since buyers have an incentive to hold some cash for future

purchases, they spend no more than one unit even when prices are low.

Second, our earlier insight about the trade surplus S(Vi), suggests the preference structure

matters for existence. If S0(Vi) > 0 buyers with portfolio gb would always spend the good money

and hold the bad. Since money�s value rises as ρ falls, at some point S0(Vi) < 0 when surplus is

hump-shaped which leads the gb buyer to start spending the bad currency. Thus, low frictions and

hump-shaped surplus induce the buyer to deviate by offering the cheap bad money.12

In equilibrium because the currencies are valued differently, Vg 6= Vb there is a non-degenerate
distribution of prices. This implies there is also a non-degenerate distribution of real exchange

rates. Let Rs = q
g
s/qbs denote the relative prices charged by sellers with portfolio s. This measures

the real value of one unit of the good money relative to the bad, for a given seller. Using (6):

R0 =
Vg
Vb
< min

½
Rg =

Ag
Ab

Vg
Vb
, Rb = 1+

(Vg/Vb)− 1
Ab

¾
so that Rb ≤ Rg only if

Vg
Vb
≤ 1−Ab

1−Ag . Note that the distribution of real exchange rates becomes

degenerate as τ → 0, as Vg → Vb and
Ag
Ab
→ 1. This seems natural: as fundamental differences in

two monies disappear we do not expect their purchasing powers to diverge.13 On the other hand,
11The reservation quantity of a rich seller converges to that of a poor seller, as Ag and Ab approach 1. So there is

nothing to gain by waiting to meet a poor seller.
12Technically, for u(q) = qσ, S(Vi) is decreasing if Vi is close to 1. For ρ small, V ∗

g > V ∗
b and V ∗

g is close to 1,

hence S(V ∗
g ) < S(V

∗
b ) so p0 = 0 hence p

∗ 6= (1, 1, 1). When u(q) = qσ + q, S(Vi) is monotonically increasing, hence
S(V ∗

g ) > S(V
∗
b ) for all V

∗
g > V

∗
b : p0 = 1 is optimal, which is necessary for p

∗ = (1, 1, 1) to be an equilibrium.
13This would not necessarily hold if �mixed� trades were allowed (see Ayiagari et al, 1996), as the monies� relative

values would not solely hinge on fundamental differences.
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as τ rises, there is increased dispersion in real exchange rates since Ag
Ab
rises.

4.2 The �Bad-Money� Equilibrium

We now consider the other end of the strategy spectrum, where d = 1 and p = p∗ = (0, 0, 0) are

optimal. Expressions (4)-(6) imply Vgb = Vb+AgbVg, q
g
b = AgbVg, and q

b
g = Vb−(1−Agb)Vg. Hence,

in studying the equilibrium we concentrate on Vb > (1−Agb)Vg necessary for qbg > 0.14 We can now
state the following:

Proposition 2. Consider the bad-money equilibrium. If ρ and σ are sufficiently small, then

(i) for u(q) = qσ + q, the equilibrium does not exist .

(ii) for u(q) = qσ, then there exists a unique equilibrium such that Vg > Vb.

Once again the key result is that if a bad-money equilibrium exists the currencies� values differ.

If the economy functions smoothly, the good money has the greatest value. As before, there is a

non-degenerate distribution of prices and real exchange rates. The intuition behind the need for

low ρ and σ is as in the prior proposition. A condition sufficient for existence of the bad-money

equilibrium hinges on the structure of the trade surplus but differs from the good-money outcome.

A hump-shaped surplus assures that those with diversiÞed portfolios always desire to spend the bad

instead of the good money. If the surplus rises in the quantity traded the buyer would spend the

more valuable money. Thus only a hump-shaped surplus induces buyers to offer the bad money, as

low ρ and σ ensure that Vg and Vb lie on the decreasing portion of S(Vi). The intuition is that while

the good money buys more, the buyer gives up a valuable asset. When the value is sufficiently

large, therefore, buyers prefer to get a little less today, by spending the bad money, and hold the

good currency for future consumption.

