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Decision Making in a Sequential Game: The Case of Pitting in NASCAR

This paper uses data from NASCAR to examine strategic decision making with professional
players and high stakes. We look at driver decisions to pit, enabling car performance to be
improved at the cost of track position. Pitting decisions are sequential, unlike choices that have
previously been used sports to test game-theoretic play. Optimal decision making should result
in the subgame perfect equilibrium outcome. After estimating the likelihood of passing another
driver based upon the decision to pit or not, we find little evidence that drivers make optimal

decisions. Instead we find that too often cars simply follow the preceding car.

Key Words: Backward Induction, NASCAR, Sequential Decision Making



“If we didn’t pit, | can assure you that 90% of the guys behind us would have pitted and we

would have definitely lost the race if that’s the case.” — Sprint Cup Driver Denny Hamlin®

Given the prevalence with which game theory is used to analyze strategic behavior in a wide
variety of settings, it is important to empirically validate its predictions. Most of this work has
been done using the methodology of controlled laboratory experiments where the researcher
has complete information and controls the game. Sports provide another testing ground for
game-theoretic predictions of behavior. Like controlled laboratory experiments (and unlike
most naturally occurring data) sports have clearly defined strategy spaces and observable
actions and outcomes. Unlike the laboratory, the players are professionals with considerable
experience and training and they are often playing for large stakes. Walker and Wooders (2001)
find evidence to support minimax play by professional tennis players. Chiappori, et al. (2002)
and Palacios-Huerta (2003) report that the mixed strategy equilibrium describes the penalty
kick behavior of professional soccer players. These results are encouraging, but are limited to
simultaneous play games. However, as argued by Levitt, et al. (2011, p. 975), “backward
induction represents one of the most basic concepts in game theory.” Are there opportunities

to study backwards induction and sequential decision making in the sports world? Yes.?

The National Association of Stock Car Auto Racing (NASCAR) Sprint Cup series is stock car
racing’s premier league and it is big business. Trevor Bayne, the winner of the 2011 Daytona
500 race won nearly $1.5 million in prize money that afternoon.? Amato, et al. (2010) report

that NASCAR'’s 75 million fans contribute S3 billion towards its profitability. NASCAR is second



only to the National Football League in viewership (Chang 2007) and sponsorship for a single
Cup car can be $20 million (Brown 2008 as cited by Groothuis, et al. 2010). NASCAR fans are
notoriously loyal to drivers and sponsors (Groothuis, et al. 2010). O’Roark, et al. (2009) find
that fans can more readily identify the brands of winning drivers. Thus, drivers have both direct
(race purse) and indirect (greater value to sponsors) incentives to win races. Several studies
have also looked at how the tournament structure of prize money impacts behavior (see

Bothner, et al. 2007, Von Allmen 2001, and Schwartz, et al. 2007).

While many choices factor into winning a race from engine set-up to driver ability, one
important decision is pitting strategy late in a race. Pit road refers to a side area on the race
course where the driver can stop to refuel and have corrective adjustments made to the car.
Pit crews, as the people who work on a car are called, can refuel the car and change all four
tires in less than 15 seconds, but with people driving at speeds in excess of 200 m.p.h. the loss
of this much time can put a driver far behind the competition. So while adjustments to the car
improve performance, a driver that pulls onto pit road risks being passed by those behind him.
Races are normally several hundred miles in duration so that cars will have to stop multiple

times to refuel.

When an accident or a safety concern occurs on the track, race officials wave a yellow caution
flag (as opposed to the normal all clear green flag). Under yellow flag conditions racers must
remain in their relative positions and are not allowed to pass. Speeds are also significantly
reduced during a caution. Thus, there is an advantage to pitting during a caution in that the

distance between the leader and the car that pitted is smaller than it would be under green flag



conditions. Therefore when a caution flag comes out late in the race, drivers face sequential

strategic choices.

