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Anonymous Markets and Monetary Trading∗

C. D. Aliprantis,1 G. Camera,1 and D. Puzzello2

1Department of Economics, Purdue University, West Lafayette, IN 47907–2056, USA
aliprantis@mgmt.purdue.edu; gcamera@mgmt.purdue.edu

2 Departments of Economics and Mathematics, University of Kentucky, Lexington, KY 40506-0034,
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ABSTRACT: We study infinite-horizon monetary economies characterized by trading frictions
that originate from random pairwise meetings, and commitment and enforcement limitations. We
prove that introducing occasional trade in “centralized markets” opens the door to an informal
enforcement scheme that sustains a non-monetary efficient allocation. All is required is that trading
partners’ be patient and their actions be observable. We then present a matching environment in
which trade may occur in large markets and yet agents’ trading paths cross at most once. This
allows the construction of models in which infinitely-lived agents trade in competitive markets
where money plays an essential role.

Keywords and Phrases: Anonymity, Money, Infinite games, Matching, Social norms

JEL Classification Numbers: C72, C73, D80, E00

1 Introduction

A large segment of monetary literature revolves around the use of models that prominently
display various obstacles to the trading process. The motivation behind this modeling
choice is that in an ideal monetary framework money should be ‘essential,’ i.e., eliminating

∗This work has been presented at the 14th Texas Monetary Conference at Texas A&M, April
2006, the CARESS–Cowles Conference on General Equilibrium at Yale, April 2006, the Midwest
Macro Meetings 2006 and the Cleveland Fed monetary workshop 2006. This research is supported
in part by the NSF grants SES-0128039 and DMS-0437210.
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it from the economy should result in efficiency loss.1 This guiding principle has led to
the creation of models in which trade is of an intertemporal nature but two intertwined
frictions, concerning agents’ feasible interactions and access to information, all but rule
out credit arrangements. First, a meeting process is imposed that allows only pairwise
trade among agents having no lasting relationships and who may be anonymous. Put
simply, the ‘trading paths’ of any two agents are assumed to cross at most once. Second,
there are commitment and enforcement limitations, so any allocation must be compatible
with individual incentives.

This paper is a theoretical study of the role of meeting and anonymity frictions in
modeling money. It is motivated by recent efforts directed at improving the search model
of Kiyotaki and Wright [21], which prominently displays an essential role for money. In
the typical search model randomly formed pairs of agents use money to overcome exchange
problems due to idiosyncratic shocks. Such features, unfortunately, generate analytically
intractable distributions of balances when money is divisible (e.g., see [11, 15, 16]). This
has inhibited a broader integration of this modeling technique into the “toolbox” of the
typical macroeconomist, especially those interested in policy analysis.

This issue has spurred interest in developing frameworks that vary the basic search
model with the goal of obtaining degeneracy in equilibrium holdings. This basic remedy is
at the core of the work of Shi [27], who cleverly models the population as a continuum of
families, each encompassing a continuum of agents. Degeneracy arises from an involuntary
redistribution of money holdings within each family, after each round of random match-
ing. Another clever variation is in Lagos and Wright [23]. They achieve degeneracy by
introducing a round of Walrasian ‘centralized’ trading after each round of bilateral random
‘decentralized’ trading. Though this alters the key meeting friction of the typical search
model, the basic premise of the model in [23] is that anonymity and random decentralized
pairings are frictions sufficient for money to be essential.2 Naturally, one wonders whether
this intuition is generally accurate and, if it is not, whether we can construct economies
in which money is essential to sustain trade in large competitive markets. This would
bring us closer to better integrating the literature on the foundations of money with the
mainstream macroeconomic literature, as advocated by some observers (e.g., see [20]).

Our study makes two contributions. We start by clarifying that random pairing of
anonymous traders is not a friction sufficient to make money essential. To do so we
consider environments with alternating decentralized and centralized markets, determin-
istically or not. We demonstrate that eliminating money need not reduce efficiency, if
actions of trading partners are observable and agents are sufficiently patient. The analy-
sis, which complements and develops more formally the arguments advanced in [5], follows
the work of [12] and [19], on existence of efficient and individually rational outcomes in

1 Methodological observations of this flavor are, for example, in [17, 25, 29]. Studies in [18] and [22]
focus on the essentiality of money.

2For example, see [23, p. 466], [26, p. 175], or [8, p. 467].
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repeated anonymous matching games. The idea is that if agents can quickly inform others
of privately observed undesirable behavior, then a credible informal enforcement scheme
exists that sustains the efficient allocation. Intuitively, money has a role to play when
obstacles to widespread information transmission exist (see [18, 22]) and, indeed, the ran-
dom matching scheme in [21] is a device to naturally fragment the information exchange
process. Introducing centralized trading opens the door to the rapid exchange of infor-
mation among significant portions of the population, which makes money inessential.3

However, this finding is not robust to adding a small amount of noise in the observation
of individual behavior, since equilibria would arise similar to those in the continuum limit
where individual behavior is unobservable (see for instance [6, 13, 14, 24]).

Based on these findings, we then offer a second contribution. We explain how to con-
struct physical environments in which agents interact in markets with (infinitely) many
other participants, and yet money is essential. In particular, we present a matching frame-
work, based on the studies in [3, 4], which can be used to model a variety of trade meetings,
bilateral and multilateral, deterministic and stochastic. We use this framework to outline
an economy in which infinitely-lived agents repeatedly move in and out of markets popu-
lated by numerous anonymous agents who, however, are always complete strangers because
their trading paths intersect at most once. Such a physical environment gives rise to in-
formational frictions that make money essential. In this manner our study complements
recent developments in modeling monetary economies. For instance, the techniques we
present allow the design of possible physical environments underlying monetary economies
with alternating decentralized and centralized markets in the spirit of [23], or with ran-
dom matching of continuum of agents as in [27], or with spatially separated competitive
markets as in [28]. In addition, these techniques can be used to further the modeling of
environments where money is necessary to support trade in large competitive markets (see
for instance [9]). This can bring us closer to the desirable stage of better integrating the
literature on the foundations of money with the mainstream macroeconomic literature.

2 The physical environment

We describe an environment that captures the salient features of the model in [23]. Time
is discrete and infinite, indexed by t = 0, 1, 2 . . . . There is a constant population J = N
of identical infinitely-lived agents and a single perishable good that can be produced by a
fraction of the population at each date. Even and odd periods differ in terms of preferences,
economic activities, and matchings. We start by formalizing this last element, as it is a
central building block.

In each period t, interactions among agents are determined by an exogenous matching
process that specifies a partition of the population into trading groups. We define a match

3The study in [10], where agents choose to meet pairwise randomly or to costly trade in a centralized
market, also suggests that money may not be essential when a centralized market is available.
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for agent j ∈ J in a period t to be a group of people Gt(j) ⊆ J , which includes agent j and
possibly others. The agents in Gt(j) are called partners of j in period t. Let βt : J → J
be a stochastic bilateral matching rule, i.e., a function that partitions the population in
matches composed of one or two randomly selected agents. (For details see [3].)

Date t = 0 is an initial period in which, for convenience, we assume that agents are
‘idle,’ i.e., G0(j) = {j} for all j ∈ J. In every other date t ≥ 1 we assume a matching
process such that

Gt(j) =
{

{j, βt(j)} if t odd
J if t even,

(2.1)

where βt(j) = j with probability 1−α for each j ∈ J . That is, in odd periods agents may
be paired to someone else, with probability α, while in even periods they all belong to an
economy-wide group. We say that trading in odd periods is decentralized, while in even
periods is centralized, as suggested in [23].

