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A Random Matching Theory∗

C. D. Aliprantis,1 G. Camera,1 and D. Puzzello2
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ABSTRACT: We develop theoretical underpinnings of pairwise random matching processes. We
formalize the mechanics of matching, and study the links between properties of the different pro-
cesses and trade frictions. A particular emphasis is placed on providing a mapping between match-
ing technologies and informational constraints.

Keywords and Phrases: Random matching, Frictions, Spatial interactions

JEL Classification Numbers: C00, C78, D83, E00

1 Introduction

A large segment of the economic literature is concerned with the study of allocations that
arise when markets are not well-functioning. A defining characteristic of this literature is
its focus on informational and spatial frictions, and the desire to make them explicit by
assuming that economic interactions occur in small coalitions. To this end, the literature
has traditionally relied on pairwise random matching frameworks. This basic modeling
tool has found use in a wide variety of settings, from the study of social norms (as in
Kandori [13]), to unemployment (as in Mortensen and Pissarides [16]), to business cycles
(as in Diamond and Fudenberg [6]), and to the foundations of monetary theory (as in
Kiyotaki and Wright [14], Shi [20], and Green and Zhou [10]).

A limitation of this literature is the treatment of matching—as a technology—is mostly
descriptive and insufficiently formalized. For example, the mechanics of the economic in-

∗This research is supported in part by the NSF grants SES-0128039 and DMS-0437210. We
thank two anonymous referees for helpful suggestions that improved the exposition of the paper.
We also thank participants in several seminars including Notre Dame University, Purdue University,
University of Naples–Federico II, University of Iowa, University of Kentucky, Cleveland Fed, and
the fall 2004 Midwest Economic Theory Meeting.
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teractions are generally not made explicit or the map between matching and the frictions
assumed to be in place is open to various interpretations. This tends to prevent a clear
understanding of how the matching technology impairs market functioning, and conse-
quently the possible allocations. These limitations must be overcome to better formulate
models of economies with frictions. An objective economic analysis is thought of as one
that focuses on the allocations predicted using a carefully specified physical environment
(preferences, technologies, etc.). Thus, a comprehensive theory of exchange cannot be de-
rived by simply assuming that certain economic interactions may or may not take place.
Ideally, the theory should clarify how the trading or institutional constraints assumed to
be in place originate in the underlying economic environment.

The purpose of this study is to build a more solid foundation for random matching
models, by means of a set-theoretic approach. There are two major contributions. First,
the paper provides a formalization of the mechanics of random pairwise matching. To
do so, it uses as a starting point the approach to deterministic matching provided by
Aliprantis, Camera and Puzzello [1]. Compared to that paper, this study introduces
the concept of spatial separation in terms of population partitions, and uses probability
measures to match agents only within the same partition set. This provides a clear
formalization of random matchings in a simple manner. By focusing on the technological
aspects of meeting processes, this study adds to a literature on matching models.1

A second contribution of this investigation is it spells out how different matching tech-
nologies may facilitate (or obstacle) the exchange of economic resources and information
among agents. Particular emphasis is paid to formalizing how the matching technology’s
properties affect the level of informational isolation that exists in economies where agents
are randomly paired over time.2 Indeed, this is what especially differentiates our work
from previous studies on random matching processes; see, for instance, the matching
scheme of Boylan [4] for a countable population.

The technical procedure that we use to construct any random matching process in-
volves three basic steps. The first step is to specify how to divide the population in each
period into spatially separated clusters of agents. To do so, we use partitional corre-
spondences. Then, one must define and calculate all possible ways to form pairs in each
cluster. In this case, we resort to using a class of permutation functions—the so-called in-
volutions. Finally, for each period one must specify a probability measure over all possible
pairings, for each cluster. This gives us the desired random matching rule for a cluster,
and a well-defined random matching process for the entire population in each period. A
pairwise random matching framework can then be formalized as a sequence of partitional
correspondences, involutions and probability measures. Given these sequences, we can

1For example, see Ioannides [12], Gilboa and Matsui [9], and the more recent works of Duffie and
Sun [7, 8] on the exact law of large numbers for random pairwise matching.

2Research that has taken into consideration these concerns has appeared especially in the monetary
literature. For instance, see the works of Huggett and Krasa [11], Kocherlakota [15], and Corbae and
Ritter [5].
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then explicitly specify matching histories, and therefore we can formalize the degree of
informational isolation that exists among agents.

The paper is organized as follows. Section 2 introduces the mathematical background.
Sections 3 and 4 discuss pairwise random matching in a single period and over time and
characterize matching mechanisms according to the degree of informational isolation they
can sustain. Section 5 demonstrates how random matching economies can be constructed
in which traders are completely anonymous. Section 6 presents an application of our
theoretical construct to random matching models of money. Section 7 concludes.

2 Mathematical Background

If A is an arbitrary set, then |A| denotes its cardinality. As usual, |A| = N0 means that
A is countable and |A| = c indicates that the cardinality of A is the continuum. If A is a
union of a pairwise disjoint family of sets {Ai}i∈I , then we denote it by A =

⊔
i∈I Ai. If

A =
⊔

i∈I Ai, then we say that the family {Ai}i∈I partitions the set A.

Definition 1. A correspondence ψ from a set X to a set Y assigns to each x in X a
subset ψ(x) of Y . We write ψ : X →→Y to distinguish a correspondence from a function.

We use the correspondence concept since we intend to divide a population X into
separate clusters of agents. To do so, we focus on correspondences with X = Y , that
is ψ : X →→X. Furthermore, to formalize the notion of spatial separation of clusters, we
consider a special class of correspondences.

