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Abstract: We design a multi-unit descending-price (Dutch) auction mechanism that has 

applications for resource allocation and pricing problems.  We address specific auction design 

choices by theoretically and experimentally determining optimal information disclosure along 

two dimensions. Bidders are either informed of the number of bidders in the auction, or know 

that it is one of two possible sizes; they also either know the number of units remaining for sale 

or are unaware of how many units have been taken by other bidders.  We find that revealing 

group size decreases bids, and therefore revenue, if units remaining are not shown.  When group 

size is unknown the price also falls if the number of units remaining is revealed.  The most 

efficient and largest revenue outcome occurs when bidders are not provided information on 

either group size or units remaining.  These laboratory results conform to some directional 

predictions from our theory, although overbidding is common. 
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1. Introduction  

When a firm has a fixed supply of a non-storable resource and demand fluctuates during 

a cycle of pricing and allocation decisions, price discovery is challenging.  Classroom space in a 

university and energy consumption in a manufacturing region are examples in which the 

resource cannot be held in inventory to meet fluctuating demand and in which demand varies 

with high frequency relative to cycles of pricing and allocations. If the firm posts prices, there 

are potentially large efficiency and revenue losses.  If the price is too high valuable units will go 

unsold; if the price is too low revenue is foregone.  Auctions are an effective way to discover a 

market clearing price, but the traditional English or ascending-bid auction is not always a 

practical way to allocate goods to customers.  An advantage of implementing a descending-price 

auction is that customers can join online as the price approaches their reservation value which 

saves the cost of recruiting and registering consumers whose values are below the stopping 

price.  We present a descending-price auction mechanism that has many applications and take as 

our motivation an auction of university parking spaces that we designed and implemented.  An 

important design element in these auctions is the amount of information about the current state of 

the auction to provide to bidders.  This study addresses auction design choices by theoretically 

and experimentally determining the outcome effects of various information disclosures during 

the auction.   

In most auctions, the number of bidders who might participate is unknown to bidders, yet 

most theoretical work assumes that the number of bidders is known1.  Our theory provides a 

novel advance in optimal bidding under uncertainty and, taken with our experimental evidence, 

provides a recommendation for practical application of this mechanism.    

We applied our mechanism to address the common problem of university parking.  The 

details of the implementation and results can be found in Appendix E.  This type of auction 

raises an important design question about how much information should be provided to bidders.  

During our parking spot auction we did not display the number of remaining parking spots as the 

price dropped.  We also did not register all potential bidders before starting which would have 

provided an upper bound on the potential number of bidders competing for the spots.  At the 

                                                           
1 See Kwasnica and Sherstyuk (2013) for a recent review of multi-unit auction research.  
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time, how more revelation of information would affect revenue and efficiency was an 

unanswered empirical question2.  In this paper we help answer this question by developing the 

bidding theory under four possible information structures and testing them in the laboratory.   

In the presence of affiliated values, Milgrom and Weber (1982) established the “linkage 

principle” wherein agents will bid more competitively (higher) when more information about 

values is made public. Perry and Reny (1999) interpret the linkage principle as a generalized 

guideline for auction design that revenue will be higher when bidders have more information.  

For the single-unit case, this principle recommends an English auction format over Dutch or 

sealed-bid formats because participants can learn about the values of other bidders as they see 

their opponents drop out of the auction.  Milgrom and Weber do not address the multi-unit case 

where bidders gain information about values from the Dutch format when opponents place bids 

as the price descends.  Perry and Reny find that the linkage principle does not generally hold in 

multi-unit auctions.  In their theoretical model, revealing more information about values does not 

increase revenues in a two-unit Vickrey auction where bidders have values for both items.  

Mares and Harstad (2003) find that a seller should conceal information from certain bidders in 

common-value auctions. 

McAfee and McMillan (1987) develop a model of the first price auction with private 

values in which the number of bidders is unknown.  They find in their model that the expected 

revenue is higher when the number of bidders is unknown to participants.  Dyer et. al (1989) find 

that uncertainty about group size raises revenue in single-unit private-value sealed-bid auctions.  

Our experimental results add to the evidence that revealing group size lowers revenue.  Pekec 

and Tsetlin (2008) provide a comparative institutional analysis of the discriminatory (everyone 

pays their own bid) and uniform price (everyone pays the first rejected bid) auctions when the 

number of bidders can be left unknown.  They show that, given the level of uncertainty of 

participation, the discriminatory auction can generate higher revenue than the uniform price 

auction. 

We examine the effects of two kinds of information relevant to multi-unit Dutch auctions 

– group size and the number of units remaining at any given time.   In the following section, we 

derive the Nash equilibrium bidding strategy for each information structure assuming risk-

                                                           
2 We find reasons to conceal information from bidders, as do Cason et al. (2003) and Ferraro (2008) for 

environmental applications.  
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neutrality.  Theoretically, we find that showing units remaining should not affect bidding when 

group size is known and that disclosure of units should lower bids when group size is unknown.  

Our experiments confirm these predictions.  However, the theory also predicts that showing 

group size will raise bids on average; but our experiments indicate the opposite is true.  We also 

find in our experiments that bids are significantly above the Nash prediction in all of our 

treatments, which is a standard experimental result in these types of auctions.   

 

2. Theory 

 In this section we develop the theory of multiple unit descending price auctions for the 

various design cases in which the number of units remaining and the number of bidders are 

known or unknown.   

We let m denote the number of units available for sale to n > m buyers that desire at most 

one unit.  Each buyer’s private value3 v is drawn from a known and fixed distribution f(v).  

Without loss of generality, the distribution has the support [0, 1]. It is assumed that the draws are 

i.i.d., and later we add the assumption of a uniform distribution. 

In the auctions that we analyze, the price p starts at the upper end of the support of the 

value distribution and falls by increment e for each tick of the clock.  Thus, with z clock ticks, 

the price is 1 – ze. When the first bidder accepts the current clock price there will be k = m-1 

units still available.  The process continues until k = 0 and the price is set equal to the mth bid.  

We develop the risk-neutral symmetric Bayesian Nash equilibrium (RNSE) bidding strategy B(v) 

for the four information cases.     

 

2.1. Bidding Strategy If n Is Known (for cases when k is unknown and when k is known) 

Vetsikas and Jennings (2010) show that the RNSE  bidding strategy for the mth price 

auction when values are drawn from a distribution with a cumulative distribution function F(v) 

when n is common knowledge (and k is unknown) is:  

𝐵(𝑣) =  𝑣 − (𝐹(𝑣))
−(𝑛−𝑚)

∙ ∫ (𝐹(𝑧))
𝑛−𝑚

𝑑𝑧
𝑣

0

 

                                                           
3 The private value model is more representative of our application than common value.  Harstad et al. (2008) 

develop a theory for common-value auctions with uncertainty over the number of bidders.  



4 
 

 

When F(v) = v, as it does when values are uniformly distributed, this function reduces to:  

𝐵(𝑣) = 𝑣 − 𝑣−(𝑛−𝑚) ∙ ∫ 𝑧𝑛−𝑚𝑑𝑧
𝑣

0

 

       = 𝑣 − 𝑣−(𝑛−𝑚) ∙
𝑣𝑛−𝑚+1

𝑛 − 𝑚 + 1
 

 

                                                       = 𝑣 
𝑛−𝑚

𝑛−𝑚+1
 .                                                                      (1) 

As shown in McCabe, Rassenti, and Smith (1990) the bid function shown in equation (1) 

also holds when both n and k are common knowledge.  This is the multi-unit extension of the 

single-unit model in Vickrey (1961).  