Following the matching literature, we identify each match G as a distinct area of
economic interaction. To be more precise, it is assumed that agents can exchange objects
only with their partners, cannot directly communicate with each other, and can only
observe actions and outcomes in their current match—ignoring what has happened in
every other match (e.g., [21, 28]).4 This is referred to as spatial separation and limited
communication. There is also anonymity, in that each agent ignores the partition of the
population in odd periods and neither observes nor can verify the identity and trading
history of others (e.g., [19, 26]). Finally, there is absence of commitment and enforcement,
in that agents can always refuse to take an action without being subject to retribution.5

Thus, actions must be compatible with individual incentives (e.g., [18, 22]).
It is assumed that trade is necessary for consumption to take place. Specifically, in

odd periods in each pair of agents a flip of a fair coin determines which one of them is a
producer and who is a consumer. In even periods agents can produce and consume. Each
producer can supply an amount a ∈ [0, a] of labor to a linear technology that transforms
it into a consumption goods. The producer suffers disutility a, and derives no utility
from consumption of his own production. In odd periods, every consumer has utility
uo(c) from consuming c ≥ 0 goods, and in each even period everyone has utility ue(c).
Assume that the functional forms of preferences satisfy the Inada conditions, that zero
consumption generates zero utility, and that a ∈ (c∗o + c∗e,∞), where c∗o and c∗e satisfy
u

′
e(c

∗
e) = u

′
o(c

∗
o) = 1.

In every period t > 0 agents discount next period’s payoffs by δ ∈ (0, 1) if t is even
and ε ∈ (0, 1] otherwise (there is no discounting in t = 0). To summarize, in even periods

4 Working with countable populations simplifies the construction of informationally isolated economies
in Section 7 and emphasizes the role played by observability of individual actions.

5 Lack of formal enforcement institutions suggests that no one can be forced to surrender some of his
endowment, produce, or suffer a loss. For example, this means that ‘cheating’ on a contract cannot trigger
a current or future retaliation by the victim or anyone else.
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agents are multilaterally matched, can produce and consume, while in odd periods only
agents who are paired can either produce or consume. In essence, in odd periods each
agent is randomly assigned to one of three groups, called producers, consumers and idle,
corresponding to population proportions α

2 , α
2 , and 1− α.

3 A trading game

To study non-monetary allocations in this economy, we provide a strategic representation
of an infinite horizon trading game. We start by establishing that autarky (zero produc-
tion) is the unique Nash equilibrium of the static game. Then, we exploit this result in
the analysis of the infinite horizon game.

3.1 The static game

Consider a representative one-shot game involving agents in some match Gt(j) generated
by the process (2.1), in some period t. Denote by GPt (j) and GCt (j) the set of producers
and consumers, with Gt(j) = GPt (j)∪GCt (j). Efficiency of allocations revolves around the
amount produced, so we let {0} be the action set of consumers and unmatched agents.
Producers must choose how much consumption to supply to members of their group, i.e.,
they choose a non-negative supply of labor input in [0, a]. Hence, we identify the action
set of any agent k ∈ Gt(j) by

Ak =
{

[0, a] if k ∈ GPt (j)
{0} if k ∈ GCt (j).

We let at,k ∈ Ak denote the action of agent k in period t, which is precisely the amount
produced by agent k due to the linear production technology. Define the action space in
the match Gt(j) to be the Cartesian product of the action spaces At,j = Xk∈Gt(j)Ak whose
elements at,j = (at,k)k∈Gt(j) are called action profiles.

Focusing on pure strategies, define the payoff function for agent j by vt,j : At,j → R.
That is, in period t the payoff to agent j depends only on the actions at,j taken in his match
Gt(j). It is assumed that payoff functions are common knowledge. If Gt(j) = {j}, i.e.,
if the agent is idle in an odd period, then his payoff is zero. Otherwise, since preferences
differ in odd and even periods, we define

vt,j(at,j) =
{

1
2 [uo(ct,j)− at,j ] if t is odd
ue(ct,j)− at,j if t is even ,

(3.1)

where for k ∈ GPt (j) we have

ct,j =


at,k if j 6= k and t is odd

0 if j = k and t is odd

lim inf
n→∞

[
1
n

∑
k∈{1,...,n}\{j} at,k

]
if t is even .
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An agent’s utility depends on how much output the producers in his match deliver to
him. His disutility depends on how much output he produces for his partners. If j
is a producer in an odd period (with probability 1

2), then his payoff is −at,j , i.e., the
disutility from his labor effort. This effort allows agent j to deliver at,j consumption to
his partner βt(j). Instead, if j is a consumer, then his payoff is uo(at,k) for k 6= j, i.e.
it depends on the amount of consumption delivered to him by his partner (a producer).
Since in even periods agent j is both a consumer and a producer, his payoff is the utility
from consumption minus his disutility from labor. Note that, in calculating the amount
ct,j consumed in even periods, we need to consider the function lim inf since the limit
of the sequence of averages of individual production

{
1
n

∑
k∈{1,...,n}\{j} at,k

}∞
n=1

does not
necessarily exist (see [2, p. 264]). This also has a desirable economic interpretation, since
ct,j is simply the smallest average quantity that can be produced in the even period.

Let at,−j denote the action profile without the action of agent j ∈ Gt(j), and of course
At,−j is the set of all these action profiles. Denote the best response correspondence of
agent j by ρt,j : At,−j→→Aj , which is defined for each at,−j ∈ At,−j by

ρt,j(at,−j) =
{
at,j ∈ Aj : vt,j(at,−j , at,j) = maxxt,j∈Aj vt,j(at,−j , xt,j)

}
.

A Nash equilibrium for the representative one-shot game is an action profile at,j such
that at,k ∈ ρt,k(at,−k) for all k ∈ Gt(j), i.e., it is a fixed point of the best response
correspondence for the match Gt(j). Absence of production, i.e., autarky, is the unique
Nash equilibrium of the static game.

Lemma 1. In the representative static game of period t described above, at,k = 0 for all
k ∈ Gt(j) is the only Nash equilibrium.

Proof. Consider the representative one-shot game in some period t. Assume that ât,j is a
Nash equilibrium of the game. This implies that ât,k ∈ ρt,k(ât,−k) for all k ∈ Gt(j), i.e., we
must have vt,k(ât,−k, ât,k) ≥ vt,k(ât,−k, at,k) for all k ∈ Gt(j) and all at,k ∈ Ak. If t is odd,
this implies uo(ct,k) − ât,k ≥ uo(ct,k) − at,k, hence ât,k ≤ at,k for all k and at,k. It easily
follows that in order for ât,j to be a Nash equilibrium then we must have ât,k = at,k = 0 for
all k ∈ Gt(j), since vt,k(ât,−k, at,k) is strictly decreasing in at,k and 0 ∈ Ak. An analogous
argument applies to even periods.

In the static game agents realize the autarkic (or minmax ) payoff since producers
cannot be forced, nor can they commit, to make transfers. Thus, each producer j can
always select at,j = 0 and enjoy a payoff vt,j(at,j) ≥ 0. This is a key feature that we
exploit later.

3.2 The infinite horizon game

The infinite horizon game is a sequence of even and odd period static games that alternate
indefinitely. Specifically, it consists of the population J , the matching process in (2.1), the

6



action sets described earlier, and payoff functions defined in this section. Notice that this
game is one with varying opponents, since no one interacts with a fixed set of partners
in every period. It is also a game of imperfect monitoring since during a period t agent
k ∈ Gt(j) observes only the action profile at,j in his match, but not in other matches.
Thus, before defining payoff functions, we must discuss what information on past play is
available to an agent.

At the start of period t ≥ 1 the information available to agent j can be summarized
by the history of actions ht,j he has privately observed in all dates τ < t, with

ht,j = (a0,j , . . . ,at−1,j) ,

and we let h0,j = 0. The set of histories of j is the Cartesian product Ht,j = Xt−1
τ=0Aτ,j ,

and the history profile of the match at the start of period t is denoted ht,j = (ht,k)k∈Gt(j).
Because of random bilateral matches, the elements of ht,j will generally differ, i.e., part-
ners do not have common histories. It is then conceivable that, due to anonymity and
enforcement limitations, agents may be tempted to use these informational disparities to
act in a manner that is socially undesirable. To see why, we must study the behavior of
the representative agent j.