Definition 2. A correspondence ψ : X →→X is partitional if (a) x ∈ ψ (x) for every
x ∈ X, and (b) whenever y ∈ ψ(x), then ψ(y) = ψ(x). If, in addition, |ψ (x)| = k for all
x ∈ X, then we say that ψ is k-partitional.

This definition mirrors the one in [17, p. 68]. It states that an agent x always belongs
to the cluster ψ (x) and any two clusters either coincide or are disjoint.3 One can interpret
this as meaning that there is spatial separation among clusters. To see this note that, by
(b), if some agent y belongs to ψ (x), then x and y must be in the same cluster.

We use a correspondence ψ to partition the population into subsets of spatially sepa-
rated groups of agents, called clusters. Whether and how agents in a cluster can interact
with each other, depends on the matching rule. To formalize this, we use permutations.
A permutation of a non-empty set X is a one-to-one function φ from X onto X. If X
is a finite set, say X = {x1, x2, . . . , xk}, then a permutation φ on X is a matrix

φ =
(

x1 x2 . . . xk

y1 y2 . . . yk

)
,

3If z ∈ ψ(x) ∩ ψ (y), then ψ (z) = ψ (x) since z ∈ ψ (x) and ψ (z) = ψ (y) since z ∈ ψ (y). Thus,
ψ (x) = ψ (y).
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where yj = φ(xj) ∈ X and yj �= yi if i �= j. If φ is such that φ2 = φ ◦ φ = I on X,
that is, if the function φ composed with itself is the identity function, then φ is called an
involution; see [19]. Involutions formalize the concept of bilateral matchings.

3 Random Matching in a Period

In this section, we discuss how to match agents randomly in any representative period.
Thus, we omit the time subscript. We adopt a procedure that involves three separate
steps. First, using partitional correspondences, we specify how to divide the population
into spatially separated clusters of agents. Then, using involutions, we define and calculate
all possible ways to form pairs in each cluster. Finally, for each cluster, we specify a
probability measure over all possible pairings. This gives us the desired random matching
rule for a cluster and a random matching process for the population.

3.1 Step 1: Spatial separation using clustering rules

Since we want to deal with matches that are separated in space, we start by formalizing
the notion of spatial separation. To achieve this, we introduce the concept of a k-clustering
rule to divide the population X into clusters of k individuals each. Later, we will formalize
a notion of spatial separation for these clusters.

Definition 3. A k-clustering rule for a population X is a k-partitional correspondence
ψ : X →→X. We call ψ(x) the cluster of x.

Every k-clustering rule ψ induces a partition on the population X by selecting k
agents at a time that are placed in separate groups. That is, ψ partitions X into ‘slices’ or
equivalence classes.4 The family of equivalence classes is denoted {Xs}s∈S , where S is the
index set of all slices. In other words, for each s ∈ S there exists some x ∈ X such that
ψ(x) = Xs. For instance, if X = {a, b, c, d} and ψ generates the clusters ψ(a) = ψ(b) =
{a, b} and ψ(c) = {c, d}, then S = {1, 2} where X1 = {a, b} and X2 = {c, d}.

The natural question at this point is whether we can construct clustering rules on any
set. It turns out that not all populations can be partitioned according to a k-clustering
rule. The next result establishes a basic condition under which this can be done: it
requires to partition the population X into k subsets of identical cardinality.

4We note that given any partition, there is exactly one equivalence relation on X from which it is
derived. An equivalence relation on a set X is a binary relation ∼ on X satisfying the following three
properties: (1) (Reflexivity) x ∼ x for every x ∈ X; (2) (Symmetry) If x ∼ y, then y ∼ x; and (3)
(Transitivity) If x ∼ y and y ∼ z, then x ∼ z. Given an equivalence relation ∼ on a set X and an element
x ∈ X, the equivalence class of x is the subset of X defined by [x] = {y ∈ X : y ∼ x}. Note that x ∈ [x]
for all x ∈ X, and any two equivalence classes are either disjoint or equal. Given an equivalence relation on
X, the collection of all equivalence classes determined by ∼ is a partition of X. Thus, studying equivalence
relations is equivalent to studying partitions.
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A1 Ak-1A2 Ak

f2 fk-1
f1

Theorem 4 (Existence of clustering rules). If A1, A2, . . . , Ak are pairwise disjoint
sets having the same cardinality and X =

⊔k
i=1 Ai, then there exists a k-partitional corre-

spondence ψ : X →→X. In particular, ψ can be chosen so that for each x ∈ X the set ψ(x)
consists of k-elements one from each set Ai.

Proof. Since the sets Ai have the same cardinality, for each i = 1, . . . , k− 1, we can find a
function fi : Ai → Ai+1 which is one-to-one and surjective (onto). We claim the following:
If 2 ≤ j ≤ k and x ∈ Aj , then there exists a unique element rx ∈ A1 (called the root of
x) such that x = fj−1fj−2 · · · f1(rx). Indeed, note that the element rx =

(
f−1
1 · · · f−1

j−1

)
(x)

satisfies the desired property. That is:

If x = fj−1fj−2 · · · f1(x1), where x1 ∈ A1 and 2 ≤ j ≤ k, then rx = x1 . (�)

The uniqueness of rx should be obvious. If x ∈ A1, then we let rx = x.
Next, define ψ : X →→X by ψ (x) = {rx, f1(rx), f2f1(rx), . . . , fk−1fk−2 · · · f1(rx)}. It

should be clear that ψ (x) contains k elements such that ψ (x)∩Aj is a singleton for each
j = 1, 2, . . . , k. That is, ψ(x) consists of all elements of X that have rx as their root.
(Clearly, x ∈ ψ(x) and ψ(x) consists exactly of one element from each Ai.) To prove
that ψ is a k-partitional correspondence, it remains to be shown that if y ∈ ψ (x), then
ψ (y) = ψ (x). There are two cases to consider:

(1) y = rx ∈ A1. In this case, we have ry = rx, and so

ψ (y) = {ry, f1(ry), . . . , fk−1fk−2 · · · f1(ry)}
= {rx, f1(rx), . . . , fk−1fk−2 · · · f1(rx)} = ψ (x) .