Pit road has a single entrance point on the track and a driver approaching the entrance to pit
road has only a split second to react to the decisions of the drivers ahead of him and anticipate
the reactions of the drivers behind him. This paper analyzes data from the 2009 NASCAR Sprint
Cup series to determine the optimal sequential pitting decision for drivers. We find that drivers
do not follow the optimal strategy and instead tend to imitate the driver who is directly ahead
of them in the race. While previous experimental work has questioned the ability of players to
backwards induct (see Levitt, et al. 2011 for a review), we believe this to be the first direct
evidence from naturally occurring data that professionals have difficultly engaging in backwards

induction.”
A Model of Pitting

In order to evaluate driver decisions to pit or not pit under caution late in a race, we develop a
simple sequential model of pitting. First, we assume that drivers are attempting to maximize
their chance of winning the race. Each of the n drivers has to choose an action A<{Pit, Not pit}.
Driver ie{1, n}is in the it position and makes his decision after observing the actions of Drivers
1, ...,i-1 and before Drivers i+1, ..., n make their decisions. After each of the drivers has made

their decision the cars are reordered according to the following rules:

1. If Driver i and Driver j chose different strategies then the driver that chose Not Pit

restarts ahead of the driver that chose Pit.



2. If Driveriand Driver j chose the same strategy then Driver i restarts ahead of Driver j

iffi<j.

The first rule simply states that all drivers who pit are passed by the drivers who do not pit. The
second rule covers two cases. If both cars do not pit then the caution rules dictate that the
relative order remains unchanged. If both cars pit then the actual time in the pits depends on
the specific modifications that are made during the stop, but rule 2 assumes that the expected

duration is equal thus maintaining the ordering.

Once the cars are reordered and the caution is over, the drivers race to the finish. The
likelihood that a car successfully passes another car is a function of the actions taken by the two
cars (and other factors such as the number of laps remaining and the length of a lap®). Let N
denote the probability that a car that did not pit successfully passes another car that did not pit.
Similarly, let P denote the probability that a car that pitted successfully passes another car that
pitted. Let D denote the probability that a car that pitted successfully passes a car that took the
different action of not pitting. Given the way cars are reordered, no car that did not pit is
behind a car that did pit and hence there is no need for a fourth term. For simplicity, we

assume that cars which are higher ranked at the restart have the first opportunity to pass.6

Figure 1 shows the extensive form game for the cases of two racers. In three of the four
outcomes Driver 1 restarts in first place and his chance of winning is simply 1 minus the
probability that he is passed. However, if Driver 1 pits and Driver 2 does not pit, then Driver 1
will restart in second place and must pass Driver 2. The standard solution concept is that of

subgame perfection. If Driver 1 chooses to not pit then Driver 2 will pit if D > N and if Driver 1



does pit then Driver 2 will pit if P> 1 - D. Driver 1’s choice ultimately depends on how he

(correctly) anticipates Driver 2 will react in each subgame.

This game can be extended to any number of drivers in a straightforward manner. We
introduce the notation {A4, ..., A,} to denote a path through the game where A; is the action
taken by Driver i. While the equilibrium path will depend on the specific parameters, if we
assume that D > N, which seems reasonable given that pitting offers the opportunity to improve
car performance, then at least one driver should pit in equilibrium. This is formalized in the

following proposition.

Proposition: If D > N then {N, ..., N} cannot be a subgame perfect Nash equilibrium path.

Proof: Suppose that {N, ..., N} is a subgame perfect equilibrium path. Consider the decision of
Driver n. Since none of the previous drives has opted to pit, then not pitting results in a (N)"*
chance of winning while pitting results in a (D)"* chance of winning. By assumption1>D >N >
0 and thus (N)"*< (D)™, Therefore, if the other n-1 drivers have not pitted, Driver n would

prefer to pit, which contradicts no one pitting being a subgame perfect equilibrium. o