When group size is known, k is not included in the bid function. The intuition is 

straightforward, agents do not update their bidding strategy based on how many items have been 

claimed or the downward ticking price because they have already computed the order statistics of 

the values of their n – 1 competitors.  Seeing the first m-1 units get claimed informs the price 

setter about the values of the highest m-1 bidders, but the agent with the mth-highest value who 

sets the uniform price is not concerned with outbidding the agents with the highest values.  When 

there is one unit remaining, the remaining bidders are essentially in a first price auction with n-

m+1 bidders against whom they are competing for the last unclaimed item.  

 

2.2. Bidding Strategy If n Is Unknown and k Is Unknown 

 In this case, we assume that bidders have common knowledge about the possible group 

sizes in which they will be competing and the probabilities of their occurrence.  Let N = { n1,…, 

nG } be the vector of the possible group sizes in which buyers could be placed and P = {p1,…, 

pG} be the vector of associated probabilities that the current group size is the corresponding value 

in N.   

Assuming a uniform distribution F’(v) = 1, the RNSE bidding strategy for this 

information structure is (proof can be found in Appendix A):  

𝐵(𝑣, 𝑁, 𝑃) =  𝑣 
∑

𝑛𝑔−𝑚

𝑛𝑔−𝑚+1
 𝑝𝑔𝑣𝑛𝑔(

𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

∑  𝑝𝑔𝑣𝑛𝑔(
𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

.                (2) 
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The fraction in equation (2) ranges from ½ to 1 depending on agents beliefs about their group 

size.  The fraction approaches 1 as each bidder's estimate of their group size increases.  When the 

group size is sufficiently large, agents should bid almost the entire amount of their value to 

increase their chances of winning an item and making a profit.  In Figure 1, we use our 

experimental parameters to illustrate the difference between the strategies in equations (1) and 

(2).  The solid lines in the figure provide the bid as a function of a bidders’ value for known 

group sizes n of 4 and 8 participants.   When n is unknown in our experiment, N = {4, 8} and P = 

{.5, .5}, bidders know there is a 50% chance that they are in a group of 4 and a 50% chance that 

they are in a group of 8.  In this uncertain group size case, the bid function is given by the dashed 

curve that lies between the known group size cases.  Isaac et al. (2012) also plot the theoretical 

bids for a first price auction with an unknown number of participants and likewise find a non-

linear convex bid function.   

 

 

Figure 1. RNSNE Bidding Strategy as a Function of Value 

2.3. Bidding Strategy If n Is Unknown and k Is Known 

The bidding strategy when n is unknown but k is known requires bidders to update their 

bid function as the price moves down.   As bidders observe items being claimed, they gain 

information about the group size and thus update their priors P about that size.  Let t be the 

number of clock ticks since the start of the auction. The number of units remaining kt and the 

current clock price ct are signals that inform bidders about their competitors.   

20 40 60 80 100
Value

20

40

60

80

RNSNE Bid

If n 4 or 8

If n 4

If n 8
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Subjects begin the auction with common priors P about their group size.  For example, at 

the start of each auction in our experiment, the group sizes 4 and 8 are equally likely.  Intuitively, 

as the price descends with each clock tick (without any units being claimed) it becomes more 

likely that the group is smaller because larger groups would likely have higher maximum values 

resulting in units being claimed sooner.  If no units were claimed, the probability that the group 

is actually equal to the size of the smallest n in N would increase and eventually asymptote to 1.  

When a unit is claimed, there is a jump in the iterative updating of agents’ beliefs: the probability 

of the larger group adjusts upward.  These jumps are especially large when units are claimed 

with high bids.  A complete proof of the belief updating procedure is provided in Appendix B. 

Since bidding strategies are symmetric, buyers assume that their opponents are also 

updating their beliefs in equilibrium. Therefore the optimal bid function B(v) changes as a 

function of beliefs about group size , which in turn are a function of the current clock price 𝑐𝑡, 

the current number of remaining units 𝑘𝑡, and their updated priors 𝑃𝑡−1.  The current clock price 

𝑐𝑡 is a meaningful signal even if no items have yet been claimed, because participants know that 

items have not been claimed (in contrast to the unknown k treatment where the clock could stop 

at any moment).  Bidding decisions are made conditional on the observed signals and the most 

recently updated beliefs about group size Pt-1.   

With updating, the bidding strategy becomes a function of the discrete information stream: 

                          𝐵𝑡(𝑣, 𝑁, 𝑃𝑡−1, 𝑐𝑡 , 𝑘𝑡) =  𝑣 
∑

𝑛𝑔−𝑚

𝑛𝑔−𝑚+1
 𝑝𝑔𝑡−1

𝑣𝑛𝑔(
𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

∑  𝑝𝑔𝑡−1
𝑣𝑛𝑔(

𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

                            (3) 

The strategy with updating is not the same as the strategy when n and k are unknown.  

However, the bidding limit would never be located above the bid/value ratio suggested by the 

largest group size n in N or below the ratio suggested by the smallest group size.  Thus, the 

bidding limit would stay in the cone charted in Figure 1.  Thinking of P as a function of the data 

stream provided by ct, the function has discontinuities when kt changes.  For example, if N={3,6} 

and P={0.5, 0.5} then agents begin the auction believing that there is a 50% probability that they 

are in a group of 6.  Based on order statistics, there is a predicted price at which the agent with 

the highest value in a group of 6 would place a bid.  If the price drops below this amount and no 

items have been claimed, then agents would gradually adjust their beliefs so that it is more likely 

that they are in a group of 3.  However, if an item were claimed at that price, then agents would 

suddenly shift their beliefs to reflect the higher probability that they are in a group of 6.   
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Theoretically, we find that showing units remaining should not affect bidding when 

group size is known and that disclosure of units should usually lower bids when group size is 

unknown.  Given the predictions from the equilibrium strategies given in equations (1) – (3), we 

next design an experiment to test the potential difference of bidding behavior in these 

information conditions. 

3. Experimental Design 

 We conducted 16 experimental sessions using a total of 128 subjects.  In each session, 8 

subjects participated in 16 Dutch auctions, which we call “rounds”.  Hereafter we will use the 

terms “round” and “auction” interchangeably.  Before each round, subjects were randomly sorted 

into groups of 4 or 8.  The two group sizes were equally likely to be selected in a round. In each 

auction there were 3 units available and subjects had a positive value for a single unit.  Subjects 

were assigned private values drawn randomly from a discrete uniform distribution over [1, 100].   

The exact values used in our experiment can be found in Appendix C (Table C.1).  

The auction began at a price of 100 tokens and decreased by 2 tokens every 2 seconds.4    

As soon as the third unit was claimed, the auction stopped and the three winners each received a 

unit at the current price.   The profit of each subject was her value minus the uniform price at 

which the auction stopped.  Figure 2 displays a screenshot of the Group/Units auction interface.   

Subjects could place a bid in either of two ways:  

1. Instant Bid – a subject could immediately accept the current price. 

2. Proxy Bid - a subject could privately enter a bid below the current price and wait for the price 

to cross her bid.  Subjects were allowed to change their proxy at any time as long as they had not 

claimed an item. 