(2) y �= rx. Here we have y = fj−1fj−2 · · · f1(rx) for some 2 ≤ j ≤ k. This, in con-
junction with (�), yields ry = rx. Thus, as above, ψ (y) = ψ (x). and the proof is
finished.

This completes the proof.

An illustration of the clustering rule described in Theorem 4 is shown in Figure 1.

Figure 1: The k-clustering rule of Theorem 4
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We note that k-clustering rules, if they exist, are not necessarily unique. This is due to
the flexibility in the selection of agents from each of the k sets which define the partition.
Clearly, we have many choices over the functions fi, 1 ≤ i ≤ k − 1, as long as they are
one-to-one and onto. A different k-partitional correspondence is generated by a different
choice of any of the fi.

What if the population X cannot admit k-clustering rules? Then, we can ‘normalize’
X (as long as it has at least k agents) so that a k-clustering rule can be constructed on a
subset of X. The remaining agents are assigned to clusters of one agent each.

Corollary 5. Let X =
(⊔k

i=1 Ai

) ⊔
A0 = Y

⊔
A0, where A0, A1, . . . , Ak are nonempty

pairwise disjoint sets and A1, . . . , Ak have the same cardinality. Then we can construct a
partitional correspondence ψ : X →→X such that (i) ψ on Y is k-partitional, and (ii) ψ on
A0 is 1-partitional.

Notice that we can always partition an infinite population X as in Corollary 5. Now
that we know how to group an arbitrary population X into clusters of agents, we study
how to pair agents in each cluster. In this way, we can also formalize a notion of spatial
separation for any economy.

3.2 Step 2: Bilateral matching using involutions

Suppose we have divided the population X according to ψ into the clusters {Xs}s∈S . We
want to pair agents only within each cluster Xs. To do so, we use involutions to define
bilateral matching rules on any set Ω.

Definition 6. A bilateral matching rule for a set of agents Ω is an involution of Ω.

Recall that a permutation of Ω is any one-to-one and onto function φ on Ω. This means
that any permutation can assign an agent to himself. However, such a permutation need
not be consistent with the idea of bilateral matching. For example, if Ω = {a, b, c}, then
a permutation may assign a to b, b to c, and c to a, which clearly is not a matching.
Therefore, we need the “involution” restriction: the inverse of the permutation φ must
coincide with itself or φ2 = I.

Now that we know what is a bilateral matching rule, we have a very natural way to
formalize the notion of spatial separation in the economy.

Definition 7. A spatially separated economy is a triplet (X, ψ, φ) such that:

(a) ψ : X →→X is a k-clustering rule on X, and

(b) φ : X → X is a bilateral matching rule that leaves each cluster Xs invariant, that is,
φ(Xs) ⊆ Xs for each s ∈ S.

6



Clusters of agents are spatially separated if an agent y belonging to a cluster ψ(x)
can only meet an agent who also belongs to ψ(x). A bilateral matching rule does not
necessarily match every agent to someone else, in his own cluster. We say that a bilateral
matching rule on Ω is exhaustive if no agent in Ω is unmatched, that is if φ(ω) �= ω for
all ω ∈ Ω. Of course, several bilateral matching rules exist—exhaustive or not. Thus, it
is natural to ask how many possible pairings of the k agents in Ω can be accomplished.

Definition 8. The collection of all bilateral matching rules on Ω is denoted B (Ω).

For the rest of this paper, Ω = {ω1, . . . , ωk} will denote a finite set of k agents. Notice
that B ({ω1, . . . , ωk}) consists of all possible ways in which the k agents in Ω can be
bilaterally arranged—either by pairing them with someone else or with themselves. Since
the cardinality of the set of all possible permutations of Ω is k! and B(Ω) is a subset of
the set of all permutations, it follows that B (Ω) is also a finite set whose cardinality is
less than k!. The number of possible bilateral matching rules in Ω can be determined
recursively as follows.

Lemma 9. If �k = |B (Ω) | is the number of all possible bilateral matching rules on a set
Ω with k agents, then �1 = 1, �2 = 2, and �k+1 = �k + k�k−1 for k ≥ 2.

Proof. It is obvious there is only one way to arrange one agent and two ways to arrange
two agents. Thus �1 = 1 and �2 = 2. Now, suppose we have k + 1 ≥ 3 agents in a cluster.
There are two possibilities: (1) agent k + 1 is matched to himself, and (2) agent k + 1
is matched to someone else. In case (1), according to the definition of possible bilateral
matching rules, the remaining k agents can be matched in �k different ways. In case (2)
agent k + 1 can be matched to any one of the other k agents. The remaining k − 1 agents
can be matched in �k−1 different possible ways. Therefore �k+1 = �k + k�k−1.