5. Characterization of Equilibria

We now build on the previous results and expand our study to other patterns of monetary exchange

via numerical analysis.15 SpeciÞcally, we study equilibria where d = 1 and p∗ encompasses all pos-
14Once again there exists the non-monetary equilibrium Vb = Vg = 0, and an equilibrium in which good money

does not circulate at all, Vb > Vg = 0. However, Vg > Vb = 0 is not an equilibrium.
15The experiments are as follows. We select a vector p∗, set d = 1, and solve for the equilibrium distribution

and value functions. We then verify individual optimality of the conjectured strategies. We do so for each of the 8
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sible pure spending strategies, in order to achieve two objectives. We illustrate how trade frictions

and relative currency risk affect the pattern of monetary trade. Furthermore, we demonstrate how

the currencies� transactions velocity responds in an intuitive way to changes in the relative currency

risk.

5.1 A Trade-off Between Exchange Frictions and Currency Risk

To illustrate the importance of trading frictions and currency risk we let ρ and τ vary. For

the baseline parameterization, when u(q) = qσ + q only p∗ = (1, 1, 1) is an equilibrium. Figure 1

displays the equilibria existing when u(q) = qσ, conÞrming the intuition developed earlier. If the

bad currency risk is low and trade is relatively easy to accomplish, then agents prefer to spend

the bad currency Þrst. The opposite occurs if the bad currency�s risk is high and the economy

is not functioning well. The good-money equilibrium arises when the bad currency�s risk is high

and trading frictions are reasonably low, the reverse or both are high. The bad-money equilibrium

occurs when trading frictions are high and risk is very low, the reverse, or both are low.

The intuition for these results is that low trading frictions mean new trade opportunities arise

quickly. If the bad currency�s risk is also relatively low, then prices charged for paying with bad

currency are not much higher than those for paying with good money. By spending the bad

currency, buyer gb gets rid of the risk and does not have to wait long to spend the good money.

Hence, he spends the risky currency even though he consumes a little less today. When trade

frictions are high, the buyer knows that he will not get to consume again for a while, so he wants

a substantial amount of consumption when a trading opportunity arises. This leads him to spend

the good money to buy more goods. He holds onto the bad currency in the hope of spending it in

the future before it is taxed away.

5.2 Currency Risk and Transaction Velocities

How does τ affect the circulation of currencies in the steady state? In general, circulation is

affected by the sellers� willingness to accept the currency and the buyers� willingness to spend it.

By construction, however, sellers always accept both currencies in our equilibria. Hence, for given

supplies of the two currencies, changes in their equilibrium circulation are driven by changes in

their distribution and the spending pattern. In order to measure the degree of circulation of each

pure strategy vectors p∗, for (τ , ρ) ∈ [0, 1]2 (deÞned on a grid with increments of size 10−7). Our benchmark (unless
otherwise noted) is x = 0.4, σ = 0.5, ρ = 0.08, α = 5, Mg = .75, and Mb = .25.
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currency, we calculate the endogenous transaction velocities.

The transaction velocity is the amount traded per unit time, divided by its stock. When d = 1

we deÞne velocities as:

vg ∝ αx{(1− µ)(mg +m2g) + (p0m0 + pgmg + pbmb)mgb}
vb ∝ αx{(1− µ)(mb +m2b) + [(1− p0)m0 + (1− pg)mg + (1− pb)mb]mgb}.

The Þrst term is the fraction of each currency that changes hands when buyers holding only that

currency meet sellers and spend one unit of their holdings. The second term captures how the

spending behavior of the buyer with a mixed portfolio affects the relative velocities of each currency.

Velocities are affected by the steady-state distribution of money holdings and by the equilibrium

strategy vector p∗. In particular, a change in p∗ moves vg and vb in opposite directions, ceteris

paribus.16 Thus, the conÞscation/injection parameters τ and η affects the velocity of each currency

via changes in the distribution of money holdings and the buyers� trading strategies.