Define agent j’s pure strategy for the infinite horizon game, as the infinite sequence of
maps

σj = (s0,j , s1,j , ...) ,

where st,j : Ht,j → Aj , the map of the set of histories of agent j into his action set, is
defined by st,j(ht,j) = at,j . Denote the strategy profile in the match Gt(j) by

st(ht,j) = (st,k(ht,k))k∈Gt(j) = at,j .

Since action sets do not depend on histories, let the sequence of mappings

St,j =
(
A
Hτ,j

j

)∞
τ=t

denote the strategy space of agent j in the subgame starting at period t ≥ 0, and denote
it Sj = S0,j for the infinite horizon game.6 It follows that every (pure) strategy σj gives
rise to a strategy σt,j in the subgame starting at t, with σt,j = (st,j , st+1,j , . . .) ∈ St,j and
σ0,j = σj . Finally, let σ = (σ1, σ2, . . .) define the collection of strategies of the population
J , using σt = (σt,1, σt,2, . . .) for the subgame starting in t. Let σ−j denote σ excluding
the strategy σj of agent j.

To discuss the payoff to an agent j ∈ J , in the infinite horizon game, let δt+1 denote
the discount factor between periods t > 0 and t+ 1. We have

δt+1 =
{
ε if t odd
δ if t even .

(3.2)

6For two sets A and B the notation AB denotes the set of all mappings from B to A.
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The factor ∆t(τ) =
∏τ
n=t+1 δn will be used to discount back to period t a payoff realized

in period τ ≥ t+ 1. The payoff to agent j is the function Vj : Xi∈JSi → R defined by

Vj(σ) = v̂0(s0(h0,j)) +
∑∞

τ=1 ∆0(τ)v̂τ
(
sτ (hτ,j)

)
. (3.3)

Here,

v̂t(at,j) =
{

α
2 [uo(ct,j)− at,j ] if t is odd
ue(ct,j)− at,j if t is even ,

(3.4)

is an expected period utility, since in odd periods the agent is consumer or producer with
equal probability α

2 , and earns zero payoff otherwise. Therefore, Vj is the present value of
the stream of expected utilities from t = 0 on. Since each period t ≥ 1 defines a proper
subgame, we can formalize recursively agent j’s payoff in the subgame starting in t by

Vt,j(σt) = v̂t(st(ht,j)) + δt+1Vt+1,j(σt+1) , (3.5)

with V0,j = Vj . The first term on the right hand side of the functional equation (3.5) rep-
resents agent j’s current expected utility and the remainder his discounted future payoff.

The best response correspondence of agent j, for the infinite horizon game, is thus

ρj(σ−j) =
{
σj ∈ Sj : Vj(σ−j , σj) = max

xj∈Sj

Vj(σ−j , xj)
}
,

and the aggregate best response correspondence is R(σ) = Xj∈Jρj(σ−j) . The notion of
equilibrium for the infinite horizon game is as follows.

Definition 2. A subgame perfect Nash equilibrium for the infinite horizon game is
a strategy profile σ such that σ ∈ R(σ).

In equilibrium σj must be a fixed point of agent j’s best response correspondence, i.e.,
σj ∈ ρj(σ−j) for all j ∈ J . Since repeated play of a static game does not decrease the set
of equilibrium payoffs, we have that autarky forever is an equilibrium.

Lemma 3. The strategy σj = (0, 0, . . .) for all j ∈ J is a subgame perfect Nash equilibrium
of the infinite horizon game.

Proof. By Lemma 1, the one-shot Nash equilibrium in any period t is autarky, i.e., at,j = 0
for all j ∈ J . Now fix a period τ ≥ 1. Then the strategy “each player j plays at,j = 0
for t ≥ τ ,” is a subgame perfect equilibrium. According to this strategy, the actions
taken by player j’s future opponents are independent of his current play. In addition,
at,j = 0 maximizes period t payoff of agent j. Thus, σj = (0, 0, . . .) for all j ∈ J is a Nash
equilibrium of the infinite horizon game.

Permanent autarky is associated with zero payoff to every agent, so it is the worst
allocation this economy can achieve. We now demonstrate that there exists a unique
socially desirable allocation of labor effort and consumption, called the ‘efficient allocation.’

8



4 The efficient allocation and the optimal trading plan

To find the efficient allocation in this economy, we consider the problem faced by a planner
who selects patterns of production and exchange subject to the same physical restrictions
faced by agents. In particular, the planner treats agents identically but cannot transfer
consumption across matches and over time. The problem is thus to maximize the lifetime
utility of the representative agent j ∈ J . Since this agent is in the match Gt(j) in period
t, we define relevant action profile and action sets by

at = (at,k)k∈Gt(j), At = Xk∈Gt(j)Ak, and A = X∞t=0At ,

omitting the index j, if understood. If we let

V (a) = v̂0(a0) +
∞∑
τ=1

∆0(τ)v̂τ (aτ )

then the planner’s problem is to choose a plan a = (at)
∞
t=0 ∈ A to solve

Maximize: V (a)

subject to: at,k = at for all k ∈ GPt (j) and t ≥ 1,
(4.1)

where, clearly, at,k = 0 for all k ∈ GCt (j) and t ≥ 1. The main result is that there exists a
unique optimal plan.

Theorem 4. An optimal plan a∗ ∈ A exists and it is unique.

Proof. We prove the statement by demonstrating that V is a continuous and strictly
concave function defined on a compact set.

We start by demonstrating that the function V : A →R defined in (4.1) is continuous.
Recall that the functions v̂t : At → R are continuous and uniformly bounded for all

t, by assumption. Thus, for all t and all at ∈ At, there exists an M > 0 such that
|v̂t(at)| ≤M . Let

an = (an0 ,a
n
1 , . . .) −−−−→n→∞ a = (a0,a1, . . .)

hold true in the product topology. That is, ant −−−−→n→∞ at for all t = 0, 1, 2, . . .. Since v̂t is
bounded, it follows from the triangle inequality that

|v̂t(ant )− v̂t(at)| ≤ |v̂t(ant )|+ |v̂t(at)| ≤ 2M .

To prove the continuity of V , we must show that V (an) −−−−→n→∞ V (a). If we fix ε > 0,
then we need to show that there exists some n0 > 0 such that |V (an)− V (a)| < ε for all
n ≥ n0. Since |v̂t(at)| ≤ M , we start by picking a natural number t1 ∈ (0,∞) such that

9



∑∞
t=t1+1 ∆0(t)M < ε

4 . Since the functions v̂t are continuous, there exists some n1 > 0
such that for all n ≥ n1 we have

|v̂0(an0 )− v̂0(a0)|+
t1∑
t=1

∆0(t) |v̂t(ant )− v̂t(at)| < ε
2 .

Thus, choosing n0 ≥ n1 we see that for all n ≥ n0 we have∣∣V (an)− V (a)
∣∣

≤
∣∣v̂0(an0 )− v̂0(a0)

∣∣ +
t1∑
t=1

∆0(t)
∣∣v̂t(ant )− v̂t(at)

∣∣ +
∞∑

t=t1+1

∆0(t)2M

< ε
2 + ε

2 = ε ,

which proves the continuity of V .
We now proceed by demonstrating that there is an optimal plan a∗ ∈ A. Note that

A is a compact space, by the Tychonoff Product Theorem (see [1]). Furthermore, V is
continuous. So, by the classical Weierstrass’ theorem, V has a maximizer, say a∗ ∈ A. To
prove that a∗ is unique, note that the functions v̂t are assumed strictly concave for all t.
This implies that V is strictly concave as well, and so the maximizer a∗ is unique.

The optimal plan a∗ assigns a positive amount of consumption to every buyer in every
match. To see this, one needs to realize that the planner cannot transfer resources over
time and that current choices do not affect future states (aggregate or individual). Conse-
quently, solving the Problem 4.1 is equivalent to solving a sequence of static maximization
problems. In every period t, the planner chooses at to maximize v̂t(at).