We can also calculate the number of possible exhaustive bilateral matching rules for
a cluster of k agents.

Lemma 10. Let nk and ek denote the number of possible non-exhaustive and exhaustive
bilateral matching rules on a set Ω of k ≥ 2 agents. Then:

(a) n1 = 1, n2 = 1 and nk+1 = �k + knk−1 for k ≥ 2 .

(b) e1 = 0, e2 = 1 and ek+1 = kek−1 for k ≥ 2 .

Furthermore, e2k+1 = 0 and e2k = (2k)!
2kk!

for k = 1, 2, 3, . . . .

Proof. It is obvious that n1 = n2 = 1 since in both cases only the identity is non-
exhaustive. If k ≥ 2, then there are two possibilities: agent k + 1 is matched to himself
or to someone else. In the first case the remaining k agents can be paired in �k different
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ways. Otherwise, agent k + 1 can be paired to any of the k agents and the remaining
k − 1 agents can be paired in nk−1 different possible non-exhaustive ways. Therefore
nk+1 = �k + knk−1.

Now notice that the number of possible exhaustive pairings is just the difference be-
tween the total number of possible pairings and the number of all possible non-exhaustive
pairings. Thus, we have e1 = �1 − n1 = 0 and e2 = �2 − n2 = 1. Also,

ek+1 = �k+1 − nk+1 = k(�k−1 − nk−1) = kek−1 .

The latter, in conjunction with e1 = 0, implies that e2k+1 = 0 for k = 1, 2, 3, . . . . By
induction, it is easy to see that e2k = (2k)!

2kk!
. If k = 1, then clearly e2 = 2!

2×1! = 1. For

the induction step, assume that e2k = (2k)!
2kk!

is true for k ≥ 1, then we have to show it
is true for k + 1. To see this, note that using the recursive formula for ek+1 we have
e2(k+1) = (2k + 1)e2k = (2k + 1) (2k)!

2kk!
= (2k+2)!

2k+1(k+1)!
.

As an example, let k = 3 and Ω = {a, b, c}. Then the number of all possible pairings
(i.e., bilateral matching rules) is �3 = n3 = 4. The set consisting of all bilateral matching
rules is B({a, b, c}) = {φ1, φ2, φ3, φ4}, where

φ1 =
(

a b c
b a c

)
, φ2 =

(
a b c
a c b

)
, φ3 =

(
a b c
c b a

)
, φ4 =

(
a b c
a b c

)
.

That is, there are four possible ways to pair the agents a, b and c. We can leave them
unmatched, which is the permutation φ4 or we can form pairs leaving one agent unmatched
according to φ1, φ2 and φ3. What is interesting is that (as the next table demonstrates)
even for relatively small clusters of agents the number of possible pairings is very large.

k �k nk ek

1 1 1 0
2 2 1 1
3 4 4 0
4 10 7 3
5 26 26 0
6 76 61 15
7 232 232 0
8 764 659 105
...

...
...

...
20 23,758,664,096 23,103,935,021 654,729,075

An immediate consequence is that we can generate a very large number of possible
pairings despite the use of finite clusters of agents. This is very convenient, since it allows
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us to construct bilateral matches that are random by selecting randomly one out of many
possible pairings in each cluster. The mechanics of this are described in the sequel.

3.3 Step 3: Random pairings using probability measures

We start by formalizing a notion of a random matching.

Definition 11. A stochastic bilateral matching rule on Ω = {ω1, . . . , ωk} (or a
stochastic rule) is simply a probability measure f on B (Ω).

Using this formalization we now show how to construct random pairings on Ω.

Lemma 12. Every stochastic rule f on a set Ω = {ω1, . . . , ωk} induces a probability
measure F : Ω × Ω → [0, 1] via the formula

F (ωi, ωh) =
∑

{φ∈B(Ω): ωi=φ(ωh)}
f(φ) = f ({φ ∈ B (Ω) : ωi = φ(ωh)}) .

The measure F satisfies the following properties:

(i) For all i and h we have F (ωi, ωh) = F (ωh, ωi).

(ii) For each fixed ωh ∈ Ω we have
∑k

i=1 F (ωi, ωh) = 1.

(iii) If k is odd, then F (ωi, ωi) > 0 for some i.

Moreover, F defines a doubly stochastic matrix5

ω1 ω2 . . . ωk

ω1 F (ω1, ω1) F (ω1, ω2) . . . F (ω1, ωk)
ω2 F (ω2, ω1) F (ω2, ω2) . . . F (ω2, ωk)
...

...
...

. . .
...

ωk F (ωk, ω1) F (ωk, ω2) . . . F (ωk, ωk)

Proof. Part (i) follows from the fact that ωi = φ(ωh) if and only if ωh = φ(ωi). To prove
part (ii), fix ωh ∈ Ω and note that

⊔k
i=1 {φ ∈ B (Ω) : ωi = φ(ωh)} = B (Ω). This implies

k∑
i=1

F (ωi, ωh) =
k∑

i=1

f ({φ ∈ B (Ω) : ωi = φ(ωh)}) = f (B (Ω)) = 1.