Figure 2 illustrates the transaction velocities corresponding to the equilibria of Figure 1 for the

baseline value of ρ and varying τ . Given that there is more bad than good currency (Mg = .25,

Mb = .75), the transaction velocity for the bad currency is always the highest since more trades

are being conducted with it. When τ = 0, vb = .74, and vg = .15. As the risk on the bad currency

increases, however, the velocities change as the distribution of money holdings and the transaction

pattern change. We can see that, for an equilibrium associated with a given p∗, increases in

currency risk lead to small declines in vb and small increases in vg. Once the risk gets high enough,

buyers with mixed portfolios begin spending the good currency, rather than the bad. Thus more

transactions involve good money, so vb falls and vg increases. As the spending pattern changes,

there are dramatic decreases in vb and large increases in vg. When τ = 1, vb = .55, vg = .28 and

the ratio vg/vb rises to .51 (from .20 at τ = 0). These results seem very intuitive and suggest that

as the bad currency becomes increasingly risky, people �substitute� out of the bad currency into the

good currency causing the circulation of the bad currency to fall and the circulation of the good

currency to increase.

5.3 Trade Patterns and Availability of Money

We next analyze how varying the relative currency risk τ , and the ratio of the bad to the good

money stock affects the equilibrium transaction pattern by varying the relative supplies of currencies

16Note that if p∗ = (1, 1, 1) and (mg +m2g) ≈ (mb +m2b), then vg > vb and vice versa if p∗ = (0, 0, 0).
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when Mg +Mb = M = 1. Figure 3 illustrates the equilibria when u(q) = qσ, for the baseline

parameterization. Its main feature is that the equilibrium transaction pattern is not driven by the

relative amount of bad currency in the economy. Rather, bad currency risk is the critical parameter.

We also observe an interesting spending pattern. Given a value Mb/M, the gb buyer always spends

the bad currency for low τ . As the risk rises, he begins spending the good money when buying

from sellers who already hold a unit of the bad currency and p∗ = (0, 0, 1). This occurs because the

b sellers charge a low price for good money in order to acquire a unit of safe currency to diversify

their portfolio. As risk continues to increase, the gb buyer starts spending the good money on g

sellers and p∗ = (0, 1, 1). Finally, when the bad risk is high enough, all sellers charge high prices in

terms of the bad currency, i.e. p∗ = (1, 1, 1). Hence, buyers with a mixed portfolio always prefer

to buy with good money.

Executing a similar exercise for u(q) = q + qσ generates only the equilibrium p∗ = (1, 1, 1). We

had to decrease σ to 0.15 and ρ to 0.02 in order to Þnd other equilibria. The results appear in

Figure 4.17 Still, despite the fact that there are eight possible vectors p, only two of them are an

equilibrium, and are unique: p∗ = (1, 1, 1) and p∗ = (0, 1, 1). In Figure 4, when the bad currency

risk is very low, p∗ = (1, 1, 1) is an equilibrium even when good moneys form less than half of

the available currency. However, as τ rises, p∗ = (1, 1, 1) is an equilibrium only if there is a large

supply of good money. This corresponds to the idea of the economy being �highly dollarized�. If

we think of the good currency as dollars, as opposed to the risky domestic currency, then they are

the dominant source of currency, and the preferred medium of exchange. On the other hand, if

only few dollars are present in the economy, then p∗ = (0, 1, 1) is the unique equilibrium. In this

situation, agents holding a mixed portfolio only spend the dollar on rich sellers who charge a much

higher price when paid with bad currency. Poor sellers offer better prices in terms of bad currency

since they need cash. Thus the buyer can afford to spend the bad currency in those trades.

6. Conclusion

We have studied currency competition from Þrst principles in a decentralized trade setting with

two Þat monies differing in their purchasing power risk. The currencies� relative risk affects the

organization of monetary exchange via its inßuence on the distribution of prices and real exchange

17 Interestingly, if u(q) = qσ, σ = 0.15, and ρ = 0.02 then only p∗ = (1, 1, 1) exists.
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rates in the marketplace. Changes in the currencies relative price affect buyers� desire to spend

or hoard the most valuable money. Even small differences in currency risk can be associated with

relatively higher circulation of the safer currency, if trade is hard to accomplish.

Our theoretical analysis builds intuition on some aspects of the phenomenon known as �dollar-

ization� whose most basic form is the use of a foreign currency alongside the home (also known as

currency substitution). In this context, a relevant issue for policymakers is the extent of the cur-

rencies� relative use for internal trade. We have provided insight by focusing on key determinants

in the usage patterns of competing monies: their relative purchasing power risk and the frictions

of the local trading environment.

