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[1] Alkyl nitrates have been observed in remote oceanic
regions of the troposphere and in the surface ocean. The
mechanism for their production in the oceans is not known.
A likely source is the reaction of ROO + NO (where R is an
alkyl group). Steady-state laboratory experiments show that
alkyl nitrates are produced in the aqueous phase via this
reaction, with branching ratios of 0.23 ± 0.04, 0.67 ± 0.03, and
0.71 ± 0.04 for methyl, ethyl, and propyl nitrate respectively.
The branching ratios in aqueous solution are significantly
higher than in the gas phase. Irradiation of surface seawaters
yield rates of alkyl nitrate production on the order of 10�18

mol cm�3 s�1, suggesting that the reaction of ROO and NO is
an important source of alkyl nitrates in seawater. INDEX

TERMS: 4852 Oceanography: Biological and Chemical:

Photochemistry; 4820 Oceanography: Biological and Chemical:

Gases; 4850 Oceanography: Biological and Chemical: Organic

marine chemistry; 0312 Atmospheric Composition and Structure:

Air/sea constituent fluxes (3339, 4504); 0365 Atmospheric

Composition and Structure: Troposphere—composition and

chemistry. Citation: Dahl, E. E., E. S. Saltzman, and W. J. de

Bruyn, The aqueous phase yield of alkyl nitrates from ROO + NO:

Implications for photochemical production in seawater, Geophys.

Res. Lett., 30(6), 1271, doi:10.1029/2002GL016811, 2003.

1. Introduction

[2] Tropospheric ozone is an important greenhouse gas
and hydroxyl radical (OH) precursor. Ozone formation and
the distribution of ozone in remote areas are controlled by
the distribution and speciation of reactive nitrogen (NOy) in
the troposphere. Alkyl nitrates, which can make up a
significant fraction of reactive nitrogen in remote areas,
are believed to have a natural oceanic source.
[3] The SAGA-3 expedition in the equatorial Pacific

produced the first evidence that alkyl nitrates have an
oceanic source [Atlas et al., 1993]. Maxima in ethyl and
isopropyl nitrate, correlated with bromoform and clearly
associated with the pattern of equatorial upwelling, were
observed over the equatorial Pacific Ocean [Atlas et al.,
1993; Thompson et al., 1993]. These maxima could neither
be attributed to long-range transport nor to in situ atmos-
pheric production suggesting that the alkyl nitrates are
produced in the oceans [Atlas et al., 1993; Thompson et
al., 1993]. Blake et al. [1999] and Fischer et al. [2002] have
made similar atmospheric observations. Chuck et al. [2002]

measured alkyl nitrates in Atlantic Ocean surface waters and
suggest a possible biogenic source.
[4] The formation of alkyl nitrates in the polluted atmos-

phere is initiated by the oxidation of alkanes via:

RH þ OH ! Rþ H2O ð1Þ

Rþ O2 ! ROO ð2Þ

Where RH is an alkane. The resultant peroxy radical can
react with nitric oxide to produce an alkyl nitrate or nitrogen
dioxide [Darnell et al., 1976].

ROOþ NO ! RONO2 ð3aÞ

! ROþ NO2 ð3bÞ

The branching ratio for the formation of alkyl nitrate [k3a/
(k3a + k3b)] is dependent on the carbon number of the
alkane, with high molecular weight favoring alkyl nitrate
formation [Atkinson et al., 1983]. The branching ratio is
also temperature dependent, with low temperatures favoring
alkyl nitrate formation [Atkinson et al., 1983]. Yields of
C1–C3 alkyl nitrates under atmospheric conditions are low
(<3%) [Atkinson et al., 1982].
[5] Similar chemistry may occur in seawater where there

are natural sources of both NO and ROO. The photolysis of
nitrite produces NO and OH as the primary products
[Zafiriou and True, 1979].

NO�
2 �����!hu;H2O

NOþ OH þ OH� ð4Þ

Alkyl peroxy radicals are produced photochemically from
CDOM (colored dissolved organic matter) by intramole-
cular H-atom abstractions, electron transfer reactions, and
homolytic bond cleavages [Blough, 1997; Zhou and
Mopper, 1990; Mill et al., 1980; Faust and Hoignè,
1987]. Moore and Blough [2002] recently observed the
photochemical production of methyl nitrate in seawater
during laboratory irradiation experiments. In their experi-
ments, adding nitrite to seawater increased the production of
methyl nitrate.
[6] In this study, laboratory experiments on synthetic

solutions were carried out to determine the yield of methyl,
ethyl and propyl nitrates from the aqueous phase reaction of
ROO + NO. Several natural waters were also irradiated with
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and without nitrite additions to determine the production
rate of alkyl nitrates.

2. Experimental

2.1. Yield Experiments

[7] Steady-state irradiation experiments were carried out
on solutions of nitrite and alkane to determine the yield of
alkyl nitrate from the aqueous phase reaction ofROOandNO.
NO and OH were produced via reaction 4 and alkyl peroxy
radicals were produced byH atom abstraction from the alkane
by OH followed by O2 oxidation as in reactions 1 and 2.
[8] In these experiments, alkane was provided in excess,

relative to nitrite, and essentially all of the OH produced
reacted with the alkane to yield the peroxy radical. The
steady-state yield of alkyl nitrate was determined from the
amount of alkyl nitrate produced relative to the loss of nitrite.