The treatments only differed in the information provided to bidders during the auction.  

Our four treatments were:  

Group/Units Group size is shown and number of units remaining is shown.  

No Group/Units Group size is not shown and number of units remaining is shown. 

Group/No Units Group size is shown and number of units remaining is not shown. 

No Group/No Units Group size is not shown and number of units remaining is not 

shown. 

                                                           
4 In our experiment, 24 tokens = 1$ 
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Our theory produces the alternative hypothesis that average prices observed in the 

treatments will be ordered as follows: No Group/Units < No Group/No Units ≤ Group/Units = 

Group/No Units.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Auction Subject Interface (Treatment Group/Units) 

Prior to entering the auctions, participants learned about the auction mechanism through 

instructions (documented in Appendix D), a quiz that would not allow them to proceed until they 

entered correct answers, and one practice round that did not count toward their profits.  Subjects 
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were paid in cash at the end of the 16 auctions.  Not including a $7 payment for showing up on 

time, earnings for the 40-minute experiment ranged from $6 to $14 with a mean of $9.15.   

 

4. Results 

 

 4.1. Auction Prices and Efficiency 

Each auction resulted in a uniform price determined by the 3rd highest bid.  Prices are 

higher in the groups of size 8 because the marginal or 3rd-highest value in a group of 8 is 

typically larger than the 3rd-highest value in a group of 4.  We begin the analysis by averaging 

the prices across all rounds within a treatment. Table 1 shows the average price at which the 

clock stopped in each treatment and the effects of showing group size and showing the remaining 

units.  Each session is an independent unit of observation.   

 

Table 1. Average Observed Prices by Treatment (stand. errors) and 2x2 ANOVA Results 

(df = 15) 

 Group No Group Average  Effect p-value 

Units 41.21 41.24 41.23  Units 0.993 

 (1.15) (0.30)   Group 0.017 

No Units 38.24 44.23 41.24  Interaction 0.018 

 (1.70) (0.62)     

Average 39.73 42.74 41.23    

 

Finding 1. Showing group size lowers revenue.  

Evidence: In Table 1, showing group size lowers prices by 7% on average (p-value = 0.017).   

Note that the effect is entirely driven by the difference between prices in the No Units treatments.  

 

 The effect of showing units remaining surprisingly reverses based on the information 

revealed about group size.  In section 4.2 we further explore the effect of showing units and find 

that the results conform to directional theoretical predictions.  

 

Finding 2. Revenue generated is largest when both group size and units remaining are not 

revealed.  
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Evidence: The p-value on the interaction term in Table 1 is significant, so there is not a simple 

linear additive effect for the two treatment variables.   This stems from the significant overall 

effect of showing group size even though size information has no effect when units remaining 

are shown.   

 

 We find that the different institutions significantly affect bids, although the effect sizes 

are not large in absolute terms.  Using the F-test we can reject the null hypothesis that all four of 

the cell means are equal.  F(15,3)=6.343, p-value =0.005.  To avoid relying on the assumption 

that our 4 independent data points per treatment are normally distributed, we perform a Kruskal-

Wallis test and find that at least two of our samples have significantly different medians (p-value 

=0.027). In Table 1 it appears that No Group/No Units has consistently higher prices.  We 

confirm this observation using the linear mixed effects model (4) to examine the effect of 

treatment on prices.   The treatment effects are modeled as (zero-one) fixed effects.   For 

example, 𝐺𝑟𝑜𝑢𝑝𝑈𝑛𝑖𝑡𝑠𝑖 takes the value of 1 if the observation is in the treatment where group 

size and units remaining are both shown, and 0 otherwise.  The 16 independent sessions are 

modeled as random effects, 𝑢𝑖.  We estimate the model  

 

𝑃𝑖𝑗 = 𝛼 + 𝑢𝑖 +  𝛽1𝐺𝑟𝑜𝑢𝑝𝑈𝑛𝑖𝑡𝑠𝑖 + 𝛽2𝑁𝑜𝐺𝑟𝑜𝑢𝑝𝑈𝑛𝑖𝑡𝑠𝑖 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑁𝑜𝑈𝑛𝑖𝑡𝑠𝑖 + 

𝛽4𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑖𝑗 + 𝜀𝑖𝑗                                                                                                                    (4) 

where 𝑃𝑖𝑗 is the price from the 𝑗𝑡ℎ auction in the 𝑖𝑡ℎ session.  The mean of the treatment with no 

information, No Group/No Units, is the intercept 𝛼.  We also include a dummy variable for 

group size that takes the value of 0 if the auction had 4 bidders and 1 if the auction had 8 bidders.  

The beta coefficients provide the difference from the No Group/No Units baseline mean, or the 

effect of revealing information.  The estimates from these regressions are reported in Table 2.  

We also report regressions on price for the subset of observations for the two distinct group sizes 

labeled "n=4 Prices" and "n=8 Prices" in Table 2.  We show the results for small and large 

groups separately because the theoretical prediction for the effect on prices differs depending on 

group size.   Recall that there are twice as many observations of groups of size 4 because the 

subjects are switched between auctions with 8 bidders and two simultaneous auctions with 4 

bidders each.   
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Finding 3. Relative to providing no information, treatments where information is shown lowers 

revenue, with the largest effect in the Group/No Units treatment.   

 

Evidence: The treatment coefficients in Table 2 are negative.  This indicates that prices in 

treatments where information is provided are generally lower than those in No Group/No Units.  

When we test for treatment effects separately by group size, the negative coefficients tend to be 

the most significant for auctions where group sizes were small due to higher variance of 

outcomes between the groups of 8.  The negative effect of Group/ No Units is strongly 

significant for both group sizes.  

 

Table 2. Treatment Effects on Auction Prices   

  All Prices All Prices n=4 Prices n=8 Prices 

α = No Group/No Units 38.83 35.11 38.53 55.63 

 (1.12) (2.16) (.994) (1.66) 

     

β1 = Group/Units -3.02** -3.02** -3.22** -2.63 

 (1.53) (1.53) (1.43) (2.34) 

     

β2 = No Group/Units -3.00** -3.00** -2.81** -3.34 

 (1.53) (1.53) (1.43) (2.34) 

     

β3 = Group/No Units -6.00*** -6.00*** -4.80*** -8.38*** 

 (1.53) (1.53) (1.43) (2.34) 

     

Round  - 0.70 - - 

  (0.43)   

     

Round Squared - -0.03 - - 

  (0.02)   

     

Group Size Dummy 16.48*** 16.48*** - - 

 (0.87) (0.87)   

       

No. observations 384 384 256 128 

Number of groups 16 16 16 16 

R-squared 0.50 0.50 0.05 0.10 
*10% significance level, **5% significance level, ***1% significance level 

Standard errors are in parentheses and are clustered at the session level. 
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The most efficient outcome occurs when the subjects with the three highest values in a 

given auction win the three available items.  We define the efficiency of an auction as: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 3 𝑤𝑖𝑛𝑛𝑒𝑟𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 3 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠
. 

If subjects with lower values can “sneak” into the top three bids, there will be a loss of 

efficiency.  Our next finding examines allocations in our auctions and where misallocations 

occur. 