When t = 0 agents are idle and thus the maximizer is a0,k = a∗0 = 0 for all k ∈ J .
Now consider a period t ≥ 1. Since at,k = 0 for each k ∈ GCt (j) and since each producer
is treated identically, i.e., at,k = at for all k ∈ GPt (j), it follows from (3.1) and (3.4) that
the objective function in a period t is v̂t(at,j) with the restriction ct,j = at,j = at for all
j ∈ J . The maximizers are given by the production quantities

a∗t =
{
c∗o if t odd
c∗e if t even .

(4.2)

Since u′o(c
∗
o) = 1 and u′e(c

∗
e) = 1, the optimal plan requires that each producer delivers

the surplus-maximizing quantity, in each period. We are now ready to prove that if agents
are sufficiently patient, then the optimal plan a∗ can arise as an equilibrium of the infinite
horizon game.
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5 A social norm for economic interactions

The key element of analysis in this section is the behavior of producers, since consumers
are inactive players. Thus, for expositional ease, we focus exclusively on the choices of a
representative producer j ∈ J in a period t. Recall that the optimal plan (4.2) requires that
every producer delivers the surplus-maximizing quantity to his partner(s). In the absence
of a medium of exchange, sustaining this plan is difficult due to absence of commitment
and lack of formal enforcement.

The work in [12, 19], however, suggests that we can sustain the efficient allocation
using a social norm, i.e., a strategy involving an informal enforcement scheme. Specif-
ically, we propose a strategy, called ‘altruistic,’ that specifies ‘desirable’ actions (a rule
of cooperation) as well as sanctions for ‘undesirable’ actions (a rule of punishment). We
identify desirable behavior with production decisions conforming with the optimal plan,
and label every other action as undesirable.

Therefore, let at,k = a∗t define a desirable action of producer k ∈ GPt (j) in period t,
and let any at,k 6= a∗t be undesirable. If we consider agent j in period t ≥ 1, then we
define the desirable history by h∗t,j = (a∗0,j ,a

∗
1,j , . . . ,a

∗
t−1,j) . That is, agent j has observed

only desirable behavior up to period t if and only if every producer in his past matches
(including agent j himself) followed the optimal plan. Any history ht,j 6= h∗t,j , is therefore
undesirable because some producer, possibly agent j himself, was seen making a choice
that departed from the optimal plan. This leads to the following definition of an altruistic
strategy.

Definition 5. A strategy σ∗j = (s0,j , s1,j , . . .) for a producer j ∈ J is called altruistic, if
s0,j = a∗0 and in each period t ≥ 1 he selects

(i) st,j(ht,j) = a∗t , whenever ht,j = h∗t,j, and

(ii) sτ,j(hτ,j) = 0 for all τ ≥ t, whenever ht,j 6= h∗t,j.

Thus, the altruistic strategy requires that every producer delivers c∗t consumption to
his partners, only if he has observed desirable behavior. However, the producer should
play the minmax strategy autarky forever, as soon as he deviates or has knowledge of
a deviation. The threat that such a harsh informal punishment spreads to the entire
economy, is what can sustain the optimal plan as a subgame perfect equilibrium. We
prove it in the following subsections, where for convenience we let ε = 1.

5.1 Individual optimality

Suppose that every agent follows the altruistic strategy σ∗, and consider the behavior of
a representative agent j ∈ J , in some period t. Denote his expected lifetime utility, or
continuation payoff, at the beginning of period t by Vt = Vt,j(σ∗

t ), where the subscript
j and the argument of the function are omitted since they are fixed. We say that in
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period t we are ‘in equilibrium,’ if the agent has observed only desirable behavior, and ‘off
equilibrium,’ otherwise.

Denote byV ∗
e and V ∗

o the equilibrium continuation payoffs, restricted to even or odd
periods. They are time-invariant since the strategy and the structure of the game are
time-invariant in equilibrium, so each subgame is a replica of the infinite horizon game.
Using (3.4), (3.5), and (4.2), we have

V ∗
e = 1

1−δ
{
ue(c∗e)− c∗e + δα2 [uo(c∗o)− c∗o]

}
V ∗
o = 1

1−δ
{
α
2 [uo(c∗o)− c∗o] + ue(c∗e)− c∗e

}
.

(5.1)

To study the individual optimality of σ∗j it suffices to consider one-time deviations in a
representative subgame starting in some period t, by the unimprovability criterion. Since
the altruistic strategy specifies actions to be taken both in- and off-equilibrium, we must
examine one-period deviations in both contingencies.

To this end, consider an agent in some period t, off-equilibrium, under the conjecture
that everyone else plays the altruistic strategy. We denote by V d

e and V d
o the continuation

payoffs (in even and odd periods) of this agent if he observed a deviation for the first time
in the prior period. We use the notation Ṽe and Ṽo, if the deviation was observed earlier.
Specifying these payoffs as time-invariant is without loss in generality since a deviation
becomes part of the history of the entire population in no more than two periods. All this
will be clarified next.

Suppose that t is an odd period and that everyone has played the altruistic strategy
up to this date, but that the producer in the match Gt(j) deviates from the optimal
plan a∗. In this off-equilibrium contingency we have ht+1,k 6= h∗t+1,k for k ∈ Gt(j), while
ht+1,k = h∗t+1,k for all k ∈ J\{Gt(j)}. This deviation implies that j and his partner will
select the minmax strategy forever after period t, i.e., aτ,k = 0 in all τ ≥ t+1 for k ∈ Gt(j).
However, everyone else follows the optimal plan in t + 1, since they have not observed a
deviation. Thus, in period t+1, the continuation payoff of agent k ∈ Gt(j) from following
the altruistic strategy σ∗t+1,k, under the conjecture that everyone also does the same, is

V d
e = ue(c∗e)− 0 + δṼo . (5.2)

Since t+1 is an even period—in which every agent is a producer—and the deviation in
period t was observed only by the two agents in Gt(j), it follows that only j and his partner
will elect to produce nothing in t+ 1. However, everyone will observe their deviations in
period t + 1, and so Ṽo = 0. To see why, notice that Gt+1(j) = J . Consequently, since
at+1,k = 0 for k ∈ Gt(j), we have ht+2,k 6= h∗t+2,k for all k ∈ J . Under the premise
that agents follow the altruistic strategy, then aτ,k = 0 for all τ ≥ t + 2 and all k ∈ J .
Consequently, Vτ,k = 0 for all τ ≥ t+ 2 and all k ∈ J , which implies Ṽo = 0.

Clearly, if a deviation occurs for the first time in a centralized market, then the con-
tinuation payoff of every agent in the population is

V d
o = 0 + Ṽe = 0 , (5.3)
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where clearly Ṽe = 0. Indeed, if everyone plays the altruistic strategy, all production shuts
down permanently following a deviation in the centralized market.

The lesson is that a deviation from the optimal plan, in any match, eventually shuts
down trade in the economy. It takes two periods for this to happen if the deviation
occurs in a decentralized market, and one period otherwise. Intuitively, if actions are
observable, multilateral matches allow information to flow across a significant fraction of
the population. Small group trade—such as pairwise random trade—can slow down the
transfer of information, but cannot prevent it simply because agents are anonymous.

5.2 Sustaining the optimal plan

In this subsection we provide a condition that ensures sustainability of the informal en-
forcement scheme at the core of the altruistic strategy. To derive it, we must verify not
only that equilibrium deviations be suboptimal, but sanctioning everyone after observing
a deviation must also be in the agent’s best interest. After all, off equilibrium an agent
might be tempted to keep producing in order to avoid the spread of the sanction and
permanent autarky.

Theorem 6. If we let

δ =
c∗o + c∗e

c∗o + ue(c∗e) + α
2 [uo(c∗o)− c∗o]

,

then for each δ ≥ δ the altruistic strategy σ∗ supports the optimal plan as a subgame
perfect Nash equilibrium of the infinite horizon game.

Proof. We need to show that, under the conjecture that everyone else plays according
to σ∗

−j , the representative agent j cannot profitably deviate from the altruistic strategy
either in-equilibrium or off-equilibrium.