We Þnd that a poorly functioning economy with risky home currency is prone to dollarization.

Thus our analysis is consistent with the view that the local currency sustains internal trade if

the purchasing power risk is kept very low, but once that risk gets too high substantial currency

substitution kicks in. The normative aspect of our study is that a low dollarized economy can avoid

becoming highly dollarized by implementing policies aimed at reducing currency risk and improving

the trading environment so that the economy functions well. At the same time our results serve as

a warning that dollarization will be unavoidable if currency risk is not kept under control.
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Appendix

Good-Money Equilibrium

In proving proposition 1 we conjecture d = 1 and p∗ = (1, 1, 1). Using (4)-(6), it is easy to show

that Vgb = AbVb+(
Ab
Ag
−Ab+Agb)Vg. Substituting for Ab, Ag, and Agb, we obtain Vgb = AbVb+Vg.

The equilibrium Vg and Vb must be a Þxed point of the map deÞned by:

Vb =
Ab[m0u(Vb)+mgu(AbVb)+mbu(AbVb)]

1−µ (10)

Vg =
Ag[m0u(Vg)+mgu(AgVg)+mbu(Vg−(1−Ab)Vb)]

1−µ . (11)

We make use of the following lemma.

Lemma 1. If ρ is sufficiently small, there exists a unique Þxed point of (10)-(11) that is consistent

with the dual-currency equilibrium p∗ = (1, 1, 1). Precisely (Vg, Vb) = (V ∗g , V ∗b ) where 1 <
V ∗g
V ∗b

≤
1−Ab
1−Ag .

Proof of Lemma 1.

There is always a non-monetary equilibrium, since Vb = Vg = 0 solve (10)-(11). The limiting case

of currency competition, when the bad money has no value and only the good money circulates, is

also an equilibrium. There is a unique Vg > Vb = 0 that solves (10)-(11). Note that Vb > Vg = 0 is

not a possible solution.

Our focus is a dual-currency equilibrium, where both monies have a positive value. Thus, we are

interested in the existence of a strictly positive Þxed point (V ∗g , V ∗b ) of the map given by (10)-(11).

Let Vb = V. In equilibrium (10) deÞnes the map:

[ρ+ x(1− µ)]V = x [m0u(V ) +mgu(AbV ) +mbu(AbV )]− τV ≡ H(V )

H(V ) is a strictly concave function on V ≥ 0, starting at 0, and is hump-shaped. In particular,

recalling that limq→∞ u0(q) ≤ 1, we see that limV→∞H 0(V ) < x(1− µ). Thus, (10) has two Þxed
points: V = 0 and V = V ∗b > 0. Notice that

∂V ∗b
∂τ < 0, since ∂Ab

∂τ < 0.

Now let Vb = V ∗b . Letting Vg = V , in equilibrium (11) deÞnes the map

[ρ+ x(1− µ)]V = x [m0u(V ) +mgu(AgV ) +mbu(V − V ∗b +AbV ∗b )] ≡ F (V, V ∗b )

where we deÞne F (V, V ∗b ) for V ≥ VL = (1−Ab)V ∗b (necessary since Vg − (1 − Ab)V ∗b = qgb ≥ 0,
in equilibrium). F (V, V ∗b ) is strictly concave in V , F (VL, V

∗
b ) > 0, limV→+VL

∂F (V,V ∗b )
∂V = ∞, and
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limV→∞
∂F (V,V ∗b )

∂V ≤ x(1−µ). Thus, there can be at most two positive Þxed points to the map [ρ+
x(1−µ)]V = F (V, V ∗b ). To see how these Þxed points compare to V ∗b , let F (V ∗b ) = F (V, V ∗b )|V=V ∗b .

Due to strict concavity of F (V, V ∗b ), a sufficient condition for V = V
∗
g > V

∗
b to be a Þxed point

is

F (V ∗b ) > [ρ+ x(1− µ)]V ∗b ⇔ F (V ∗b ) > H(V
∗
b ). (12)

Note that

F (V ∗b )−H(V ∗b ) = xmg[u(AgV ∗b )− u(AbV ∗b )] + τV ∗b > 0

since Ab < Ag. Hence a Þxed point V ∗g > V ∗b always exists. As τ → 0 then V ∗g →+ V ∗b , since

Ag →+ Ab.