 

Table 3. Average Efficiency by Treatment and 2x2 ANOVA Results (df = 15) 

 Group No Group Average  Effect p-val 

Units 0.97 0.97 0.97  Units 0.82 

No Units 0.96 0.99 0.97  Group 0.05 

Average 0.97 0.98 0.97  Interaction 0.05 

 

Finding 4. Providing subjects with information lowers efficiency.  

Evidence: In Table 3 we analyze the average efficiency across all auctions in each of the 16 

sessions and we see a similar pattern to that of the ANOVA for average prices.  Auctions with 

the highest prices have the least efficiency loss.  The effect of showing group size is statistically 

significant, and it is driven primarily by the difference between Group/No Units and No 

Group/No Units.  Regression analysis similar to that reported in Table 2 indicates that the 

negative effect of Group/ No Units is significant.  Revealing only units remaining or revealing 

both types of information did not significantly reduce efficiency according to the regression 

results. Efficiency is quite high because, as we show in Figure 3, misallocations were rare in the 

384 auctions we observed.  

 

  In theory, if everyone is bidding symmetrically according to the same strictly increasing 

bid function, this mechanism is fully efficient.   However, misallocations can occur if someone 

with a high value did not bid higher than someone else, for instance if the 4th highest value 

subject claimed the last item.  Figure 3 shows how many misallocations occurred in each 

treatment for each group size by providing the count of the misallocations when the highest, 

second highest and marginal value bidders are displaced.  For example, the two bars to the left in 

Figure 3 show the misallocations for the treatment where the group size (n=4, n=8) is known as 
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well as units remaining.  In this case, for group size 4, the marginal bidder was displaced in 7 of 

the 64 auctions5.  For group size 8 in Group/Units, lower-valued bidders displace higher-valued 

bidders 8 times.  

 

 

 

 

 

 

 

 

 

 n = 4 n = 8  n = 4 n = 8  n = 4 n = 8  n = 4 n = 8  

 Group/Units NoGroup/Units Group/NoUnits NoGroup/NoUnits 

 

                                                           
5 There are 64 auctions among 4 bidders in each treatment because there are 16 auctions per session and 4 
sessions per treatment.  There are half that many auctions with 8 bidders per treatment because two simultaneous 
auctions are running when the group size is 4.   
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Figure 3. Number of Misallocations Leading to Efficiency Loss 

It was most common for the person with the 3rd highest value, who we call the 

“marginal” bidder, to fail to secure an item.  We also observe that subjects with the highest and 

2nd highest values get cut out of the auction more often in group sizes of 8.  If the marginal 

bidder has a value that is close to the 4th highest bidder, their loss will have a small impact on 

efficiency.  The efficiency loss from a high valued bidder not winning an item, especially in 

groups of 4, can be very large.  It is rare for the subject with the highest value not to be allocated 

an item in a group of 4, but we did observe it once in the GroupNoUnits treatment, which 

resulted in a significant efficiency loss. 

In the next sections we show that subjects are bidding quite high, almost to their values, 

relative to the Nash predictions.   

4.2. Observations Compared to Theoretical Predictions  

 We derived the RNSE bidding strategies in section 2 and exact theoretical predictions, 

based on the parameters for our experiment for each round, can be found in Appendix C.  Figure 

4 presents the deviations in observed prices from the theoretical predictions for each round with 

prices averaged over the observations in the four sessions, separated by treatment.  The 

horizontal axes in Figure 4 do not progress by even intervals because subjects were not switched 

between group sizes in a predictable pattern.  See Appendix C for the order of the group 

assignments and the value parameters.   

We can reject the null hypothesis that each cell mean equals the theoretical point 

prediction, F-stat (4,12) = 97.53, p-value =0.000.  The cell means do vary significantly from one 

another, but they are not well explained by the theory.  When we use t-tests to compare prices to 

point predictions for individual treatment cells, we reject every null hypothesis of equality except 

for the case of group size 8 in Group/Units (p-value =0.48, two-sided).   Although the observed 

prices were higher than the point predictions, the relevant directional predictions of the theory 

were both confirmed as we show in Findings 5 and 6.  
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Finding 5. Showing units lowers prices when group size is not known.   

Evidence: We can reject the null hypothesis that price, when units are shown, is greater than or 

equal to price when units are not shown, in the case when group size is unknown (p-value = 

0.0053, one-sided).  This is true for both groups pooled and for each group size individually.  

 

Finding 6. Showing units has no effect on price when group size is known.  

Evidence: We cannot reject the null that price, when units are shown, is equal to price when units 

are not shown, in the case when group size is known (p-value = 0.2056, two-sided).  This is true 

for all group compositions.   

 

We observe that bids are overwhelmingly above the predicted price when group size is 4 

where the equilibrium strategy is for subjects to bid half of their value.  This same overbidding 

relative to the prediction occurs when n=8 in the No Group/No Units and the No Group/Units 

treatments.  This is because the theory indicates that these subjects, who are uncertain of their 

group size, should shade their bids to capture the possible profit from being in a group of 4.  

However, if the subjects do not lower their bids when they know they are in a group of 4, it is 

consistent that they would not lower their bids when it would be beneficial for them to assume 

they are in a group of 4.  

Figure 4. Differences Between Average Final Bids and Theoretical Predictions 
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Our theory is derived using the strict assumption of risk neutrality as do most models of 

first price auctions. In practice, observed bids are usually higher than theory predicts.  

Overbidding is consistent with bidders being risk averse or demonstrating a preference for 

receiving a lower payout with higher certainty. For a discussion on risk aversion as a cause of 

overbidding, refer to Cox, Roberson and Smith (1982) and Kagel (1995).   

Isaac et al. (2012) study individual bidding behavior in situations where group size is 

unknown for both first price and second price auctions.  We replicate their result that the 

majority of participants overbid in the first price auctions when their group size is unknown and 

when units are not shown (which is theoretically equivalent to their sealed-bid auctions).  They 

find that individuals in their experiments who overbid demonstrate consistent risk preferences 

across all rounds of the experiment.   

The outcomes in the experiment do not match our theoretical predictions.  If one person 

deviates from our strategy, that person can “snipe” units from subjects who do wait as the price 

goes down.  This is similar to Brown et al. (2009) who created a “collusion incubator” that 

fosters tacit collusion in an ascending-price institution.  When they switched the auction to a 

descending-price institution mid-experiment, prices returned to competitive levels (even though 

participants had just been successfully colluding).   They conclude that the Dutch auction is a 

collusion destroyer and we likewise observe bids that are higher than what would be observed in 

a collusive outcome.   

We next examine further dimensions of bidding behavior in these auctions. 

 

4.3. Bidding Behavior 

 Subjects can bid in two ways: Instant Bid and Proxy Bid.  By Instant Bidding, they 

immediately accept the current clock price.  If there is only one unit left, an Instant Bid will stop 

the auction.  

 

Finding 7. More participants stop the clock with an Instant Bid when units remaining are shown.  

Evidence: See Table 4. The effect of showing units is an average increase of 6 more Instant Bids 

per session (p-value = 0.05). 
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Table 4. Average Instances of Stopping the Clock with Instant Bids (stand. error) and 2x2 

ANOVA Results (df = 15) 

 Group No Group Average  Effect p-val 

Units 19.0 12.0 15.5  Units 0.05 

 (1.58) (3.56)   Group 0.149 

No Units 10.3 8.8 9.6    

(3.30) (2.17)     

Average 14.7 10.4 12.5    

 

This can be taken as evidence that subjects are making their decision based on the  

information gained by seeing units being claimed (i.e., jumping in when only one unit is left).    