To see (iii), observe that if k is odd, then for all φ ∈ B (Ω) there exists some ωi ∈ Ω
such that ωi = φ(ωi) and so B(Ω) =

⋃k
i=1{φ ∈ B(Ω): ωi = φ(ωi)}. This implies that

F (ωi, ωi) > 0 holds true for some i.
5A non-negative real matrix is doubly stochastic if each row and column sums up to one.
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A stochastic rule on Ω selects with probability f(φ) the pairings specified by the
matching rule φ ∈ B (Ω). Since each φ assigns every agent ωi ∈ Ω to someone in Ω, then
we can calculate the probability that ωi meets ωh. To do so, note that each φ in B (Ω) can
be considered as an independent outcome. We define the probability of a match between
ωi and ωh as F (ωi, ωh) and compute it by adding the probabilities f(φ) associated to
those outcomes in which ωi meets ωh. Looking across all possible pairings, this gives rise
to the doubly stochastic matrix exhibited in the statement of Lemma 12. Clearly, from
such a matrix we can always reconstruct the probability measure f .

Now that we know how to construct random pairings on any finite set of agents Ω, we
can formalize a notion of random matching for the entire population.

Definition 13. A stochastic bilateral matching process over a population X relative
to a k-clustering rule ψ : X →→X is a family F = {fs}s∈S of probability measures, where
fs is a stochastic rule over B (Xs) and {Xs}s∈S is the collection of clusters induced by ψ.

Briefly, here is how we randomly pair agents. We start by using a clustering rule ψ to
partition the population X into spatially separated clusters Xs of k agents each.6 Once
this is done, we find all possible ways to pair agents within each cluster Xs, which gives
rise to the set B(Xs). Given this, we specify a probability measure over B (Xs), which
is our stochastic rule. The collection of all such rules for {B (Xs)}s∈S is the stochastic
bilateral matching process F .7 Thus, F induces a family of probability measures {Fs}s∈S

satisfying the properties in Lemma 12. A single realization of this stochastic process
generates a unique match of the population. We call a stochastic bilateral matching
process F over the population X exhaustive, if Fs(ω, ω) = 0 for all agents ω ∈ Xs and
all s ∈ S. Clearly, this cannot occur if the k-partitional correspondence ψ has k odd;
see item (iii) in Lemma 12. Next we show how to construct mechanisms that pair agents
randomly over time.

4 Random Matching Over Time

Consider discrete time t = 0, 1, 2, . . . . We start by having agents unmatched. We say
that a sequence Ψ = {ψt}∞t=0 is a k-clustering mechanism if ψt is a k-clustering rule for
the population X in every period t ≥ 1. In this way, we can construct random bilateral
matches over time by specifying a sequence of bilateral stochastic matching processes.

Definition 14. A bilateral stochastic matching mechanism (or a stochastic mech-
anism) over a population X is a quadruplet (X, Ψ,Φ,F), where:

6The index set S can be countable or uncountable. For example, if X = [0, 1] then there are infinitely
many clusters of k agents, and S is uncountable. In fact, since a countable union of countable sets is
countable it must be the case that |S| = c.

7Since the clusters Xs are finite sets and we randomly pair agents only within the same cluster (spatial
separation), questions regarding measurability issues are irrelevant here.
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(i) Ψ is a k-clustering mechanism over X,

(ii) Φ = {φt}∞t=0 is a sequence of bilateral matching rules on X such that the triplet
(X, ψt, φt) is a spatially separated economy for each t, and

(iii) F = {Ft}∞t=0 is a sequence of stochastic bilateral matching processes such that:

(a) F0 satisfies φ0(x) = x for each x ∈ X, and

(b) Ft is a stochastic bilateral matching process for ψt for each t ≥ 1.

The stochastic mechanism gives the probability that on each date t �= 0 an agent x gets
matched to someone in his own cluster ψt(x). Clearly, every agent meets some other agent
in each period t �= 0 if Ft is exhaustive in each t �= 0. The collection of all deterministic
bilateral matching mechanisms is a subset of all stochastic mechanisms, where Ft induces
a family of degenerate probability measures in each period.

It is convenient to call the agents in ψt(a) the clustermates of a in period t. Among
these agents, there is only one agent φt(a) ∈ ψt(a) who is the partner of a in period t.
To account for the information that may be available in a match, we need to examine the
agents’ matching histories. To do so, one must keep track of the clusters to which paired
agents belong on each date. We denote by Pt(a) the set of all clustermates of a (including
a himself) in periods up to and including t. That is,

Pt(a) =
t⋃

τ=0

ψτ (a) .

While Pt(a) accounts for all agents that belonged to the same clusters to which a
belonged, it excludes agents that were clustermates of a’s clustermates and partners, and
so on. There is an easy way to keep track of all these ‘indirect’ connections among agents
in a recursive manner. Denote by Πt(a) the set of a’s past and current clusters, the
clusters to which a’s current clustermates belonged in the past, and so on. That is, let

Πt(a) =
{

P0(a) for t = 0⋃
b∈ψt(a)Πt−1(b) for t ≥ 1 .

By an inductive argument, we can see that Pt(a) ⊆ Πt(a) and, although Πt(a) is a very
large set, it is finite since it is a finite union of finite sets. Also, Πt(a) does not include
anyone who has been in a cluster with a’s partners (or clustermates) after these agents
moved away from agent a.

Why do we need all this complex machinery? The reason is now that we know how
to match agents over time, we want to be able to discuss how the matching technology in
place affects the flow of information in the marketplace. That is, we want to make explicit
how different matching mechanisms generate (or remove) obstacles to informational flows.
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This issue deals with the broadly defined notion of ‘anonymity’ in trade, which is often
seen as a central assumption in several models of matching.8 The question we need to
answer at this point is the following: what does it exactly mean for matched agents to
be anonymous? To formalize a notion of anonymity, we need to take two steps. First, we
must know how to look into an agent’s past. This was already done by introducing the sets
Pt(a) and Πt(a), which trace the matching history of everybody, as in Kocherlakota [15].
Second, we need to formalize how these matching histories can be used to define the
information that can be available to agent in a match. This will be done next.