Concavity of F (V, V ∗b ) and F (V
∗
b ) > [ρ+x(1−µ)]V ∗b , implies that if another positive Þxed point

V = V ∗∗g exists, then V ∗∗g < V ∗b (see Figure A1). However, if ρ is sufficiently small, and V
∗∗
g indeed is

a Þxed point, then Vg = V ∗∗g cannot be an equilibrium. To see why, recall that qgb = Vg−(1−Ab)V ∗b .
From (8), a buyer g buys from seller b only if u(qgb ) > Vg. Hence, in equilibrium Vg > V̄ is necessary,

where V̄ solves u(V̄ − (1−Ab)V ∗b ) = V̄ . Notice that V̄ > VL, since qgb = 0 when Vg = VL.
Suppose V = V ∗∗g is a Þxed point of (11). Concavity of F (V, V ∗b ) implies Vg = V

∗∗
g cannot be

an equilibrium if

F (V̄ , V ∗b ) > [ρ+ x(1− µ)]V̄ ⇔ x
£
m0u(V̄ ) +mgu(AgV̄ ) +mbu(V̄ − (1−Ab)V ∗b )

¤
> [ρ+ x(1− µ)]V̄

⇔ x
£
m0u(V̄ ) +mgu(AgV̄ ) +mbV̄

¤
> [ρ+ x(1− µ)]V̄

⇔ x
£
m0u(V̄ ) +mgu(AgV̄ )

¤
> [ρ+ x(m0 +mg)]V̄

A sufficient condition for this last inequality to hold is ρ sufficiently small. To see why, recall

that limρ→0Ag = 1. Hence, as ρ → 0 the inequality becomes u(V̄ ) > V̄ , always satisÞed since

u(V̄ −(1−Ab)V ∗b ) = V̄ . By continuity and strict concavity of u, it follows that there exists a ρ1 > 0
such that ∀ρ ∈ (0, ρ1) then F (V, V ∗b ) > [ρ+ x(1 − µ)]V ∀V ∈ (V̄ , V ∗g ). Since Vg > V̄ is necessary

for individual optimality, it follows that only Vg = V ∗g can be an equilibrium (see illustration).¥

Proof of Proposition 1.
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Consider an equilibrium distribution that satisÞes (1)-(2), the equations

úm2g =mg (mg +mgb)−m2g (m0 +mb)
úm2b=x[m

2
b −m2b (m0 +mg)] + ηmb − τm2b

úmgb=x[mgm2b +mbm2g + 2mbmg −mgb (m0 +mg)] + ηmg − τmgb

and úmj = 0 (see our technical appendix). In a technical appendix we show that it exists, under

certain conditions.

Case u(q) = qσ + q. The equilibrium pair (Vg, Vb) solves:

Vb =
n

Ab[m0+mgAσb+mbA
σ
b ]

1−µ−Ab[m0+(mg+mb)Ab]

o 1
1−σ

Vg =

(
Ag
h
m0+mgAσg+mb

³
1−(1−Ab) VbVg

´σi
1−µ−Ag

h
m0+mgAg+mb

³
1−(1−Ab) VbVg

´i
) 1

1−σ (13)

We note, that 1−µ−Ab[m0+(mg +mb)Ab] > 0 since 1−µ = m0+mg +mb, and Ab < 1, always.
The same is true for 1− µ−Ag

h
m0 +mgAg +mb

³
1− (1−Ab)VbVg

´i
. In particular, from Lemma

1 we know that if ρ ∈ (0, ρ1) then there is a unique solution (Vg, Vb)=(V ∗g , V ∗b ) to (13).It is such
that 1 <

V ∗g
V ∗b
≤ 1−Ab

1−Ag .