<Insert Figure 1 Here>

Estimating Model Parameters for NASCAR Sprint Cup Series

The 2009 NASCAR Sprint Cup series involved 36 races in total. For most races we have lap-by
lap position data captured through a computer program that monitored NASCAR’s website in
real-time during a race as positions were being updated.” This constitutes our primary data

source. For all but one race, we also have video recordings which were sometimes used to
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clarify and confirm the lap-by-lap data.® Of the races for which data are available, we eliminate
races on road courses races. Road course races have non-standard shapes with more turns and
smaller road widths and are likely to have distinct optimal pitting strategies. We also restrict
our data set to races in which the race was completed instead of being forced to end early due
to rain. Finally, we restrict attention to races in which a caution occurred within the final pit
window. The pit window is defined as the number of laps that a car can complete on a single

tank of gas, which varies with lap length and road conditions.’ Table 1 summarizes our sample.

<Insert Table 1 Here>

We restrict our focus to the decisions of drivers on the lead lap during the final caution. Other
drivers are not allowed to pit on the same caution laps as the “leaders” and restart behind the
leaders regardless of pitting decisions. Further, these racers essentially have no chance of
winning the race given how far behind they are and their probabilities of passing other cars are
likely different from those cars that are on the lead lap because they have been lapped. Table 2

gives detailed information for each of the analyzed restarts.

For each race identified in Table 2, we know the order when the pit road opened under the final
caution, each driver’s decision to pit or notlo, the order at the restart, and the order at the end
of the race. We then compare the restart position and the finishing position to see if any
particular driver has successfully passed. There are three types of passes: a car that pitted
passing another car that pitted (P->P), a car that pitted passing a car that did not pit (P->N),
and a car that did not pit passing another car that did not pit (N->N). As described in the model
section, we begin with the second place car and determine if he was able to pass the leader.

We then evaluate the third place car and so on. As an example with n =5 racers, if the
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observed path through the game is {N,N,P,P,N}, then only the third and fourth place drivers
before the caution pitted. Let (1,2,3,4,5) denote the ordered set of five drivers before the
decision to pit. In this example, the restart order would be (1,2,5,3,4). We would first look at
the attempted pass of Driver 1 by Driver 2. Suppose the final order at the end of the race was
(2,1,4,5,3). Since Driver 2 finishes before Driver 1, this pass attempt was a successful N->N
resulting in the order (2,1,5,3,4). We would then consider Driver 5’s attempt to pass Driver 1,
which, according to the final order, was an unsuccessful N->N attempt leaving the order at
(2,1,5,3,4). Fourth place on the restart was Driver 3, which was unsuccessful in passing Driver
5, the car that restarted ahead of it, and thus was an unsuccessful P->N attempt. The order
would remain (2,1,5,3,4). Finally, we consider last place at the restart. Driver 4 passed Driver 3,
a successful P> P resulting in the order (2,1,5,4,3). Driver 4 then successfully passed Driver 5, a
successful P> N, but failed to pass Driver 1, an unsuccessful P->N, resulting in the final ordering

(2,1,4,5,3).

<Insert Table 2 Here>

The number of successful and unsuccessful passing attempts by type for the analyzed races are
shown in Table 3. The raw numbers confirm the intuition that pitting enhances car
performance because cars that pit have more success passing cars that do not pit than cars that
did not pit have passing other cars that did not pit (i.e. 76% > 64%). Also, cars that pit have

more difficulty passing cars that pitted than passing cars that did not pit (i.e. 70% < 76%).