Definition 15. A k-clustering mechanism Ψ on the population X is said to be:

(1) Eventually weakly anonymous, if for each a ∈ X there is some t ≥ 0 such that

(i) ψτ ′(a) ∩ ψτ (a) = {a} for all τ ′, τ ≥ t with τ ′ �= τ , and

(ii) Pt(a)
⋂ [⋃∞

τ=t+1ψτ (a)
]

= {a} .

(2) Weakly anonymous, if for all a ∈ X, all t ≥ 0 and all τ �= t we have

ψt(a) ∩ ψτ (a) = {a} .

(3) Anonymous, if for all a ∈ X, all t ≥ 0 and all b ∈ ψt+1(a) with b �= a we have

Pt(a) ∩ Pt(b) = �© .

(4) Strongly anonymous, if for all a ∈ X, all t ≥ 0 and all b ∈ ψt+1(a) with b �= a we
have

Πt(a) ∩ Πt(b) = �© .

We say that a stochastic mechanism (X, Ψ,Φ,F) is eventually weakly anonymous,
if the k-clustering mechanism Ψ is eventually weakly anonymous. (Analogous properties
can be defined for the other notions of anonymity.)

This definition allows us to consistently formalize the levels of informational isolation
that can exist in the economy. As a rule, stronger degrees of anonymity provide stricter
restrictions on the informational flows that can take place among agents.

The eventual weak anonymity notion captures the idea that the matching mechanisms
may allow some agents to repeatedly interact only in the short run. After some period
these agents will move out to different clusters. Under weak anonymity, instead, clusters
cannot be formed with the same agents. It follows that if an agent a is paired to b on
some date, then a and b have never met before and will never meet again. However, the

8For instance, anonymity is a prominent feature in the foundations of the money literature (e.g., see
Ostroy [18]) and the social norms literature (e.g., see Kandori [13]).
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possibility exists that b might have met either one of a’s past partners or one of a’s former
clustermates. To remove these possibilities of direct or indirect linkages among agents, we
need to add restrictions to the mechanics of matching. These are progressively formalized
in the notions of anonymity and strong anonymity. Strong anonymity removes all possible
direct and indirect links among agents who belong to the same cluster. This reflects a
suggestion made by Kocherlakota [15]. What’s more, strong anonymity rules out any
future direct and indirect links among these agents and stronger degrees of anonymity
imply weaker degrees of anonymity; see [1, Lemmas 8 an 9].

The central question at this point is whether random pairings exist that are strongly
anonymous. That is to say, is it possible to construct a class of matching mechanisms
that can ensure total informational isolation in every meeting? We provide an affirmative
answer to this challenging question in the next section.

5 Constructing Anonymous Random Matches

For anonymous matching mechanisms we need an infinite population X. At date t = 0,
we partition X in a countable number of sets A1, A2, . . . of identical cardinality.9 Thus,
we have an initial partition X =

⊔∞
n=1 An. Then, in each t ≥ 1 we divide X into clusters,

building on this initial partition, using k sets at a time. To do this, we need to describe
how to partition the population over time. The construction of these partitions—referred
to as a recursive block-partition—is described by the recursive method illustrated
below. (The brackets below indicate the partition sets.)

Period Block partition of the population X

0 X = A1
⊔

A2
⊔

A3 · · ·

1 X = 〈A1
⊔

· · ·
⊔

Ak〉
⊔

〈Ak+1
⊔

· · ·
⊔

A2k〉
⊔

· · ·

2 X = 〈A1
⊔

· · ·
⊔

Ak2〉
⊔

〈Ak2+1

⊔
· · ·

⊔
A2k2〉

⊔
· · ·

...
...

t X =
⊔∞

n=1

〈
A(n−1)kt+1

⊔
A(n−1)kt+2

⊔
· · ·

⊔
Ankt

〉

=
⊔∞

n=1

⊔kt

j=1
A(n−1)kt+j

=
⊔∞

n=1
Bt

n =
〈
Bt

1

⊔
· · ·

⊔
Bt

k

〉 ⊔ 〈
Bt

k+1

⊔
· · ·

⊔
Bt

2k

〉 ⊔
· · ·

=
⊔∞

n=1

〈
Bt

kn−(k−1)

⊔
· · ·

⊔
Bt

kn

〉
=

⊔∞
n=1

Bt+1
n

...
9This means An can be countable or uncountable.
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where we have defined Bt
n =

⊔kt

j=1 A(n−1)kt+j for n = 1, 2, . . . and t ≥ 1. For example, for
t = n = 1 then B1

1 =
⊔k

j=1 Aj = 〈A1
⊔

. . .
⊔

Ak〉.
It should be clear that for each t ≥ 1 the sets Bt

1, B
t
2, . . . (called the blocks of the

population in period t) are pairwise disjoint and have the same cardinality. Moreover,
Bt+1

n =
〈
Bt

kn−(k−1)

⊔
· · ·

⊔
Bt

kn

〉
holds for n = 1, 2 . . . and t ≥ 1, so that Bt+1

n is a union
of k pairwise disjoint sets of identical cardinality. By Theorem 4, we can construct for
each n and t ≥ 1 a k-clustering rule ψn,t : Bt+1

n →→Bt+1
n such that given any x ∈ Bt+1

n the
set ψn,t(x) consists of k agents, one from each of the k blocks Bt

kn−(k−1), . . . , B
t
kn. For

each t we have a k-clustering rule ψ∗
t : X →→X defined for each x ∈ Bt+1

n by

ψ∗
t (x) = ψn,t(x) .