To start, consider an off-equilibrium situation in which partners in the match Gt(j)
observe a deviation, for the first time. We will derive a condition, in terms of the param-
eters of the model, guaranteeing that off-equilibrium deviations from σ∗j are unprofitable.
That is, we find a condition under which it is optimal to play the minmax strategy from
period t+ 1. We need to consider two cases:

(i) t is odd: every agent k ∈ Gt(j) is a producer in period t + 1. Thus, he sanctions
others as specified by the altruistic strategy if this maximizes his payoff, i.e., using
(5.2) we need

ue(c∗e)− 0 + δṼo ≥ ue(c∗e)− at+1,k + δṼo .

The left hand side represents the payoff, off-equilibrium, from selecting the sanction
a∗t+1,k = 0. The right hand side is the payoff from choosing not to sanction. Clearly,
this inequality holds for all at+1,k ∈ Ak, and especially for at+1,k = c∗e.
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(ii) t is even: any agent k ∈ J who is a producer in period t + 1 follows the altruistic
strategy since

0 + Ṽe ≥ −at+1,k + Ṽe

holds for all at+1,k ∈ Ak, and especially for at+1,k = c∗o.

Hence, it is individually optimal to play minmax forever, as soon as the agent deviates
or detects a deviation from σ∗. Intuitively, producing for others not only decreases the
agent’s current payoff, but it does not slow down the spread of sanctioning behavior in the
economy. Indeed, even if the agent chooses not to sanction others, his trading partners
(who follow the altruistic strategy) will do so.

We now consider in-equilibrium deviations in an arbitrary period t.

(i) t is odd: every producer k ∈ Gt(j) follows the altruistic strategy whenever

−c∗o + V ∗
e ≥ 0 + V d

e .

Using (5.1) and (5.2), this inequality becomes

δ
1−δ

{
α
2 [uo(c∗o)− c∗o] + ue(c∗e)− c∗e

}
≥ c∗o + c∗e . (5.4)

That is, the present value of the net loss from deviating must exceed the current
net gain from deviating. The latter is c∗o + c∗e since the deviator avoids production
in both the odd, and even period, before the economy shuts down. Expression (5.4)
yields

δ ≥ δo = c∗o+c∗e
c∗o+ue(c∗e)+α

2
[uo(c∗o)−c∗o] .

(ii) t is even: every agent is a producer and follows the altruistic strategy whenever

ue(c∗e)− c∗e + δV ∗
o ≥ ue(c∗e) + 0 + δV d

o .

Since V ∗
o satisfies (5.1) and V d

o satisfies (5.3), we see that

δ
1−δ

{
α
2 [uo(c∗o)− c∗o] + ue(c∗e)− c∗e

}
≥ c∗e

holds whenever
δ ≥ δe = c∗e

ue(c∗e)+α
2
[uo(c∗o)−c∗o] .

From ue(c∗e) > c∗e and uo(c∗o) > c∗o, we get 0 < δe < δo < 1. The intuition behind δo > δe, is
that when a deviation occurs in an odd period, the informal punishment takes place with
one period delay, so that agents need to be more patient to willingly follow the optimal
plan. Finally, let δ = δo.
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Theorem 6 establishes that if agents are sufficiently patient, and can observe their
partners’ actions, then there exists a subgame perfect equilibrium supporting the optimal
plan. This holds for any population J , countable or uncountable, since individual actions
are assumed observable without noise (see [24, p. 1161]) so that, as soon as the centralized
markets opens, everyone can be informed of a privately observed deviation. This encour-
ages desirable behavior in every random bilateral match even if agents are anonymous and
there is no formal enforcement institution. If we associate lack of formal enforcement to
inability to impose taxation, we have an additional result.

Corollary 7. The allocation associated to the optimal plan is generally unattainable in
a monetary equilibrium, but is attainable in a non-monetary equilibrium if agents are
sufficiently patient.

Proof. Let π denote the gross inflation rate in a stationary monetary equilibrium. It is
immediate from equation (19) in [23], that co < c∗o for all π > δ, and limπ→δ co = c∗o. For
example, if pricing is competitive in every period, it is simple to demonstrate that

co = (u′o)
−1

(2(π−δ)
αδ + 1

)
.

For details see the proof of Proposition 1 in [8], letting γ = π, α = 1, and q1 = c0. Since
no enforcement implies π ≥ 1 then we have c0 < c∗0.

To sum up, assuming anonymous agents and decentralized trade does not imply that
money is essential. What matters is how information about privately observed actions can
spread in the economy, which in turn depends on the assumed matching process. However,
we emphasize that the equilibrium we derive is not robust to adding a small amount of
noise in the observation of individual behavior. Equilibria would arise similar to those
in an economy with a continuum population where individual behavior is unobservable
(see [6, 13, 24]).

6 Stochastic trading cycles

We have proved that the existence of centralized markets can discourage defections from
socially desirable behavior, but it may be argued that this holds because centralized trading
has rapid and deterministic periodicity. In this section we generalize our basic result to
environments in which knowledge of deviations spreads slowly and randomly.

For example, this may happen if not everyone participates in centralized markets reg-
ularly, if there are many spatially separated centralized markets to which agents are ran-
domly assigned, or if the centralized market opens after a random sequence of decentralized
trading dates. We choose to follow this last route, for simplicity. Assume that decentral-
ized trade follows a round of centralized trade, but centralized trade occurs after a round
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of bilateral trade with time-invariant probability b ∈ (0, 1). Thus, if t is a period of de-
centralized trade, then centralized trade occurs in period t + n, n ≥ 1, with probability
b(1− b)n−1. Hence, there is an expected delay of

∞∑
n=1

nb(1− b)n−1 =
1
b

periods, before centralized trade takes place. Since we deal with infinite series, we need
ε ∈ (0, 1). That is, agents always discount adjacent periods.

To distinguish between periods with centralized and decentralized trade, let q denote
consumption and U the utility function in a round of centralized trading (instead of ue),
and let c denote consumption and u the utility function in a round of decentralized trading
(instead of uo). Given that the altruistic strategy σ∗ is followed, consider the behavior of
a representative agent j ∈ J , in some period t.

Once again, the equilibrium continuation payoffs restricted to centralized and decen-
tralized markets are time-invariant. Hence, denote expected lifetime utility at the start of
a round of centralized trading by VC , and VD at the start of the first round of decentralized
trading that follows it. We use

∼
V to denote the agent’s expected lifetime utility at the

start of any decentralized trading round. Specifically, we have:

VC = U(q∗)− q∗ + δVD

VD = α
2 [u(c∗)− c∗]+

∼
V

∼
V = εb

∑∞
n=0(1− b)nεn[U(q∗)− q∗ + δVD]

+b
∑∞

n=1(1− b)n
∑n

j=1 ε
j α

2 [u(c∗)− c∗]

(6.1)

Using (6.1) we obtain the closed-form solutions

∼
V = 1

1−δ∆1

{
∆1[U(q∗)− q∗] + α

2 [u(c∗)− c∗] (δ∆1 + ∆2)
}

VC = 1
1−δ∆1

{
[U(q∗)− q∗] + δα2 [u(c∗)− c∗](1 + ∆2)

}
VD = 1

1−δ∆1

{
∆1[U(q∗)− q∗] + α

2 [u(c∗)− c∗] (1 + ∆2)
}
,

(6.2)

where simple algebraic manipulation indicates that

∆1 = bε
1−(1−b)ε and ∆2 = ε

1−(1−b)ε −∆1 .

Clearly, when b, ε→ 1, we have ∆1 → 1 and ∆2 → 0, so we get back (5.1).
Now economy-wide punishment can be triggered only stochastically so there is a

stronger incentive to defect, relative to the two-period cycle economy. This reduces the
set of values that can be assigned to δ, but does not change the nature of the main result.

16



Theorem 8. If we let

δ =
c∗(1+α

2
∆2)+q∗∆1

∆1{α
2
[u(c∗)−c∗]+[c∗+α

2
u(c∗)∆2+U(q∗)∆1]} > δ ,

then for every δ ≥ δ the altruistic strategy σ∗ supports the optimal plan as a subgame
perfect Nash equilibrium of the infinite horizon game with random centralized markets.