<Insert Table 3>

Of course, the probability of a successful pass depends on a variety of factors. While we cannot

control for all possible influences, we do know the number of laps remaining in the race at the
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restart and the lap length, both of which affect the number of passing opportunities that a
driver will have. As our goal is to estimate the probability that each type of pass is successful so
that we can evaluate driver strategy, we pool the data across races and use a separate probit
estimation for each type of passing attempt. For the estimation, the dependent variable equals
1 if the attempted pass was success and 0O if it was not. We control for both “LapLength” (i.e.
the distance in miles of a single lap) and “Laps2Go” (i.e., the number of laps remaining when
the caution is over). To allow for the fact that track structure and thus speeds differ with track
length, we also include “Miles2Go”, which is the interaction of “LapLength” and “Laps2Go”.
Table 4 provides the estimation results for the three types of passing attempts, while Table 5
gives the estimated probabilities for each type of passing attempt by race. From Table 4, it
appears that all three types of passing attempts are more likely to be successful the larger the

size of a lap and the more laps that are left.
<Insert Table 4 Here>
Insert Table 5 Here>
Analysis of Driver Strategy

Analyzing each driver’s decision amounts to constructing the appropriate extensive form game
for each race, similar to Figure 1, and then comparing observed behavior to subgame perfect
behavior at each node along the realized path. That is, each driver is evaluated in comparison
to the optimal choice at his realized decision node assuming subsequent drivers will respond
optionally regardless of the optimality of any preceding driver. The game trees become
prohibitively large quickly, involving 2" possible paths and payoffs and 2., 2%=1 individual
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decision nodes all of which must be considered. Due to computational constraints, we limit our

attention to races where n < 20 resulting in 210 total driver decisions in 12 races. '

Before looking at actual driver decisions we first consider equilibrium behavior. Rather than
recreating the extensive form game trees for each race considered, Table 6 provides the
subgame perfect equilibrium path for each race. In none of the races analyzed in Table 6
should everyone pit. In three races (March 8™ in Atlanta, July 11" in Chicago, and October 11%
in Fontana) no one should pit. In all three of these races, there are only two or three laps left at
the restart and thus a car does not have much of an opportunity to pass so maintaining track
position is relatively more important. This is reflected in Table 5 as N is slightly greater than D
for these three races. None of the other races that are evaluated have this relationship and in
each case at least one driver should pit, consistent with our proposition. It is worth noting that
none of the subgame perfect equilibrium paths are where no one pits up to a point and then
everyone else does, excluding the three trivial cases discussed above where no one should pit.

It is also interesting that in no case analyzed should a driver in the leading half of the group pit.
<Insert Table 6 Here>

We now turn to the actual behavior of the drivers. Table 6 indicates the optimal choice of each
driver up until the point some driver deviates, but once a driver makes a sub-optimal choice
taking the group off of the subgame perfect equilibrium path, the optimal response for others

may differ from what is shown in Table 6.

Table 7 provides the observed behavior at each realized decision node. Entries in Table 7
marked with a * indicate that the driver made the optimal decision at that point in the game

10



tree given the choices of the preceding drivers. Overall, half of the decisions were optimal.
However, there is considerable variation in optimal behavior from race to race. In the October
11" race at Fontana, no one should pit and no one did resulting in the subgame perfect
equilibrium outcome. In three races, no driver made the optimal decision (March 8™ in Atlanta,
April 5™ in Texas, and October 4™ in Kansas). In all three of these cases one should not pit if
doing so would result in restarting in first place, but everyone chose to pit. In all of the other
races considered, some drivers pitted and some did not. From the table, it appears that
mistakes are more likely to occur in the later positions, when backwards induction should be
easier. These mistakes are often due to people pitting when they should not. In fact, every
race in Table 7 follows the pattern that once the first driver chooses to pit, everyone behind
him pits too. This suggests that drivers are generally following the car ahead of them rather
than engaging in backwards induction. In fact, of the 198 decisions by drivers who were not the

race leader, only 4% did not follow the preceding driver.
<Insert Table 7 Here>

We anticipated estimating a Probit model where the pitting decision was the dependent
variable and the independent variables included the conditionally optimal choice and the
decision of the preceding car. However, the correlation of one’s pitting choice and the decision
of the preceding car is so high (approximately 0.93) that the model is recognized as having

“quasi-complete separation.”*?