We also let ψ∗
0 = I, the identity on X.

Definition 16. Any k-clustering mechanism Ψ∗ constructed as above is called recursive
block-invariant.

Since spatial separation guarantees that on each date matches occur among agents
that belong to the same cluster, it follows that the recursive block-invariant mechanisms
ensure total informational isolation. Here is the result that formalizes this intuition.

Theorem 17 (Existence of strong anonymity). Every recursive block-invariant mech-
anism is strongly anonymous.

Proof. The proof will be based upon the following two properties. For each n = 1, 2, . . .,
each t ≥ 0 and each 0 ≤ τ ≤ t we have:

(1) ψ∗
τ

(
Bt+1

n

)
= Bt+1

n , and

(2) Πτ (x) ⊆ Bt+1
n for all x ∈ Bt+1

n .

The proof of (1) is by induction on t. For t = 0 it is obvious that ψ∗
0

(
B1

n

)
= B1

n for all
n, since by our definition ψ∗

0 (x) = {x} for all x ∈ X. Therefore, for the induction step,
assume that for some t ≥ 0 we have ψ∗

τ

(
Bt+1

n

)
= Bt+1

n for all n and all 0 ≤ τ ≤ t. We
want to prove that for any given n we have ψ∗

τ

(
Bt+2

n

)
= Bt+2

n for each τ = 0, 1, . . . , t + 1.
Start by observing that by the induction hypothesis ψ∗

τ

(
Bt+1

n

)
= Bt+1

n holds true for
all τ = 0, 1, . . . , t. Now note that Bt+2

n = Bt+1
kn−(k−1)

⊔
· · ·

⊔
Bt+1

kn . But then for each
τ = 0, 1, . . . , t we have

ψ∗
τ

(
Bt+2

n

)
= ψ∗

τ

( kn⊔
j=kn−(k−1)

Bt+1
j

)
=

kn⋃
j=kn−(k−1)

ψ∗
τ

(
Bt+1

j

)

=
kn⊔

j=kn−(k−1)

Bt+1
j = Bt+2

n .
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Also, by definition ψ∗
t+1

(
Bt+2

n

)
= Bt+2

n . Therefore, ψ∗
τ

(
Bt+2

n

)
= Bt+2

n holds true for each
n and all τ = 0, 1, . . . , t + 1, and the validity of (1) has been established.

The proof of (2) is by induction on τ . For τ = 0 notice that for each x ∈ Bt+1
n we

have Π0(x) = {x} ⊆ Bt+1
n . For the inductive step assume that for some 0 ≤ τ < t we have

Πτ (x) ⊆ Bt+1
n for all x ∈ Bt+1

n . We must show that Πτ+1(x) ⊆ Bt+1
n for all x ∈ Bt+1

n .
Fix x ∈ Bt+1

n . From (1) we get ψ∗
τ+1(B

t+1
n ) = Bt+1

n , and so ψ∗
t+1(x) ⊆ Bt+1

n . Therefore,
each element y ∈ ψ∗

τ+1(x) belongs to Bt+1
n . But then our induction hypothesis yields

Πτ (y) ⊆ Bt+1
n for each y ∈ ψ∗

τ+1(x), and so Πτ+1(x) =
⋃

y∈ψ∗
τ+1(x) Πτ (y) ⊆ Bt+1

n .
We are now ready to show that Ψ∗ is strongly anonymous. To this end, assume that

a, b ∈ X satisfy a �= b, and b ∈ ψ∗
t+1(a) with t ≥ 1. Since a ∈ X =

⊔∞
n=1 Bt+1

n there exists
a unique natural number n such that a ∈ Bt+1

n . Since the correspondence ψ∗
t+1 restricted

to Bt+2
n is k-partitional, it follows that there exists some j �= n such that b ∈ Bt+1

j . But
then it follows from (2) that Πt(b) ⊆ Bt+1

j . Using (2) once more we get Πt(a) ⊆ Bt+1
n .

Finally, taking into account that Bt+1
j ∩Bt+1

n = �© we easily infer that Πt(a)∩Πt(b) = �©,
and the proof is finished.10

This theorem demonstrates that (given any infinite population X) a simple matching
technique exists that ensures complete informational isolation in each match and in each
period. The necessary ingredient is an initial partition of the set X composed of countably
many pairwise disjoint sets of identical cardinality (see the examples in [1]).

For instance, suppose we want to construct clusters of k = 3 agents on a population X
consisting of the natural numbers. The initial partition is X =

⊔∞
n=1 {n} =

⊔∞
n=1 An, so

each An has cardinality one. According to our recursive-block partition, in t = 0 we have
B1

n = An = {n}. For t = 1, we have B2
n = B1

3n−2 � B1
3n−1 � B1

3n = {3n − 2, 3n − 1, 3n},
and so on. An implementation of the recursive-block invariant mechanism Ψ∗ is shown in
the table below.

t
0 [1] [2] [3] [4] [5] [6] [7]
1 [ 1,2,3 ] [ 4,5,6 ] [ 7,8,9 ] [ 10,11,12 ] [ 13,14,15 ] [ 16,17,18 ] [ 19,20,21 ]
2 [ 1,4,7 ] [ 2,5,8 ] [ 3,6,9 ] [ 10,13,16 ] [ 11,14,17 ] [ 12,15,18 ] [ 19,22,25 ]
3 [ 1,10,19 ] [ 2,11,20 ] [ 3,12,21 ] [ 4,13,22 ] [ 5,14,23 ] [ 6,15,24 ] [ 7,16,25 ]
...