Next we ask whether experience changes outcomes over the course of the 16 auction 

rounds.  To investigate whether prices trend up or down, we add to the original linear mixed 

effects model a term for the round index that ranges from 1 to 16.  We include the squared value 

of the round number to allow for nonlinear trend effects.  When we estimate 

𝑃𝑖𝑗 = 𝛼 + 𝑢𝑖 +  𝛽1𝐺𝑟𝑜𝑢𝑝𝑈𝑛𝑖𝑡𝑠𝑖 +  𝛽2𝑁𝑜𝐺𝑟𝑜𝑢𝑝𝑈𝑛𝑖𝑡𝑠𝑖 + 𝛽3𝐺𝑟𝑜𝑢𝑝𝑁𝑜𝑈𝑛𝑖𝑡𝑠𝑖 +

𝛽4𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑖𝑗 + 𝛽5𝑅𝑜𝑢𝑛𝑑𝑖𝑗 + 𝛽6𝑅𝑜𝑢𝑛𝑑𝑖𝑗
2 + 𝜀𝑖𝑗  (6) 

where 𝑃𝑖𝑗 is the price from the 𝑗𝑡ℎ auction in the 𝑖𝑡ℎ session, the effect of Round is not 

significant.  The estimates are shown in the second column of Table 2.  We conclude that the 

trend in prices over time is not important for explaining our data.   

Next we ask whether the information conditions had different effects on bidders who had 

the highest values, which gives them a high chance of winning but not setting the price.  In what 

follows we restrict our attention to bidders who did not know their group size - that is when 

showing units matters according to theory.   

We have already documented the result in Finding 5 that, among auctions in which the 

group size is unknown, prices are lower when units visibly disappear.  Theory predicts that 

bidders will update their beliefs about group size by observing when units are claimed with the 

result that average prices are lower when the number of units remaining is displayed. 

In Table 5 we show the treatment effect on different classes of bidders divided by where 

they rank in the value assignments.  Table 5 contains the results of 3 regressions in which 8 

independent sessions are modeled as random effects.  The first column contains the results for 
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only the individuals who had the highest value in their group. The third highest ranked bidders 

analyzed in the third columns are the price setters in theory and usually in practice.   

 

Table 5. Dependent Variable: (Bid/Value) in the treatments where group size is unknown 

 1st highest value 2nd highest value 3rd highest value(price setter) 

Constant 0.854*** 0.902*** 0.912*** 

 (0.000) (0.000) (0.000) 

    

Show Units -0.132*** -0.160*** -0.054** 

 (0.000) (0.000) (0.035) 

       

No. observations 158 141 191 

No. groups 8 8 8 

R - squared 0.108 0.169 0.047 

*10% significance level, **5% significance level, ***1% significance level 

Standard errors are in parentheses and are clustered at the session level.  

   

 

The third highest bidder on average submits a bid that is 91% of her value when units are 

not shown.  When units are shown, she bids 5% less which is likely the main reason that prices 

are lower in No Group/Units.  The negative effect of showing units is twice as large among the 

bidders with very high values.  Knowing that more than one item remains appears to give the 

high value bidders more confidence that they can let the price fall without incurring too much 

perceived risk of losing the auction.  Observing these low bids by the high value players may in 

turn affect the bids placed by the price setters.   

How do all these bidders compare to theory?  Of the 6 groups of bidders considered in 

Table 5, the participants with the highest values when units are not shown bid 85% of their value 

(that is the Constant coefficient in the first column).  The bids they submit are the closest in 

absolute value to the theoretical predictions, although not the lowest bids in the table.  

Participants on average bid too high, as we showed in Figure 4.  Although the bidders adjust 

their bid down when units are shown, they do not adjust them down nearly as much as theory 

suggests they should in a symmetric equilibrium.  

To understand the behavioral mechanism better would be a promising future research 

topic, since most auctions in practice have an unknown number of bidders.  Table 4 indicates that 
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subjects use instant bidding more when units are shown.  Future tests could examine whether the 

effect of showing units would change if instant bidding were not allowed.  An auction designer’s 

relevant decisions when demand is unknown are whether to show units disappearing and how to 

implement proxy versus instant bidding.   

 

5. Summary and Conclusions 

 A set of multi-unit Dutch auction experiments was conducted to test the effect of 

providing two items of information to bidders – the number of bidders in the auction and the 

number of units remaining out of a fixed supply.  Overall, we find that providing information 

lowers prices.  Our conclusion is consistent with Levin and Ozdenoren (2004) who find that 

sellers generally prefer to conceal information.  For the most relevant case in our auctions, in 

which the number of bidders is unknown, the largest negative effect on both revenue and 

efficiency is when the number of units remaining is provided to bidders.  While we find that 

Nash equilibrium predictions are consistent with the directional changes in our treatments, 

subjects consistently overbid relative to theory and about 20% of bids were equal to the subject’s 

value.  We also find evidence that subjects are using information about the number of units 

remaining to update their bidding strategies since there is a marked increase in the use of instant 

bidding over proxy bidding in the treatments where units remaining are revealed.   

 Our results provide a recommendation for designing a multi-unit Dutch auction that will 

maximize revenue and efficiency.  Providing less information generates higher prices and results 

in higher efficiency because there are fewer misallocations of items to bidders with low values.  

More importantly, we note that in most real-world auctions the real number of bidders 

participating in an auction for a specific item is unknown. We have taken a first step in extending 

the theory of a Dutch auction with this important feature being present.  We have also examined 

how information interacts in this case in terms of the auction design.  Our experiment constitutes 

the first systematic attempt to understand these interactions that relate directly to what is 

encountered by those creating such auctions in the field.  Future research could examine the 

behavioral mechanism in more depth and separate the effect of showing units versus allowing 

instant bidding. 
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Appendix A 

 

Proof of equation (2):  Bidding Strategy If n Is Unknown and k Is Unknown 

 

The derivation of the risk neutral symmetric Nash equilibrium (RNSE) bidding strategy in a 

multi-unit auction generalizes the derivation of the bidding strategy in a single-unit first-price 

sealed bid auction.  To calculate the probability of winning an item in a multi-unit auction, we 

first determine order statistics for agents’ values. 