Further, the correlation between the optimal choice and the
observed decisions is very low (approximately -0.15). We take this as sufficiently convincing

evidence that drivers are simply following the car ahead of them rather than reacting optimally.
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Concluding Remarks

Concepts from game theory are used to analyze a wide array of strategic situations. Recently,
several scholars have analyzed various sporting events in order to test basic game theoretic
predictions. The intent of these projects is not so much to test the athlete’s ability to conform
to the theoretical predictions, but rather to ascertain the degree to which theory predicts
behavior. While the results generally indicate that the theory successfully predicts behavior,
this work has been largely limited to simultaneous play games such as penalty kicks in soccer

and serves in tennis.

This paper uses a sports setting to evaluate the predictive power of game theory in sequential
games requiring players to backwards induct. Specially, we look at the sequential pitting
decisions of NASCAR Sprint Cup drivers under caution late in a race. The Sprint Cup series is the
highest level of professional stock car driving where race purses can exceed $1 million dollars.
Under a caution, drivers cannot pass each other, but they can enter the pit area to enhance
their car’s performance while risking track position depending upon the decisions of the drivers
behind them. We collected data from the 2009 racing season and estimated the likelihood of
successfully passing another car based upon the remaining distance in the race and the decision
to pit. Our estimation results indicate that passing attempts are more likely to be successful at

larger tracks and less likely to be successful when the race is nearly complete.

Based upon our estimated likelihood of a pass being successful, we are able to construct an
extensive form game for each race and compare the observed behavior with the optimal

behavior at each decision node that is reached. Due to computational limits we restrict our
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attention to races with twenty or fewer drivers on the lead lap. Far from implementing
backwards induction and making optimal decisions, it appears that drivers use a simple

heuristic of following the preceding driver.

As with any attempt to use field data to test a theoretical model, we have made several
assumptions about the game. For one, we assume that drivers are attempting to maximize
their chance of winning the race instead of their expected standings in the race or across the
entire season. Another assumption that we make is that all driver decisions in a race are made
independently. In reality, one owner may have multiple cars in the race, thus enabling those
drivers to coordinate their decisions. While accommodating either of these alternatives would
change the subgame perfect equilibrium path, it is unlikely such changes would yield the

observed follow the proceeding driver strategy as optimal.

Notes

1. As quoted in 4wide.com interview after Hamlin won the April 2010 Martinsville Sprint Cup
race.

2. While Levitt, et al. (2011) look at the behavior of professional chess players, they do so in
simple stylized games rather than chess.

3. With this type of money on the table, it is not surprising that cheating is also a major concern
in NASCAR (see Baucus, et al. 2008)

4. Levitt, et al. (2011) find that professional chess players do backwards induct in “pure
backward induction games” as opposed to centipede games.

13



5. Maximum speed and track width vary widely depending on the length of a lap around the
track.

6. There is some justification for this assumption in that cars are not allowed to pass when a
race resumes until they pass the start-finish line which denotes where laps begin and end. Thus
the second place car comes up to speed before the third place car, and so on.

7. This data collection process did not begin until the fourth race of the season. Some of the
later races were not captured because the race was delayed while the computer program ran at
the originally scheduled race time. Other races were not captured because the race was on a
road course.

8. Videos were provided on the official NASCAR website www.nascar.com.

9. Data on estimated pit windows are available at
http://www.racegoodyear.com/cfmx/web/racing/.

10. The decision variable is determined by a combination of the lap-by-lap data and the video
data. These data are unambiguous for 14 of the analyzed races. However, in 7 of the races we
had to infer the actions of at least some of the drivers. This is caused by a variety of factors
such as the caution occurring during a commercial break. Also, the lap-by-lap data can be
misleading because the start finish line crosses pit road at some tracks and sometimes cars are
in the wrong order and have to be reset by NASCAR officials before the race is restarted. When
inferences are made as to the pitting decision, the guiding rules were that a car that moved
back in the field pitted since that car could not be passed on the track during a caution and a

car restarting behind a car that pitted also pitted since otherwise it would have moved ahead of

14



the pitting car in the restart order. The results remain substantively unchanged if the races for
which the pitting decision had to be inferred are omitted.
11. With n = 20, the computation time was approximately a week.