Table 1

10Property (1) is related to the notion of invariance with respect to a function. Given a function
f : X → X, a subset S of X is said to be f -invariant if f(S) ⊆ S, i.e., f(x) ∈ S for all x ∈ S. According
to this terminology, for each t ≥ 0, each n and all τ = 0, 1, . . . , t the sets Bt+1

n are ψ∗
τ -invariant. This

implies that one can construct strongly anonymous mechanisms as long as ψ∗
τ

(
Bt+1

n

)
⊆ Bt+1

n . The equality
ψ∗

τ

(
Bt+1

n

)
= Bt+1

n is not necessary for strong anonymity.
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That is, in t = 1, ψ∗
1 (1) = ψ∗

1 (2) = ψ∗
1 (3) = {1, 2, 3}. In t = 2 we have ψ∗

2 (1) = ψ∗
2 (4) =

ψ∗
2 (7) = {1, 4, 7}, and so on. It is easy to see that agents in any cluster have no direct or

indirect links to prior clustermates. That is, this mechanism is strongly anonymous.

6 An Application: Random Matching Models of Money

Here we demonstrate how the theoretical construction we have developed can be used to
provide a foundation to the existing matching literature. To do so, we focus on search-
theoretic models of money. These are models in which infinitely-lived agents are assumed
to meet randomly and pairwise over time, but are never paired more than once and
cannot observe the trading histories of others. These, as well as additional conditions
on preferences and technologies, make trading frictions explicit and provide a definite
medium-of-exchange role to fiat money.

The seminal paper in this literature is Kiyotaki and Wright [14], which describes a
discrete-time monetary economy with a continuum population of mass one. Agents can be
one of three types, in equal proportions. While the matching technology is not formalized,
the paper contains the following description of the outcome of the matching process:

“. . ., each period, agents are matched randomly in pairs and must decide
whether or not to trade bilaterally, without the benefit of an auctioneer or
some other outside authority to impose any arrangement. Trade always entails
a one-for-one swap of inventories, given the physical environment, and occurs
if and only if mutually agreeable (there is no credit since a given pair will meet
again with probability 0).”

We now formalize a matching process that satisfies such a description and explain how
to ensure that matching is done so that there is no credit. That is, not only every pair
meets again with probability zero (which we called weak anonymity), but also we show
how to ensure that every pair does not share past partners, etc. In brief, we construct
matches in which agents are completely isolated from an informational standpoint.

Here are the steps one needs to take. First, select a population with infinitely many
agents. To do so, let for instance X = N = {1, 2, 3, . . .}. Second, divide the population
into three types of agents in equal “proportions.” Therefore, we let agents {1, 4, 7, . . .} be
of type I, agents {2, 5, 8, . . .} be of type II, and agents {3, 6, 9, . . .} be of type III. Third,
ensure that each agent has probability 1

3 to meet an agent of any type in each period.
To do so, we restrict attention to k-clustering rules which include multiples of three. In
this way we can have an equal number of agents of each type in each cluster. Then we
choose a probability measure over the set of �k matching rules, such that each agent has
probability 1

3 to be matched to any type.
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As an example, let k = 3 and consider the cluster Ω = {1, 2, 3}. The number of all
possible pairings (i.e., bilateral matching rules) is �3 = 4. The set that lists all possible
bilateral matching rules is B({1, 2, 3}) = {φ1, φ2, φ3, φ4}, where

φ1 =
(

1 2 3
2 1 3

)
, φ2 =

(
1 2 3
1 3 2

)
, φ3 =

(
1 2 3
3 2 1

)
, φ4 =

(
1 2 3
1 2 3

)
.

If we consider the probability measure f on B(Ω) defined by f(φ1) = f(φ2) = f(φ3) = 1
3

and f(φ4) = 0, then each type has equal probability of meeting any of the three types.
The number of bilateral matching rules �k grows large very quickly. So, the probability

of any given matching rule being chosen drops rapidly to zero as k grows. That is, the
chance of meeting any one agent drops to zero rapidly as the size of the cluster grows. To
ensure matches are anonymous, we use a recursive block-invariant clustering mechanism.
As an illustration, consider agent 1 and the clusters to which he belongs over time as
shown in Table 1. In period t = 0 agent 1 is by himself. In period t = 1 he is in a cluster
with agents 2 and 3. In period t = 2 agent 1 is in a cluster with agents 4 and 7, and so
on. In general, on date t > 0 agent 1 is in a cluster with agents 3t−1 + 1 and 2× 3t−1 + 1.
So, agents are matched randomly and once matched they will never meet again.

7 Final Remarks

We have formalized a way to model random pairwise interactions, focusing on the links
between matching technologies and degrees of informational isolation. Our theoretical
construct contributes to building more solid foundations for matching models, can be
helpful to study how informational and spatial constraints affect the allocations, and can
be used to improve the formulation of spatially separated and informationally isolated
trading environments (e.g. see [2, 3]). In fact, our theory shows that, to achieve consid-
erable informational isolation, random matches cannot be “generic” and one has to work
hard at constructing anonymous matching mechanisms. One may interpret this feature as
saying that substantial anonymity in trading may be perhaps too strong of an assumption.
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