 

Let X1, …, Xn be independent random variables, each having CDF F(x).  Let F(k)(x) (k=1,…,n) 

denote the CDF of the kth order statistic X(k).  The probability that at least k of the other draws 

from a distribution F(x) are less than or equal to a number x is 

 

http://eprints.ecs.soton.ac.uk/17829/
http://eprints.ecs.soton.ac.uk/17829/
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𝑃[ 𝑋(𝑘)  ≤ 𝑥] = ∑ (
𝑛 − 1

𝑠
) 𝐹(𝑥)𝑛−1− 𝑠[1 − 𝐹(𝑥)]𝑠

𝑘−1

𝑠=0

 

 

The agents want to find the probability that their bid bi will be the winning bid.  For a symmetric 

strategy, that is equivalent to determining whether they have a higher value than at least k of their 

competitors.  The probability that at least k of the other values vj = B-1(bj) drawn from a 

distribution with CDF F(x) are less than or equal to vi, where i ≠ j is 

𝑃 [ 𝐵−1(𝑏𝑗)
(𝑘)

 ≤ 𝑣𝑖] = ∑ (
𝑛 − 1

𝑠
) 𝐹(𝐵−1(𝑏𝑖))𝑛−1− 𝑠[1 − 𝐹(𝐵−1(𝑏𝑖))]𝑠

𝑘−1

𝑠=0

 

 

Let Z(b) = 𝐹(𝐵−1(𝑏)). Note that 𝐵−1(𝑏) maps a bid into the value v that would generate that 

bid, and F(v) is the probability that a randomly drawn value is less than v.  The function Z(b) is 

undefined for values of b that are greater than the highest strategic bid.  The probability that a bid 

will win against the kth highest opponent’s bid is 

 

𝜓𝑘(𝑏, 𝑛)  = ∑ (𝑛−1
𝑠

)𝑍(𝑏)𝑛−1−𝑠[1 − 𝑍(𝑏)]𝑠
𝑘−1

𝑠=0
, where 0 ≤ 𝜓𝑘(𝑏, 𝑛)  ≤ 1 

 

Note that if k = 1, this reduces to the simple CDF of the first-highest order statistic  

 

𝑃𝑟[𝑏𝑗  ≤ 𝑏𝑖 ∀ 𝑖 ≠ 𝑗] = 𝑍(𝑏𝑖)
𝑛−1 

 

When n is unknown, we extend the model to account for the possible group sizes N = {n1,…, nG} 

and their corresponding probabilities P = {p1,…, pG} 

 

    Φk(𝑏𝑖, N, P) = ∑ [𝑝𝑔
𝐺
𝑔=1 ∙ ∑ (𝑛𝑔−1

𝑠
) 𝑍(𝑏𝑖)

𝑛𝑔−1−𝑠(1 − 𝑍(𝑏𝑖))𝑠𝑘−1
𝑠=0 ] 

= ∑ [𝑝𝑔
𝐺
𝑔=1 ∙ 𝜓𝑘(𝑏𝑖, 𝑛𝑔)] 

 

where 0 ≤ 𝜓𝑘(𝑏𝑖, 𝑛𝑔) ≤ 1  𝑎nd ∑ 𝑝𝑔
𝐺
𝑔=1 = 1 
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At this point we’ve introduced the symmetric bid strategy property, so that in the remainder of 

the proof, the agent’s own bid is the only bid considered.  We can therefore suppress the 

subscript i for the remainder of the proof.   

 

Note: The 𝜓𝑘 function would be greater than one if b were greater than the maximum bid 

predicted for a given 𝑛𝑔.  This would happen for the smaller groups.  So we truncate 𝜓𝑘 at one.   

 

We can now compute the agent’s expected value in an m-unit auction  

 

   𝐸𝑉(𝑏, 𝑁, 𝑃) = 

         (𝑣 − 𝑏) ∙ [𝛷𝑚(𝑏, 𝑁, 𝑃) − 𝛷𝑚−1(𝑏, 𝑁, 𝑃)] + ∫ (𝑣 − 𝜔) ∙
𝑑

𝑑𝜔

𝑏

0
 𝛷𝑚−1(𝜔, 𝑁, 𝑃) ∙ 𝑑𝜔    (A.1) 

 

Expected value is zero if the buyer does not win the item.  A buyer can win in the auction either 

as the price setter with the last accepted bid or as one of the higher bidders.  The first term on the 

right side of equation (A.1) is the case where the buyer is the price setter.  In that case the buyer 

earns (𝑣 − 𝑏).  The factor that multiplies (𝑣 − 𝑏) is the probability that the buyer is the price 

setter.  If the buyer wins an item with a bid above the stopping price, her profit is her value 

minus the uniform price. Her profit in that case is the integrand in the integral from the second 

term in equation (A.1).  The probability that a buyer’s bid is greater than or equal to the winning 

bid is 𝛷𝑚−1(𝜔, 𝑁, 𝑃). 

 

The expected value function is concave and continuous in b so we can find the optimal b by taking 

the first order condition. To maximize expected value, we solve 
𝑑

𝑑𝑏
𝐸𝑉(𝑏, 𝑁, 𝑃) = 0.  Differentiate 

equation (A.1), noting that the derivative of the integral on the right is (𝑣 − 𝑏) 𝛷𝑚−1(𝑏, 𝑁, 𝑃) by 

the fundamental theorem of calculus.  Cancel terms to obtain the equation  

              
𝑑

𝑑𝑏
𝐸𝑉(𝑏, 𝑁, 𝑃) =  (𝑣 − 𝑏) ∙ 𝛷′

𝑚(𝑏, 𝑁, 𝑃) − 𝛷𝑚(𝑏, 𝑁, 𝑃) + 𝛷𝑚−1(𝑏, 𝑁, 𝑃)    (A.2) 

Set the derivative in equation (A.2) equal to zero and rearrange terms to get  
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                             (𝑣 − 𝑏) ∙ 𝛷′
𝑚(𝑏, 𝑁, 𝑃) = 𝛷𝑚(𝑏, 𝑁, 𝑃) − 𝛷𝑚−1(𝑏, 𝑁, 𝑃)                  (A.3) 

 Which can be rearranged as 𝛷′
𝑚(𝑏) = (𝑛 − 𝑚)(𝛷𝑚(𝑏) − 𝛷𝑚−1(𝑏)) 𝑍′(𝑏)/𝑍(𝑏).  If we make 

this substitution into equation (A.3) then  

(𝑣 − 𝑏) ∙ ∑[𝑝𝑔(

𝐺

𝑔=1

𝑛𝑔 − 𝑚) (𝜓𝑚(𝑏, 𝑛𝑔) − 𝜓𝑚−1(𝑏, 𝑛𝑔)) 𝑍′(𝑏)/𝑍(𝑏)] 

                                                      = 𝛷𝑚(𝑏, 𝑁, 𝑃) − 𝛷𝑚−1(𝑏, 𝑁, 𝑃)                             (A.4)  

 

Assuming a uniform distribution we know F(v) = v so that Z(b) = 𝐹(𝐵−1(𝑏)) = 𝐵−1(𝑏).  Then 

𝑍(𝑏) =  𝑣 . Since Z(b) =  𝐵−1(𝑏)  under the assumption that F(v) = v we get 𝑍′(𝑏) =

(𝐵−1)′(𝑏).  Differentiate the identity 𝐵(𝐵−1(𝑏)) =  𝑏 to get 𝐵′(𝐵−1(𝑏)) (𝐵−1)′(𝑏) =  1.  This 

can be written as 𝐵′(v) (𝐵−1)′(𝑏) = 1  so (𝐵−1)′(𝑏) = 1/𝐵′(𝑣) .  Therefore 𝑍′(𝑏)/𝑍(𝑏) =

 1/(𝐵′(𝑣) ∙ 𝑣). 