12. This message is from the statistical package EViews.

References

Amato, Christie, Charles D. Bodkin, and Cara Peters. 2010. “Building a Fan Community Through
the Folklore of NASCAR.” International Journal of Sport Management and Marketing, 8(1-2):
5-20.

Baucus, Melissa, William |. Norton, Jr., Beth Davis-Sramek, and William Meek. 2008. “Cheating
and NASCAR: Who's at the Wheel?” Business Horizons, 51(5): 379-89.

Bothner, Matthew S., Jeong-han Kang, and Toby E. Stuart. 2007. “Competitive Crowding and
Risk Taking in a Tournament: Evidence from NASCAR Racing.” Administrative Science
Quarterly, 52(2): 208-47.

Brown, Zak. 2008. Wind Tunnel with Dave Despain, Interview Speed Channel, March 30.

Chang, Richard S. 2007. “NASCAR Still Second Fiddle to N.F.L.” The New York Times, November
16.

Chiappori, Pierre-André, Steven D. Levitt, and Timothy Groseclose. 2002. “Testing Mixed-
Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer.”

American Economic Review, 92(4), 1138-51.

15



Groothuis, Peter A., Jana D. Groothuis, and Kurt W. Rotthoff. 2010. “Time on Camera: An
Additional Explanation of NASCAR Tournaments.” Journal of Sports Economics. Forthcoming.

Levitt, Steven D., John A. List, and Sally E. Sadoff. 2011. “Checkmate: Exploring Backward
Induction among Chess Players.” American Economic Review, 101(2): 975-90.

O’Roark, J. Brian, William C. Wood, and Larry DeGaris. 2009. “Brand Identification among Stock
Car Racing Fans in the USA.” International Journal of Sport Management and Marketing,
6(1): 35-51.

Palacios-Huerta, Ignacio. 2003. “Professionals Play Minimax.” Review of Economic Studies,
70(2): 395-415.

Schwartz, Jeremy T., Justin P. Isaacs, and Anthony M. Carilli. 2007. “To Race or to Place? An
Empirical Investigation of the Efficiency of the NASCAR Points Competition.” Journal of
Sports Economics, 8(6): 633-41.

Von Allmen, Peter. 2001. “Is the Reward System in NASCAR Efficient?” Journal of Sports
Economics, (2)1: 62-79.

Walker, Mark, and John Wooders. 2001. “Minimax Play at Wimbledon.” America Economic

Review, 91(5): 1521-38.

16



Figure 1. Extensive Form of Pitting Game with n = 2 Players
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TABLE 1. 2009 Races Included in Sample

Date Location  Name® Data® Date  Location Name® Data®
2/15 Daytona Daytona 500 NL 7/11 Chicago LifeLock 400

2/22 Fontana Auto Club 500 NL 7/26 Indianapolis Allstate 400

3/1 Las Vegas Shelby 427 NL 8/3 Pocono PA 500 NL
3/8 Atlanta Kobalt 500 8/10 Watkins Glen  Heluva Good! NL
3/22 Bristol Food City 500 8/16 Michigan Carfax 400

3/29 Martinsville  Goody's 500 8/22 Bristol Sharpie 500

4/5 Texas Samsung 500 9/6 Atlanta Pep Boys 500

4/18 Phoenix Subway 500 NL 9/12 Richmond Chevy 400

4/26 Talladega Aaron's 499 9/20 Loudon Sylvania 300 NL
5/2 Richmond Friedman 400 9/27 Dover AAA 400