Proof. We need to show that, under the conjecture that everyone else plays according to
σ∗, the representative agent can profitably deviate from the altruistic strategy neither in-
nor off-equilibrium. To start, consider in-equilibrium deviations, distinguishing between
periods with centralized and decentralized trading.

(i) Decentralized trading in t: every producer k ∈ Gt(j) follows the altruistic strategy
whenever

−c∗ + Ṽ ≥ 0 + εb
∞∑
n=0

(1− b)nεn [U(q∗) + δ × 0] + b
∞∑
n=1

(1− b)n
n∑
j=1

εj
α

2
[u(c∗)] .

Notice that we are assuming the most extreme form of informational isolation in
every random matching cycle, i.e., not only agents are never paired more than once,
but they also never meet anyone who is indirectly related to any of their previous
random partners. The implication is that if one deviates in a bilateral match today,
this will be ignored by every agent he will meet before the centralized market opens.
This is why u(c∗) appears as the last element of the inequality. Of course, this means
that if agents do not have incentives to deviate in this scenario, they certainly do
not have incentives to deviate in economies with weaker restrictions on the path of
random encounters (see also [4]).

Using (6.1), the inequality above yields

δ∆1

{
α
2 [u(c∗)− c∗] +

[
c∗ + α

2u(c
∗)∆2 + U(q∗)∆1

]}
≥ c∗

(
1 + α

2 ∆2

)
+ q∗∆1 ,

which never holds true as b→ 0, i.e., as we converge to the typical random matching
model of money. When 0 < b < 1, instead, it holds true if

δ ≥ δD =
c∗(1+α

2
∆2)+q∗∆1

∆1{α
2
[u(c∗)−c∗]+c∗+α

2
u(c∗)∆2+U(q∗)∆1} .

(ii) Centralized trading in t: every agent is a producer and follows the altruistic strategy
whenever

U(q∗)− q∗ + δVD ≥ U(q∗) + δV d
D .

Since VD satisfies (6.2) and V d
D = 0, it follows that

δ
{
U(q∗)∆1 + α

2 [u(c∗)− c∗] (1 + ∆2)
}
≥ q∗ .
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This implies that

δ ≥ δC = q∗

U(q∗)∆1+α
2
[u(c∗)−c∗](1+∆2) .

Since U(q∗) > q∗ and u(c∗) > c∗, we see that 0 < δC < δD < 1.7 That is, if the
representative agent prefers to play according to σ∗j in a decentralized market, then he
certainly does so in a centralized market. It is possible to show in a manner analogous
to Theorem 6 that if it is not optimal to deviate in equilibrium, then it is certainly not
optimal to deviate off-equilibrium. Finally, let δ = δD. Notice that δ > δ since if a
deviation occurs in a bilateral random match, an economy-wide punishment is expected
to take place with 1

b periods of delay, so that agents need to be more patient than when
centralized trade follows deterministically a round of decentralized trade.

If we interpret the discount rates δ and ε as probabilities of continuation of the game,
this result shows that the game must be sufficiently likely to continue once information
about a deviation has reached everyone. The size of δ depends on how fast information
can be transmitted (the value of b), and on the average number of decentralized trading
rounds (depending on ε). For example any b ∈ (0, 1) can sustain the altruistic strategy
when δ = ε → 1, since a deviation in a bilateral market is on average communicated to
the entire population after 1

b periods, which is a finite number.
If b→ 0 then the infinite horizon game converges to the typical search model of money,

i.e., a repeated random matching game among an infinite number of agents. Here, the
altruistic strategy cannot be supported, since ∆1 → 0 and so there is no possibility of
communicating a deviation to a sufficiently large number of agents.8 It is important to
realize, however, that this happens not just because of random pairings. The central
friction is obstacles to information transfers across groups of traders. To prove it, we now
construct a general matching framework in which agents deterministically enter infinitely
large trading groups and yet money is essential.

7 Matching and information

We have seen that it is the presence of obstacles to rapid and widespread information
transmission that prevents the sustainability of the optimal plan. The random pairing
scheme assumed in models such as [21], naturally justifies such obstacles and—together
with other assumptions—generates an explicit role for money. In this section, we demon-
strate that there is nothing special about random bilateral matching in achieving this goal.
This is done by introducing a matching process that repeatedly partitions the population

7We have δC < δD, whenever ∆1 [U(q∗)− q∗] + α
2
[u(c∗)− c∗] (1 + ∆2) ≥ 0.

8See [19, Proposition 3]. See also [7] where it is shown that social norms have no role to play in the
random matching model of [21].
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into groups with infinitely many partners. We prove that here, too, partners are complete
strangers and autarky is the only subgame perfect equilibrium. This allows the construc-
tion of models with large (possibly Walrasian) markets in which money is essential, since
no two agents (neither their direct and indirect partners) will ever be in the same market
more than once.

7.1 A formalization for exogenous matching processes

The analysis in this subsection is based on the formalization developed in [3] and [4], to
which we refer the reader for details and proofs of some claims. For the sake of brevity, here
we simply sketch the procedure, which consists of the following steps. First, in the initial
date, we partition the population into spatially separated sets of agents, called “clusters.”
Then, we match the agents within each cluster into groups of partners, using a selection
procedure called a matching rule. Finally, we define a sequence of partitions and matching
rules to obtain a matching process, i.e., a time-path for the process of group-formation.

To start, consider a representative period. Since matching agents simply means divid-
ing the population J into disjoint sets of people, we start by defining a partitional corre-
spondence ψ : J→→ J called the clustering rule. As a result we have J =

⊔
s∈S Js, with clus-

ters Js = ψ(x) for x ∈ Js, defined over the index set S, and so ψ(Js) =
⋃
x∈Js

ψ(x) = Js.
Given such a partition, we operate on each cluster, dividing its agents into one or more
groups. This is what we call a matching rule. A multilateral matching rule is a partitional
correspondence µ : J→→ J such that µ(x) ⊆ Js for all s ∈ S and all x ∈ Js. A special case
of this is a bilateral matching rule, which is a function β : J → J satisfying β2(x) = x for
all x ∈ J that maps every cluster onto itself, i.e., β(Js) = Js.

Since J = N, any matching rule forms groups containing a countable number of agents,
finite or infinite. Consider an agent x. Under bilateral matching his trading group is
G(x) = {x, β(x)}. Under multilateral matching, his group is G(x) = µ(x) ⊆ ψ(x), where,
for convenience, we assume that µ(j) = ψ(j) = ψ (x) for all j ∈ ψ (x) and x ∈ J , i.e., the
cluster ψ (x) is exactly the trading group G(x) of agent x.

We call a sequence of matching rules a matching process and we construct it as fol-
lows. First, we specify an infinite sequence Ψ = (ψ0, ψ1, . . .) of clustering rules on the
population J , which we call a clustering process, assuming that ψ0(x) = {x} for each
x ∈ J . Subsequently, we define a matching process relative to Ψ as an infinite sequence of
matching rules (bilateral or multilateral). For practical purposes, we assume that agents
know the matching process but do not know Ψ. This means that agents do not know the
composition of groups (other than the one in which they currently are), since they do not
know the sequence of partitions induced by Ψ.

This formalization allows us to easily keep track of matching histories (and hence
action histories). For each t ≥ 0 we denote by Pt(x) the set of all partners of any agent x
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in periods up to and including t. That is,

Pt(x) =
⋃t

τ=0
Gτ (x) ,

and observe that P0 (x) = {x} since ψ0(x) = {x}. Now, denote by Πt(x) the set of all of
x’s past and current partners (including x), the past partners of x’s current partners, the
partners that x’s partners in t− 1 met prior to that date, and so on. This set is given by
the recursive formula

Π0(x) = P0(x)
Πt(x) = Πt−1(x)

⋃ [⋃
b∈Gt(x)

Πt−1(b)
]

for t = 1, 2, . . . .