 

Substitute 𝑏 = 𝐵(𝑣) into equation (A.4) and use the fact that 𝑍′(𝑏)/𝑍(𝑏) = 1/(𝐵′(𝑣) ∙ 𝑣) to get  

(𝑣 − 𝐵(𝑣)) ∙ ∑[𝑝𝑔(

𝐺

𝑔=1

𝑛𝑔 − 𝑚) (𝜓𝑚(𝐵(𝑣), 𝑛𝑔) −  𝜓𝑚−1(𝐵(𝑣), 𝑛𝑔))
1

𝐵′(𝑣) ∙ 𝑣
 ] 

= 𝛷𝑚(𝐵(𝑣), 𝑁, 𝑃) − 𝛷𝑚−1(𝐵(𝑣), 𝑁, 𝑃) 

Note that the bidding function is most precisely specified as B(v,N,P) but we sometimes denote 

it by B(v) to improve readability of the proof.  We find the optimal bidding strategy by solving 

the following differential equation  

 

𝑣 − 𝐵(𝑣)

𝐵′(𝑣) ∙ 𝑣
=

𝛷𝑚(𝐵(𝑣), 𝑁, 𝑃) − 𝛷𝑚−1(𝐵(𝑣), 𝑁, 𝑃)

∑ [𝑝𝑔(𝐺
𝑔=1 𝑛𝑔 − 𝑚) (𝜓𝑚(𝐵(𝑣),  𝑛𝑔) −  𝜓𝑚−1(𝐵(𝑣),  𝑛𝑔)]

 

 

The solution 𝐵(𝑣, 𝑁, 𝑃) to this differential equation is the RNSE strategy  

𝐵(𝑣, 𝑁, 𝑃) =  𝑣𝑖

∑  
𝑛𝑔−𝑚

𝑛𝑔−𝑚+1
 𝑝𝑔 𝑣𝑛𝑔  (

𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

∑  𝑝𝑔 𝑣𝑛𝑔  (
𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1
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Appendix B 

 

Proof of equation (3):  Bidding Strategy If n Is Unknown and k Is Known 

 

Agents update their strategies using information from the auction to improve their estimates of 

the size of the group they are competing against.  Agents revise P based on the observed 

information brought by each successive 𝑘𝑡 they observe at clock time 𝑐𝑡.  Then they make their 

bids by plugging P into the RNSE strategy for unknown n. 

 

To construct the risk neutral symmetric Bayesian Nash equilibrium (RNSBNE) bidding strategy 

for the case when k is known, it is necessary to first define the process by which agents update P, 

the vector of probabilities that the group size is a particular n out of N.  

 

Agents use Bayes’ rule to determine the probability of the event 𝐸𝑖  that the group size is one of the 

possible group sizes, or n = 𝑛ℎ, conditional on the observed data 𝐷𝑡  that when the clock reaches 

𝑐𝑡 the number of units claimed is 𝑘𝑡 

𝑃𝑟(𝐸𝑖| 𝐷𝑡) =  
𝑃𝑟(𝐷𝑡|𝐸𝑖) ∙ 𝑃𝑟(𝐸𝑖)

𝑃𝑟(𝐷𝑡)
 

                         =  
𝑃𝑟(𝐷𝑡|𝐸𝑖) ∙ 𝑃𝑟(𝐸𝑖)

∑ 𝑃𝑟(𝐷𝑡|𝐸𝑗) 𝑃𝑟(𝐸𝑗)𝑗

  

The current data 𝐷𝑡 =  {𝑐𝑡, 𝑘𝑡} tell the bidders more about their environment than they knew 

before the auction started.  The probability that n is a certain 𝑛ℎ ∈ 𝑁 given {𝑐𝑡, 𝑘𝑡} is  

𝑃𝑟(𝑛 = 𝑛ℎ|{𝑐𝑡, 𝑘𝑡}) =  
𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛 = 𝑛ℎ) ∙ 𝑝ℎ𝑡−1

∑  [𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛 = 𝑛𝑔)𝐺
𝑔=1 ∙ 𝑝𝑔𝑡−1

 

where the prior probability (at time t – 1) that the group size is 𝑛ℎ is Pr[n = 𝑛ℎ] = 𝑝ℎ𝑡−1
.   

When agents observe bids that are generated by the common RNSBNE strategy, they can use the 

inverse bid function to determine the value that generated the bid.  Observed bids could be 

generated by any group size, but larger groups are more likely to have bidders with high values 
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who will place higher bids.  Until the first unit is claimed, while 𝑘𝑡 = 0, every bidder is updating 

P to gradually favor the smallest possible group size.   

 

To use Bayes’ rule, bidders need to find the probability of the observed data if n were 𝑛ℎ.  Recall 

that the probability that a bid will win against the kth highest opponent’s bid is 

Ψk(b, n)  = ∑ (𝑛−1
𝑠

)𝑍(𝑏)𝑛−1−𝑠[1 − 𝑍(𝑏)]𝑠
𝑘−1

𝑠=0
,  where 0 ≤ 𝛹𝑘(𝑏, 𝑛) ≤ 1 

This is the probability that no more than k-1 bids have been placed.   

 

The probability that no more than k bids have been placed yet is 

Ωk(𝑐𝑡, n)  = ∑ (𝑛−1
𝑠

)𝑍(𝑐𝑡)𝑛−1−𝑠[1 − 𝑍(𝑐𝑡)]𝑠
𝑘

𝑠=0
 

which is similar to Ψ except that the summand iterates one more time. 

 

Therefore the probability that exactly k bids have been placed is 

𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛 = 𝑛ℎ)= Ωk(𝑐𝑡, 𝑛ℎ)  - Ωk-1(𝑐𝑡, 𝑛ℎ) 

This simplifies to 

𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛 = 𝑛ℎ) = (𝑛ℎ−1
𝑘

) 𝑍(𝑐𝑡)𝑛ℎ−1−𝑘𝑡[1 − 𝑍(𝑐𝑡)]𝑘 

The updated probability (𝑝ℎ)𝑡 of group size 𝑛ℎ is defined as 

          (𝑝ℎ)𝑡 =  
𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛=𝑛ℎ)∙(𝑝ℎ)𝑡−1

∑  [𝑃𝑟({𝑐𝑡, 𝑘𝑡}|𝑛=𝑛𝑔)𝐺
𝑔=1 ∙(𝑝𝑔)𝑡−1]

   

                                                               =  
(

nh−1

k
) Zt(ct)nh−1−k [1−Zt(ct)]k∙(ph)t−1

∑  [(
ng−1

k
) Zt(ct)ng−1−k [1−Zt(ct)]kG

g=1 ∙(pg)t−1]
                (B.1) 
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This function is undefined for clock prices above the highest rational bid.  No updating should 

happen until the clock has ticked past that bid, and all probabilities should remain at the initial 

prior probabilities until the clock crosses that threshold. 

 

The key difference between the updating bid function and the bids for uncertain group size that 

we showed in Appendix A is that the beliefs about group size are now changing as a function of 

the information that is revealed with k.  Refer to the iterative process we describe at the end of 

this proof for the bidding strategy which is more of an algorithm than a smooth function.  We use 

the elements above and from Appendix A to construct the recursive bid function 

                                   𝐵𝑡(𝑣, 𝑁, 𝑃𝑡−1, 𝑐𝑡, 𝑘𝑡) =  𝑣 
∑

𝑛𝑔−𝑚

𝑛𝑔−𝑚+1
 𝑝𝑔𝑡−1𝑣𝑛𝑔(

𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

∑  𝑝𝑔𝑡−1𝑣𝑛𝑔(
𝑛𝑔−1

𝑚−1
)𝐺

𝑔=1

                                 (B.2) 

When updating, two things change.  The P must be referenced from the last round and the Z(𝑐𝑡) 

changes because it is a function of the new P.  Because this strategy is symmetric, one’s opponents 

are also updating their beliefs and strategies, so it can be assumed that all agents share the same 

updated P.   