It is just a matter of algebra to verify that the individual optimality conditions (7)-(9) reduce

to the (smaller) set of inequalities:h
(1+Ag)σ−1
1−Ag

i 1
1−σ

< Vg <
³

Aσg
1−Ag

´ 1
1−σ (14)

h
(1+Ab)

σ−1
1−Ab

i 1
1−σ

< Vb <
³

Aσb
1−Ab

´ 1
1−σ (15)

Vg > Vb (16)

(1−Ab)Vb + (AgVg)σ > (AbVb)σ + (1−Ag)Vg (17)

(1−Ab)Vb + V σg > (Vg +AbVb)σ (18)

Inequalities (14)-(15) tell us that the value of holding a unit of currency must be high enough to

prevent rich buyers from spending all of their cash, but not too high, otherwise poor buyers would

not buy from rich sellers.
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The remaining three inequalities describe the three key conditions for individual optimality of

actions taken by the buyer gb. In particular, it is a matter of algebra to show that (i) p0 = 1 and

pb = 1 if (16) holds18, (ii) pg = 1 if (17) holds, and (iii) if (18) holds, buyer gb only spends the good

money, and not both, in a match with a seller with no money.

It is straightforward to show that if 1 < Vg
Vb
≤ 1−Ab

1−Ag , then (16)-(18) are satisÞed as strict

inequalities. By continuity they are satisÞed if VgVb in the right neighborhood of
1−Ab
1−Ag . Thus, if ρ is

small there is a unique pair (Vg, Vb)=(V ∗g , V ∗b ) that solves (13), which also satisÞes (16)-(18). What

remains to be shown is that this equilibrium pair satisÞes (14)-(15).

To do so, notice that the intervals deÞned by the bounds in (14)-(15) are non-empty, and that

limρ→0Ag = 1. Using (13) it is easy to verify that if ρ is sufficiently small then V ∗b <
³

Aσb
1−Ab

´ 1
1−σ

and V ∗g <
³

Aσg
1−Ag

´ 1
1−σ

. Furthermore, as σ → 0 the lower bounds of (14) and (15) approach zero,

while V ∗b and V
∗
g converge to positive values. Consequently, there exists a small σ and small ρ, such

that (Vg, Vb) =
¡
V ∗g , V ∗b

¢
satisÞes (13), and (14)-(18), i.e. d = 1 and p∗ = (1, 1, 1) are individually

optimal.

Case u(q) = qσ. The equilibrium pair (Vg, Vb) solves

Vb =
n
Ab
1−µ [m0 +mgA

σ
b +mbA

σ
b ]
o 1
1−σ

Vg =
n
Ab
1−µ

h
m0 +mgA

σ
g +mb

³
1− (1−Ab)VbVg

´σio 1
1−σ

From Lemma 1 we know that if ρ ∈ (0, ρ1) then there is a unique solution (Vg, Vb)=(V ∗g , V ∗b ), such
that 1 <

V ∗g
V ∗b
≤ 1−Ab

1−Ag .

Following a procedure similar to the one described before, it is a matter of algebra to show that

(7)-(9) imply:

[(1 +Ai)
σ − 1] 1

1−σ < Vi < A
σ

1−σ
i , i = g, b

V σg − Vg > V σb − Vb
[Vg − (1−Ab)Vb]σ − Vg > (AbVb)σ − Vb
Vb + V

σ
g > (Vg +AbVb)

σ

(19)

a set of constraints that mirrors (14)-(18). Notice that V σ − V is hump shaped in V, reaching a

maximum when V = σ
1

1−σ . It is easily veriÞed that V ∗b > σ
1

1−σ if ρ and σ are sufficiently small. The

18For example, substituting qis in u(q
g
s ) + Vb − Vgb > u(qbs) + Vg − Vgb implies that pb = 1 if [Vg − (1−Ab)Vb]σ >

(AbVb)
σ ⇒ Vg > Vb.
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proof of the proposition thus follows from the fact that V ∗g > V ∗b , so that when (Vg, Vb)=(V
∗
g , V

∗
b )

the inequality V σg − Vg > V σb − Vb is violated as soon as ρ and σ fall enough that V ∗g > σ
1

1−σ .¥

Bad-Money Equilibrium

In proving Proposition 2 we conjecture d = 1 and p∗ = (0, 0, 0).

Using (4)-(6) it is easy to show that Vgb = AgbVg + Vb. The equilibrium Vg and Vb must be a

Þxed point of the map deÞned by:

Vg =
Ag[m0u(Vg)+mbu(AgbVg)+mgu(AgVg)]

1−µ (20)

Vb =
Ab[m0u(Vb)+mbu(AbVb)+mgu(Vb−(1−Agb)Vg)]

1−µ (21)

We make use of the following lemma.