Following [22], we concentrate on matching processes satisfying

Πt−1(x)
⋂

Πt−1(b) = ∅ (7.1)

for every agent x 6= b ∈ Gt(x) and all t ≥ 1. If (7.1) holds, then we say that the economy
is informationally isolated, and the agents in Gt(x) are “complete strangers.” To see why,
define an ‘event’ as an action taken by some agent at some date. It can be proved (see [3])
that when (7.1) holds agents never have and never will share any direct or indirect partner
over their lifetimes. This is the case even if histories can be freely shared during the course
of a match since on every date t the history ht,x of any agent x includes events that are
ignored by x’s current partners.

It is now obvious that monetary economies based on the matching scheme adopted
in [23] are not informationally isolated since the entire population regularly trades in the
centralized market. Indeed, from (2.1), we see that for all x we have Gt(x) = J when
t is even, which implies Πt−1(x) ∩ Πt−1(y) = J for all y ∈ Gt(x) in any period t ≥ 3.
Technically, this is at the heart of Theorem 6. The natural question now is: can we
construct informationally isolated economies with large (perhaps infinite) recurring trade
groups? The answer will be given in the next subsection.

7.2 Modeling informationally isolated economies

A general procedure to construct informationally isolated economies with large trading
groups consists of three basic steps. In t = 0 we partition the population J into a count-
able number of sets P0,1, P0,2, . . . of identical cardinality. We then recursively construct
partitions for each subsequent date. Finally, we create clusters out of these partitions, and
apply a matching rule within each cluster.
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The recursive partition is created as follows (details are in the appendix):

Period Partition of the set of traders J

0 J = P0,1
⊔
P0,2

⊔
P0,3

⊔
P0,4

⊔
P0,5

⊔
P0,6

⊔
· · ·

1 J = 〈P0,1
⊔
P0,3

⊔
· · · 〉

⊔
〈P0,2

⊔
P0,6

⊔
· · · 〉

⊔
· · ·

= P1,1
⊔
P1,2

⊔
· · ·

2 J = 〈P1,1
⊔
P1,3

⊔
· · · 〉

⊔
〈P1,2

⊔
P1,6

⊔
· · · 〉

⊔
· · ·

= P2,1
⊔
P2,2

⊔
· · ·

...
...

t+ 1 J = 〈Pt,1
⊔
Pt,3

⊔
· · · 〉

⊔
〈Pt,2

⊔
Pt,6

⊔
· · · 〉

⊔
· · ·

=
⊔∞
k=0 Pt+1,k+1 =

⊔∞
k=0

⊔∞
n=0 Pt,(2n+1)2k

...
...

(7.2)

On each t ≥ 1, there are countably many sets Pt−1,k+1, k = 0, 1, . . ., which have the
same cardinality, and are pairwise disjoint.9 We use them to construct infinitely many
matching blocks in t, designated by the brackets 〈 · 〉, each of which is defined by the infinite
union

Pt,k+1 =
∞⊔
n=0

Pt−1,(2n+1)2k for all k = 0, 1, . . . .

We use these matching blocks to define a clustering process Ψ on J that delivers in-
formational isolation. Working with the partition (7.2), we select a clustering process
Ψ∗ = (ψ∗0, ψ

∗
1, . . .) with the following properties.

First, we let ψ∗0(x) = {x} for all x ∈ P0,k+1 and all k so that ψ∗0(P0,k+1) = P0,k+1

for all k. Then, in each period t we create an infinite sequence of clustering rules
ψt,k+1 : Pt,k+1→→Pt,k+1, for k = 0, 1, . . . . To understand their role, consider a typ-
ical matching block Pt,k+1 on some date t ≥ 1. We use the clustering rule ψt,k+1

to partition the set Pt,k+1 into a countable (finite or infinite) number of pairwise dis-
joint sets, called “clusters.” Each cluster is constructed in such a way that it contains
countably many agents. Specifically, each agent x ∈ Pt,k+1 is placed into a cluster
ψt,k+1(x) ⊆ Pt,k+1 created by selecting a single agent from each of the sets Pt−1,(2n+1)2k

that compose Pt,k+1 (the proof can be done as in [4, Theorem 4]). Since Pt,k+1 is com-
posed by countably many sets Pt−1,(2n+1)2k , then each cluster ψt,k+1(x) has countably
many agents. Clearly, the union of all the clusters created from the matching block Pt,k+1

is equal to the matching block itself since the correspondence ψt,k+1 is partitional, i.e.,
ψt,k+1(Pt,k+1) =

⋃
x∈Pt,k+1

ψt,k+1(x) = Pt,k+1.

9The cardinality is identical since each set Pt,k+1 is the countable union of sets P0,k+1 that have the
same cardinality. They are pairwise disjoint by construction.
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Next, since each clustering rule operates on a single matching block k + 1, define
ψ∗t : J→→ J for each x ∈ Pt,k+1 by

ψ∗t (x) = ψt,k+1(x) .

Having partitioned each matching block into clusters, we apply a matching rule to each
cluster. This allows us to divide the agents forming the cluster into (a countable number
of) trading groups or matches. Clearly, there are several matching rules we could use in a
period, for example bilateral or multilateral. Considering again a typical matching block
Pt,k+1 of a representative period t, we assume a multilateral matching rule µt(x) = ψt(x),
so that each cluster simply corresponds to a trading group. Specifically, if in period t
agent x belongs to the cluster ψt (x), then this set coincides exactly with the agent’s
trading group Gt(x). Notice that in this case, every agent trades with infinitely many
partners. What’s crucial is that every agent x will always be in a trading group populated
by complete strangers since the clustering process Ψ∗ insures total informational isolation.
This holds independent of whether agents are anonymous.

Formally, we have the following result.

Theorem 9. Every matching process based on Ψ∗ guarantees informational isolation as
defined in (7.1).

Proof. We want to demonstrate that for any two partners x and z 6= x, who belong to
the trading group ψ∗t+1(x) ⊆ Pt+1,k+1 in period t + 1, we have Πt(x) ∩ Πt(z) = ∅. The
outline of the demonstration is as follows. Start by identifying the matching blocks to
which the agents x and z belonged on date t. Suppose x ∈ Pt,h+1 and z ∈ Pt,j+1, with
j 6= h by construction. The proof revolves around demonstrating that Πt(x) ⊆ Pt,h+1

and Πt(z) ⊆ Pt,j+1. Indeed, since Pt,h+1 ∩ Pt,j+1 = ∅ and Pt,h+1, Pt,j+1 ⊆ Pt+1,k+1, if
Πt(x) ⊆ Pt,h+1 and Πt(z) ⊆ Pt,j+1, then we must have Πt(x) ∩Πt(z) = ∅.

To prove the above, we must rely on the following two properties of the matching
process Ψ∗. For each k = 0, 1, . . ., each t ≥ 0, and each 0 ≤ τ ≤ t we have:

(i) ψ∗τ (Pt,k+1) = Pt,k+1, and

(ii) Πτ (x) ⊆ Pt,k+1 for all x ∈ Pt,k+1.

The proof of (i) is by induction on t. For t = 0 it is obvious that ψ∗0 (P0,k+1) = P0,k+1 for
all k, since by our definition ψ∗0 (x) = {x} for all x ∈ J . Therefore, for the induction step,
assume that for some t ≥ 0 we have ψ∗τ (Pt,k+1) = Pt,k+1 for all k and all 0 ≤ τ ≤ t. We
want to prove that for any k we have ψ∗τ (Pt+1,k+1) = Pt+1,k+1 for each τ = 0, 1, . . . , t+ 1.
Start by observing that by the induction hypothesis ψ∗τ (Pt,k+1) = Pt,k+1 holds true for
all τ = 0, 1, . . . , t. Now, note that Pt+1,k+1 =

⊔∞
n=0 Pt,(2n+1)2k . But then for each τ =

0, 1, . . . , t we have

ψ∗τ (Pt+1,k+1) = ψ∗τ

(⊔∞
n=0 Pt,(2n+1)2k

)
=

⊔∞
n=0 ψ

∗
τ (Pt,(2n+1)2k)

=
⊔∞
n=0 Pt,(2n+1)2k = Pt+1,k+1 .
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Also, by definition ψ∗t+1 (Pt+1,k+1) = Pt+1,k+1. Therefore, ψ∗τ (Pt+1,k+1) = Pt+1,k+1 holds
true for each k and all τ = 0, 1, . . . , t+ 1 and the validity of (i) has been established.