 

 

 

 

 

To summarize, the RNSBNE strategy involves the following iterative process: 

1. At time t, use 𝑃𝑡−1 to make a bidding decision, namely whether to accept the current clock price 

or keep waiting.  

2. Observe whether k changes.  

3. Use the new data {𝑐𝑡 ,  𝑘𝑡} to determine a new P.  Assume competitors have done the same.  

4. Repeat steps 1 through 3 with each tick of the clock. 

 

 

Appendix C 
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Table C.1. Assigned values and theoretically predicted prices for each auction round 

Experimental parameters Predicted Prices  

 Known n Unknown n 

Round 

 

n   Values       Known k Unknown k 

1 8   10, 12, 20, 36, 56, 66, 84, 88 55 36 46 

2 4   28, 42, 66, 80   20 22 24 

3 8   20, 26, 46, 46, 54, 68, 76, 90 56 36 48 

4 8   16, 18, 36, 48, 60, 76, 84, 94 64 62 56 

5 4   12, 46, 74, 88   24 24 26 

6 4   32, 34, 56, 56   16 18 18 

7 8   12, 22, 28, 38, 50, 52, 60, 62 44 26 32 

8 4   26, 48, 60, 90   24 24 28 

 

This sequence of 8 sets of values and group sizes is repeated twice for 16 auctions total.  

Subjects are shuffled so that they do not experience the same value assignment in the same group 

twice.  

 

 

 

 

 

Appendix D 

 

Experiment Instructions 

 

These instructions were presented to subjects in a series of PowerPoint slides: 

 

 Introduction 

 This is an experiment in market decision-making. If you follow the instructions carefully 

and make good decisions, you can earn a considerable amount of CASH. 

 This experiment consists of many auctions.  At the end you will receive your total 
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earnings from all auctions in addition to your $7 show-up fee.  

 Do not talk or communicate in any way with the other people during the experiment.   

 

 Auction Description 

 There are 8 participants in the experiment with you.   You will be randomly sorted into a 

group with either of 4 or 8 participants for each auction.  

 There are exactly 3 units available for sale in each auction.  

 Your earnings in an auction, which are yours to keep, is 0 if you do not win an item.  If 

you receive an item, your profit is: (your value) – (price paid)    

 

 Value of the Items 

 Every person in each auction will have a value between 1 and 100.  Each number from 1 

to 100 has an equal chance of being someone’s assigned value.   

 Imagine that there are 100 marbles in a black jar labeled 1 through 100.   

 For each auction, it is as if you blindly put your hand in the jar and pick out a marble and 

the number becomes your value for that round.    

 So, your chance of drawing a value between 31 and 40 is 10%. 

 Once you have picked out a marble it is replaced in the jar and someone else goes 

through the same selection process for their value. 

 

 Price You Pay 

 In this auction all three people who win an item pay the same price.   

 The process begins at a listed price of 100 experimental dollars (E$).   

 The price then decreases by 2E$ every 2 seconds. 

 A participant can BID for a unit by either: 

 Saying yes to the current price, or 

 Type in an amount they would say yes to if the price were to reach that amount   

 

 Example 

 When 3 people have a BID equal to or higher than the current price, the process will stop 

and those three people will each receive a unit at the current clock price.  
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 If the price is 65 and two participants have already said yes to higher prices and a third 

person BIDS 65, then 

 The auction will end and those three people who are “in” will each receive one item for a 

price of E$65.  Their profit will be:   (their value) – 65 

 

 

 How To Bid 

 Enter a number in the bid field that is equal to or lower than the current clock price and 

click [Submit Bid]. 

 Or you can put in a bid at exactly the current clock price by clicking [Submit].    

 You may change your bid only if it is lower than the current clock price.  Do this by 

highlighting your number, typing a new number, and clicking [Submit Bid].   

 

 You will earn profits in experimental dollars during the auctions.  At the end of the 

experiment, your will receive one $US for every 24 E$.   

 The FIRST auction is a PRACTICE ROUND.  The practice round does not count toward 

your earnings, all others do.  

 Please raise your hand if you have a question at any time and someone will come to assist 

you.  

 

Appendix E   

 

A Multi-Unit Dutch Auction for Parking 

In 2009, Chapman University used a descending price (Dutch) auction to allocate its most 

convenient campus parking permits.  The primary goal of the auction was to efficiently allocate 

on-campus parking.  In particular, a limited number of conveniently located reserved parking 

permits that assigned a specific parking spot to an individual and spots in an on-campus lot at a 

low permit/slot ratio were sold.6  Prior to the development and implementation of the Chapman 

                                                           
6 The reserved parking permits were for the entire year and the on-campus lot was auctioned in each semester. 
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University auction, reserved parking used a posted price mechanism with a long waiting list to 

get a reserved spot.  On-campus parking was priced the same as more distant parking and 

commuters reported frustration with hunting for an open parking space.   

The auction process began by announcing the number of permits available for reserved 

and on-campus parking.  Each of the auctions was separate and the reserve auction was 

conducted first.  The auction for the reserved spots began at a price that we estimated was higher 

than most drivers would be willing to pay and the price was reduced by $20 dollars every 30 

minutes (the auction ran from 9am to 9pm daily).  Bidders could accept the current listed price 

and be guaranteed a spot or they could enter the highest price they would be willing to pay (a 

proxy bid).    In addition, in the reserved spot auction specific spots on campus were selected by 

the bidders based on the order of their bid.  Thus, a descending bid auction was required to get 

information on the upper part of the demand curve. 

In the reserved spot auction, the clock price7 stopped when the number of bids equaled 

the number of permits available.8  The winners all paid a uniform price equal to the last accepted 

bid and they were able to choose the location of their preferred parking spot in order starting 

with the highest revealed bid.   For the on-campus preferred parking auction, every winner paid 

the uniform price equal to the last accepted bid and was granted access to the on-campus lot.   

 

                                                           
7 A Dutch clock auction opens at a high price.  The price ticks down in increments; a bid is accepted when the clock 

price reaches or falls below the bid.  

8 In case of ties at the stop-out price, spaces were awarded based on time priority (those who entered their bid first 

had higher priority). 
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Figure E.1. Reserved Permit Bids 

The reserved spot auctions were held first during the 2009/2010 school year.  The bids 

that were received are shown in Figure 1 ordered from highest to lowest.9  The vertical line in 

Figure E.1 indicates the (inelastic) supply of reserve spots which was 58 in 2009 and 67 in 2010.  

The available permits were sold to the highest bidders.   The price paid for a reserve spot was 

$630 in 2009 and $590 in 2010.   Figures E.1 and E.2 display the total price paid for permits which 

includes the regular parking fee that is paid by all commuters in addition to the auction price. 

The bids received for the on-campus parking lot are shown in Figure E.2.  There were 

124 spots auctioned in the Fall of 2009, 185 spots in Spring 2010 and 98 in Fall 2010.10   The 

first on-campus auction had lower participation due to a lack of awareness in the community, and 

Figure 2 shows the growth in participation for the later auctions.   

                                                           
9 The bids in the graph include both accepted and rejected proxy bids. 
10 The number of spots auctioned was different because spots are eliminated in the Fall to accommodate temporary 

overflow bleachers for the football stadium.  
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Figure E.2. On-Campus Permit Bids 
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