Lemma 2. If ρ is sufficiently small, there exists a unique Þxed point of (20)-(21) that is consistent

with the dual-currency equilibrium p∗ = (0, 0, 0). Precisely (Vg, Vb) = (V ∗g , V ∗b ) where 1 <
V ∗g
V ∗b

<

1−Ab
1−Agb .

Proof of Lemma 2.

As before, Vb = Vg = 0 solves (20)-(21). The limiting case of currency competition, when the good

money has no value, despite being the safest currency, and only the bad money circulates, is also

an equilibrium. There is a unique pair Vb > Vg = 0 that solves (20)-(21). Note that Vg > Vb = 0

is not a possible solution.

Our focus is a dual-currency equilibrium, where both monies have a positive value. Thus, we

are interested in the existence of a strictly positive Þxed point (Vg, Vb) = (V ∗g , V ∗b ) of the map given

by (20)-(21).

Let Vg = V. In equilibrium (20) deÞnes the map:

[ρ+ x(1− µ)]V = x [m0u(V ) +mbu(AgbV ) +mgu(AgV )] ≡ F (V )

F (V ) is a strictly concave function on V ≥ 0, starting at 0, and is hump-shaped. In particular,

recalling that limq→∞ u0(q) ≤ 1, we see that limV→∞ F 0(V ) < x(1− µ). Thus, (20) has two Þxed
points: V = 0 and V = V ∗g > 0.

Now let Vg = V ∗g . Letting Vb = V , in equilibrium (21) deÞnes the map

[ρ+ x(1− µ)]V = x £m0u(V ) +mbu(AbV ) +mgu(V − (1−Agb)V ∗g )¤− τV ≡ H(V, V ∗g )
22



where we deÞne H(V, V ∗b ) for V ≥ VL = (1−Agb)V ∗g (necessary since Vb − (1−Agb)V ∗g = qbg ≥ 0,
in equilibrium). H(V, V ∗g ) is strictly concave in V , H(VL, V ∗g ) > 0, limV→+VL

∂H(V,V ∗g )
∂V = ∞,

and limV→∞
∂H(V,V ∗b )

∂V ≤ x(1 − µ). Thus, there can be at most two positive Þxed points to the
map [ρ + x(1 − µ)]V = H(V, V ∗b ). To see how these Þxed points compare to V ∗g , let H(V ∗g ) =

H(V, V ∗g )
¯̄
V=V ∗g

.

Due to strict concavity of H(V, V ∗g ), a sufficient condition for V = V ∗b < V
∗
g to be the unique

Þxed point is

H(V ∗g ) < [ρ+ x(1− µ)]V ∗g ⇔ H(V ∗g ) < F (V
∗
g ). (22)

and

H(VL, V
∗
g ) > [ρ+ x(1− µ)]VL ⇔ H

¡
(1−Agb)V ∗g , V ∗g

¢
> (1−Agb)F (V ∗g ) (23)

(see Figure A2). Consider Þrst (22). Rearrange it as

mbu(AgbV
∗
g ) +mgu(AgV

∗
g ) > mbu(AbV

∗
g ) +mgu(AgbV

∗
g )− τ

xV
∗
g

It is satisÞed by ρ sufficiently small since (i) Agb > Ag > Ab and (ii) limρ→0Agb = limρ→0Ag = 1 >

limρ→0Ab.

Now consider (23). Rearrange it as

m0u((1−Agb)V ∗g ) +mbu(Ab (1−Agb)V ∗g )− τ
x (1−Agb)V ∗g >

(1−Agb)[m0u(V ∗g ) +mbu(AgbV ∗g ) +mgu(AgV ∗g )].
Since Agb falls in ρ, limρ→0Agb = 1 and limq→0 u0(q) =∞, then it follows that the inequality above
is satisÞed by ρ sufficiently small.

Hence if ρ is sufficiently small then there is a unique (Vg, Vb) = (V ∗g , V ∗b ), such that 1 <
V ∗g
V ∗b
<

1−Ab
1−Agb . Notice that

∂V ∗b
∂τ < 0, since ∂Ab

∂τ < 0 and
¯̄̄
∂Ab
∂τ

¯̄̄
>

∂Agb
∂τ > 0.Furthermore, as τ → 0 then

V ∗b →− V ∗g since Agb →+ Ag.¥

Proof of Proposition 2.