The proof of (ii) is by induction on τ . For τ = 0 notice that for each x ∈ Pt,k+1 we have
Π0(x) = {x} ⊆ Pt,k+1. For the inductive step assume that for some 0 ≤ τ ≤ t− 1 we have
Πτ (x) ⊆ Pt,k+1 for all x ∈ Pt,k+1. We must show that Πτ+1(x) ⊆ Pt,k+1 for all x ∈ Pt,k+1.
Fix x ∈ Pt,k+1. From (i) we get ψ∗τ+1(Pt,k+1) = Pt,k+1, and so ψ∗τ+1(x) ⊆ Pt,k+1. Therefore,
each element y ∈ ψ∗τ+1(x) belongs to Pt,k+1. But then our induction hypothesis yields
Πτ (y) ⊆ Pt,k+1 for each y ∈ ψ∗τ+1(x), and so

Πτ+1(x) = Πτ (x)
⋃[ ⋃

y∈ψ∗
τ+1(x)

Πτ (y)
]
⊆ Pt,k+1 .

We are now ready to show that Ψ∗ satisfies (7.1). To this end let us consider period
t + 1 and assume that x, z ∈ J satisfy x, z ∈ ψ∗t+1(x) ⊆ Pt+1,k+1 with x 6= z and t ≥ 1.
That is, x and z are partners in period t + 1. Since x ∈ J =

⊔∞
k=0 Pt,k+1 there exists

a unique natural number h such that x ∈ Pt,h+1. Clearly, Pt,h+1 ⊆ Pt+1,k+1, i.e., the
period t matching block Pt,h+1 must be a component of the matching block Pt+1,k+1, in
the subsequent period. By construction of Pt+1,k+1, it also follows that there exists some
set Pt,j+1 ⊆ Pt+1,k+1, with j 6= h, such that z ∈ Pt,j+1. That is, since x and z are partners
in period t+ 1, each of them must belong to one of the (countable) collection of pairwise
disjoint sets {Pt,(2n+1)2k : n = 0, 1, 2, . . .} that compose Pt+1,k+1. But then from (ii) it
follows that Πt(z) ⊆ Pt,j+1. Using (ii) once more we get Πt(x) ⊆ Pt,h+1. Finally, taking
into account that Pt,h+1 ∩ Pt,j+1 = ∅ we infer that Πt(x) ∩Πt(z) = ∅.

This theorem demonstrates that, given any infinite population J , a matching process
exists that insures complete informational isolation. The necessary ingredient is an initial
partition of the population into countably many pairwise disjoint sets of identical cardinal-
ity. For example since J = N we can use the partition J =

⊔∞
k=0 P0,k+1 =

⊔∞
k=0 {k + 1}.

Then, we follow (7.2) to obtain

P1,1 = P0,1 t P0,3 t P0,5 t · · · = {1, 3, 5, . . .}
P1,2 = P0,2 t P0,6 t P0,10 t · · · = {2, 6, 10, . . .}
P1,3 = P0,4 t P0,12 t P0,20 t · · · = {4, 12, 20, . . .}

in t = 1 and so on. This means that in every period we can have countably many groups of
traders, each of which has countably many agents. These groups could form, for instance,
countably many Walrasian markets across which communication is impossible and which
are composed by complete strangers.

7.3 Informational isolation and the essentiality of money

We are now ready to demonstrate that if the matching process is based on Ψ∗, then the
optimal plan cannot be supported by a social norm.
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Theorem 10. If the matching process is based on Ψ∗, then σj = (0, 0, . . .) for all j ∈ J
is the one and only subgame perfect Nash equilibrium of the infinite horizon game.

Proof. Lemma 1 established that the minmax play at,k = 0 for all k ∈ Gt(j) is a stationary
equilibrium. Now focus on a representative agent j and his group Gt+1(j) and let k 6= j.
By (7.1) we have that Πt(j) ∩ Πt(k) = ∅ for all k ∈ Gt+1(j). It follows that agent k has
not observed any action taken in periods τ ≤ t by agent j, his partners, the partners of
his partners, and so on. Thus, even if j selects at,j 6= a∗t,j , then ht+1,k = h∗t+1,k for all
k ∈ Gt+1(j). In addition, note that Pt(j) =

⋃t
τ=0Gτ (j) ⊆ Πt(j) so that by (7.1) if j has

observed some action of some agent y ∈ Pt(j), then k has never observed (and will never
observe) any action of y, nor the actions of those who have observed the actions of agent
y, and so forth. Considering a deviation, this implies V d

t+1,j(σt+1) ≥ Vt+1,j(σt+1), for
any σt+1, since every future partner of j will have no history in common with j, and so
current actions will not affect j’s continuation payoff. In particular, this means that in
equilibrium j’s future partners will be unaware of any of his prior deviations. It follows
that a∗t,j > 0 cannot be a best response. To see why, notice that by virtue of being a best
response a∗t,j must satisfy

−a∗t,j + δt+1Vt+1,j(σt+1) ≥ −at,j + δt+1V
d
t+1,j(σt+1) ,

which implies a∗t,j ≤ at,j for all at,j ∈ Aj . Note that 0 ∈ Aj contradicts the optimality of
a∗t,j .

Matching processes based on Ψ∗ destroy all possible links, direct and indirect, among
trading partners. Thus, the representative agent j ∈ J knows that his current actions
cannot affect the choices of his future partners, as their histories will have no element in
common. Effectively, the matching process ensures that the infinite horizon game is an
infinite sequence of one-shot games, since every agent will always trade in markets where
no one has knowledge of any of his past deviations.

Specifically, the expected lifetime utility

Vt,j(σt) = v̂t(st(ht,j)) + δt+1Vt+1,j(σt+1) ,

is maximized when the current payoff v̂t is maximized. Indeed, for any given σt+1, the
continuation payoff Vt+1,j(σt+1) is unaffected by j’s current actions. Hence, in every t
agent j should play st(ht,j) = 0 for all histories ht,j , i.e., deviating from the optimal plan
in every date is weakly optimal.

The preceding discussion leads to the following.

Corollary 11. Money is essential if the matching process is based on Ψ∗.

The informational isolation guaranteed by Ψ∗ eliminates the possibility that informal
punishment schemes based on social norms can be used to sustain equilibria with positive
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consumption. Economies with this trait represent the prototypical case in which money
can help in sustaining production and trade. Our discussion of Ψ∗ indicates that economies
of this type can incorporate many different matching environments, including ones in which
infinitely-lived agents interact in trading groups that include infinite many participants.

8 Concluding remarks

We have considered an infinite-horizon economy in which trade is of an intertemporal
nature but two frictions rule out credit arrangements. First, a matching process is imposed
such that agents’ trading paths do not cross more than once. Second, agents must select a
course of action that is compatible with individual incentives. We have proved that if we
introduce (occasional) centralized trade, then money has hardly a role to play when agents
are patient and actions of partners are observable. Trading in a central market allows
a quick transfer of the information necessary to sustain informal punishment schemes.
Hence, as in [12, 19], desirable allocations can be sustained by means of social norms, even
if other assumptions, such as anonymity, rule our credit trades. This suggests that the role
of money is weakened when trading institutions exist that foster rapid and inexpensive
informational flows.

Based on this intuition, we have developed a matching framework that allows the
construction of economies in which infinitely-lived agents trade in infinitely large but
informationally isolated markets. Our technique can be used to improve the modeling
of pairwise matching economies characterized by spatial separation, such as in [28], or
characterized by search with or without rounds of Walrasian trading, such as in [23, 27].
It can also be used to construct monetary models in which agents trade exclusively in
large competitive markets. This is a further step toward developing models in which not
only money has an explicit role, but which can also be studied using standard general
equilibrium tools and are better integrated within the rest of macroeconomic theory.
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