5/9 Darlington Southern 500 10/4 Kansas Price 400

5/25 Charlotte Coca-Cola 600 NL 10/11 Fontana Pepsi 500

5/31 Dover Autism 400 10/17 Charlotte Banking 500

6/7 Pocono Pocono 500 10/25 Martinsville Tums 500

6/14 Michigan LifeLock 400 ow 11/1 Talladega Amp 500

6/21 Sonoma SaveMart 350 RC 11/8 Texas Dickies 500 oW
6/28 Loudon Lenox 301 R 11/15 Phoenix Checker 500 NL
7/4 Daytona Coke Zero 400 NL 11/22 Homestead Ford 400 NL

a. Some names have been condensed for space. The number in a name sometimes refers to the total distance of

the race and sometimes refers to the number of laps completed during the race.

b. NL denotes that the race was excluded because lap-by-lap data was not captured. R denotes that the race was

shortened due to rain and therefore excluded. RC denotes a road course that was excluded from the sample. OW

denotes that the race was excluded because the last caution was outside the final pit window.
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TABLE 2. Details of Analyzed Races

Lap . Number of Number of
Date Location Length Laps to Go .Plt Racers on Leaders
(Miles) on Restart  Window Lead Lap who Pit
3/8/2009 Atlanta 1.54 2 50-54 12 12
3/22/2009 Bristol 0.533 2 130-140 16 4
3/29/2009 Martinsville  0.526 23 125-135 18 2
4/5/2009 Texas 1.5 26 50-55 16 16
4/26/2009 Talladega 2.66 4 34-36 23 6
5/2/2009 Richmond 0.75 39 100-110 25 10
5/9/2009 Darlington 1.366 21 60-65 24 6
5/31/2009 Dover 1 27 75-80 19 1
6/7/2009 Pocono 2.5 35 35-37 28 28
7/11/2009 Chicago 1.5 2 50-55 18 5
7/26/2009 Indianapolis 2.5 24 32-35 24 7
8/16/2009 Michigan 2 38 40-44 33 20
8/22/2009 Bristol 0.533 4 130-140 22 0
9/6/2009 Atlanta 1.54 12 50-54 17 17
9/12/2009 Richmond 0.75 14 90-100 24 24
9/27/2009 Dover 1 28 75-80 19 11
10/4/2009 Kansas 1.5 27 50-55 16 16
10/11/2009 Fontana 2 3 42-45 20 20
10/17/2009 Charlotte 1.5 17 50-55 20 6
10/25/2009 Martinsville  0.526 2 125-135 19 2
11/1/2009 Talladega 2.66 2 34-36 29 0
TABLE 3: Passing Attempt by Type
. . Percentage
Passing Type Attempts Failures Successes
Successful

N->N 646 231 415 64%

P>N 306 74 232 76%

P>P 437 129 308 70%
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TABLE 4: Probit Estimation Results for Each Type of Passing Attempt

P>P N->N P=>N
Constant -1.78 -1.31 -1.03
(0.59***) (0.20***) (0.53%)
Laps2Go 0.07 0.05 0.05
(0.02***) (0.01%**) (0.02***)
LapLength 0.95 0.82 0.59
(0.39*%*) (0.09***) (0.24*%*)
Miles2Go -0.02 -0.03 -0.02
(0.01%) (0.01**%) (0.01%)
Log Likelihood -236.71 -376.95 -161.87