Consider an equilibrium distribution that satisÞes (1)-(2), the equations

úm2g = mgmg −m2g (m0 +mb)
úm2b = x[m

2
b +mbmgb −m2b (m0 +mg)] + ηmb − τm2b

úmgb = x[mgm2b +mbm2g + 2mbmg −mgb (m0 +mb)] + ηmg − τmgb

23



and úmj = 0. From a prior discussion (see our technical appendix) we know that it exists, under

certain conditions.

Case u(q) = qσ + q. The solution (Vg, Vb)=(V ∗g , V ∗b ) must satisfy

Vg =

½
Ag[m0+mbA

σ
gb+mgAσg ]

1−µ−Ag[m0+mbAgb+mgAg]

¾ 1
1−σ

Vb =

(
Ab

h
m0+mbA

σ
b+mg

³
1−(1−Agb)VgVb

´σi
1−µ−Ab

h
m0+mbAb+mg

³
1−(1−Agb)VgVb

´i
) 1

1−σ
.

Note that the denominators in both expressions are positive, given the deÞnitions of Ag, Ab, and

Agb. Furthermore, from Lemma 2 we know that if ρ is sufficiently small, there is a unique solution

to the system of equations above, such that 1 <
V ∗g
V ∗b
< 1−Ab

1−Agb .

Once again, it is a matter of algebra to verify that the individual optimality conditions (7)-(9)

reduce to the (smaller) set of inequalities (14) and (15) and

Vg <Vb (24)

(AbVb)
σ + (1−Agb)Vg > (1−Ab)Vb + (AgbVg)σ (25)

(1−Agb)Vg + V σb > (Vb +AgbVg)σ (26)

Inequalities (14) and (15) have the same interpretation as before. Inequalities (24) and (25) are

the conditions needed to ensure that the p∗ = (0, 0, 0) strategy is optimal. The last inequality (26)

ensures the gb buyer only spends the bad currency and not both. The key condition is Vb > Vg,

for this equilibrium to exist when u(q) = qσ + q. From Lemma 2, however, we know that (24) is

violated if ρ is sufficiently small. It follows that p∗ = (0, 0, 0) and d = 1 cannot be an equilibrium

if ρ is small.

Case u(q) = qσ. The solution (Vg, Vb)=(V ∗g , V ∗b ) must satisfy

Vg =
n
Ab
1−µ

h
m0 +mbA

σ
gb +mgA

σ
g

io 1
1−σ

Vb =
n
Ab
1−µ

h
m0 +mbA

σ
b +mg

³
1− (1−Agb)VgVb

´σio 1
1−σ

By Lemma 2, if ρ is sufficiently small, then the solution to these equations is unique and such that

1 <
V ∗g
V ∗b
< 1−Ab

1−Agb . It takes just some algebra to show that the conditions speciÞed in (8)-(9) reduce

24



to

[(1 +Ai)
σ − 1] 1

1−σ < Vi < A
σ

1−σ
i for i = g, b

Vg + V
σ
b > (Vb +AgbVg)

σ

V σg − Vg < V σb − Vb
(AgVg)

σ − Vg < (Vb − Vg(1−Agb))σ − Vb
(AgbVg)

σ − Vg < (AbVb)σ − Vb
The inequalities in the Þrst three lines are satisÞed when ρ and σ are sufficiently small since Agb

and V ∗g approach 1 as ρ and σ approach zero, while Ab and V ∗b converge to values less than one

(since τ > 0). The inequality in the fourth line is satisÞed when Vg
Vb
< 1−Ab

1−Agb . The inequality in

the last line is satisÞed when 1 < Vg
Vb
. Since if ρ and σ are sufficiently small the unique solution

is (Vg, Vb)=(V ∗g , V ∗b ) such that 1 <
V ∗g
V ∗b

< 1−Ab
1−Agb , then the bad-money equilibrium exists and is

unique.¥
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Figure 1

Figure 2
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Figure 3

Figure 4
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Figure A1 Figure A2
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