# of Observations 437 646 306

Standard errors are in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

TABLE 5: Estimated Probability of Passing by Type of Attempt

Date Location P N D

3/8/2009 Atlanta 40.3% 49.3% 47.4%
3/22/2009 Bristol 12.3% 21.4% 26.5%
3/29/2009 Martinsville 49.2% 50.1% 60.0%
4/5/2009 Texas 69.2% 60.2% 71.4%
4/26/2009 Talladega 78.4% 79.0% 71.9%
5/2/2009 Richmond 80.8% 71.6% 82.3%
5/9/2009 Darlington 60.8% 56.2% 65.3%
5/31/2009 Dover 64.1% 58.4% 69.3%
6/7/2009 Pocono 83.1% 61.1% 80.6%
7/11/2009 Chicago 38.9% 48.0% 46.5%
7/26/2009 Indianapolis 80.1% 66.5% 76.8%
8/16/2009 Michigan 82.6% 62.8% 81.5%
8/22/2009 Bristol 14.6% 23.7% 29.3%
9/6/2009 Atlanta 52.9% 53.9% 57.9%
9/12/2009 Richmond 35.6% 40.6% 48.3%
9/27/2009 Dover 65.7% 59.4% 70.5%
10/4/2009 Kansas 70.3% 60.6% 72.3%
10/11/2009 Fontana 57.7% 63.1% 58.3%
10/17/2009 Charlotte 58.2% 55.7% 62.5%
10/25/2009 Martinsville 12.2% 21.2% 26.3%
11/1/2009 Talladega 78.0% 80.0% 71.2%

19



Table 6. Subgame Perfect Equilibrium Behavior at Nodes Reached on the Equilibrium Path

Date Location Equilibrium Path
3/8/2009 Atlanta {N,N,N,N,N,N,N,N,N,N,N,N}
3/22/2009 Bristol {N,N,N,N,N,N,N,N,N,N,N,N,N,P,N,P}
3/29/2009 Martinsville  {N,N,N,N,N,N,N,N,N,N,N,P,N,P,P,P,N,P}
4/5/2009 Texas {N,N,N,N,N,N,N,N,P,P,N,P,N,P,N,P}
5/31/2009 Dover {N,N,N,N,N,N,N,N,N,P,N,P,N,P,N,P,N,P,P}
7/11/2009 Chicago {N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N}
9/6/2009 Atlanta {N,N,N,N,N,N,N,N,N,N,N,N,N,N,P,N,P}
9/27/2009 Dover {N,N,N,N,N,N,N,N,N,P,N,P,N,P,N,P,P,N,P}
10/4/2009 Kansas {N,N,N,N,N,N,N,P,P,N,P,N,P,N,P,P}
10/11/2009 Fontana {N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N}
10/17/2009 Charlotte {N,N,N,N,N,N,N,N,N,N,N,N,N,P,N,P,N,P,N,P}
10/25/2009  Martinsville  {N,N,N,N,N,N,N,N,N,N,N,N,P,N,N,P,P,P,P}
Table 7. Observed Driver Behavior
Date Location Observed Sequential Pitting Decisions Per(.:ent
Optimal
3/8/2009 Atlanta {p,pP,P,P,P,P,P,P,P,P,P,P} 0%
3/22/2009 Bristol {*N,*N,*N,*N,*N,*N,*N,*N,*N,*N,*N,*N,P,P,P,P} 75%
L. {*N,*N,*N,*N,*N,*N,*N,*N,*N,*N, o
3/29/2009  Martinsville *N,N,N.N,N,N.*P.*P} 72%
4/5/2009  Texas {P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P} 0%
{*N,*N,*N,*N,*N,*N,*N,*N,*N,N, 53%
5/31/2009 Dover NN, NLNN N NN, *P)
. {*N,*N,*N,*N,*N,*N,*N,*N,*N,*N, 72%
7/11/20 Ch
/11/2009  Chicago .y «y *n,pp,p,P,P}
9/6/2009  Atlanta {P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P,P} 0%
9/27/2009 Dover {*N,*N’*N’*N,*N,*N,*N,*N,P,P,P,P,P,P,P,P,P,P,P} 42%
10/4/2009  Kansas {p,p,P,P,P,P,P,P,P,P,P,P,P,P,P,P} 0%
{*N,*N,*N,*N,*N,*N,*N,*N,*N,*N, 100%
10/11/2009 Fontana FNEN NN, N, *N,#N*N NN} ?
{*N,*N,*N,*N,*N,*N,*N,*N,*N,*N, 75%
10/17/2009 Charlotte *N,*N,*N,N,*P.*P.p P PP}
10/25/2009 Martinsville ¢ 2 N NZNEN N NN EN N, 74%

*N,*N,N,N,N,N,N,*P,*P}
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