Percent Yield ¼ � RONO2½ �
� NO�

2

� � 	 100%

[9] A kinetic model was used to simulate the experimen-
tal conditions and to evaluate the results. The model
included the reactions listed in Table 1. Model simulations
suggest that NO2 generated by reaction pathway 3b is
rapidly converted to nitrate and nitrite via NO2 + NO2 in
the presence of water. Thus approximately half of the nitrite
lost via pathway 3b is regenerated, and the measured yields
therefore underestimate the true branching ratio. The
branching ratio [k3a/(k3a + k3b)] is obtained experimentally
using the expression:

Branching Ratio ¼ � RONO2½ �
� RONO2½ � þ 2*� NO�

3

� �

This interpretation assumes that alkyl nitrates are not
formed from the reaction NO2 + RO (i.e. the reverse
reaction of 3b). Atkinson et al. [1983] argued on energetic
grounds that in the gas phase this reaction channel is not
important. However, this has not been studied in the
aqueous phase.

[10] The reported branching ratios include an estimate of
all known sources of random error involved in the exper-
imental and analytical procedures, reported as 1s. Possible
systematic errors may include unaccounted for losses of NO
(such as on the cell walls) that do not result in nitrite
reformation. Such errors are believed to be minor because a
mass balance was obtained between the nitrite concentration
prior to irradiation, and the sum of nitrite, nitrate, and alkyl
nitrates after irradiation.

2.2. Experimental Apparatus and Procedures

[11] Irradiations were carried out using a 1000-Watt
xenon arc lamp, with a copper sulfate solution IR filter,
and a 300–400 nm bandpass interference filter (Tmax = 70%
at 360 nm; lmax abs NO2

� = 350 nm). The experimental
solution was irradiated in a thermostatted, water-jacketed
quartz cell for 1–2 hours. The intensity of the light entering
the cell was approximately 4.5 times that of natural sunlight
at the same wavelengths. The oxygen concentration in the
experimental solutions was reduced to below 1% air satu-
ration to minimize the rate of reaction of NO + O2.
[12] Solutions were analyzed for nitrite and alkyl nitrates

both prior to and after irradiation. Nitrite and nitrate were
analyzed using a spectrophotometric method [Grasshoff,
1976]. Alkyl nitrates were detected using purge and trap
gas chromatography with mass spectrometric detection.
Ethyl, isopropyl, and n-propyl nitrate standards were pre-
pared from serial dilution of the pure liquids. Methyl nitrate
was standardized relative to isopropyl nitrate by serial dilu-
tion of a methyl/isopropyl nitrate mixture. NMR was used to
determine the methyl/isopropyl nitrate ratio in the mixture.

2.3. Natural Water Irradiations

[13] Several Pacific coastal surface water samples were
collected near the University of California at Irvine and one
oligotrophic surface ocean water sample was collected
aboard ship at 35�N 123�W (Station M) [Smith and Druffel,
1998]. The samples were analyzed for nitrite, nitrate, and
alkyl nitrates prior to irradiation. The fluorescence (excitation
350 nm, emission 360–600 nm) of each sample was deter-
mined as a measured of the relative CDOM levels [Smart et
al., 1976]. Irradiations were carried out in the laboratory on
unfiltered and filtered aliquots of the seawater samples. If the
nitrite concentration of the water was less than 1 mM,
unfiltered and filtered aliquots were also irradiated with
addition of nitrite. Following irradiation, the solutions were
reanalyzed for alkyl nitrates, and the alkyl nitrate production
rate was calculated. Methyl nitrate was not determined in
these experiments because of co-elution with unknown peaks
in seawater under the chromatographic conditions used. A
sunlight-normalized formation rate was obtained by dividing
the measured rates by the intensity of the light source relative
to sunlight at solar noon at the equator.

3. Results and Discussion

3.1. Experimental Results-Yield Experiments

[14] The branching ratios were calculated from the
observed yields, with correction for recycling of nitrate to
nitrite, as described above. The mean branching ratio
determined for methyl nitrate was 0.23 ± 0.04. This is
significantly lower than those of ethyl and propyl nitrate,
which are 0.67 ± 0.03 and 0.71 ± 0.04, respectively. The

Table 1. Reactions and Rates Used in a Model of the Nitrogen

Chemistry in the Experiment

Reaction Rate Constant

NO2
� + hu + H2O ! NO + OH + OH� 7 	 10�5 s�1

RH + OH + O2 ! ROO + H2O 1.4 	 109 M�1 s�1a

ROO + NO ! RONO2 or RO + NO2 2.8 	 109 M�1 s�1b

2NO2 + H2O ! 2H+ + NO2
� + NO3

� 7 	 107 M�1 s�1c

2H+ + NO2
� + NO3

� ! 2NO2 + H2O 29 M�3 s�1

NO + NO2 + H2O! 2NO2
� + 2H + 3 	 10�7 M�1 s�1c

2NO2
� + 2H + ! NO + NO2 + H2O 1.8 	 10�7 M�3 s�1

NO3
� + hu + H2O ! NO2 + OH + OH� 7 	 10�5 s�1

NO + OH ! NO2
� + H+ 2 	 1010 M�1 s�1d

NO2 + hu ! NO 7 	 10�4 s�1

NO2 + OH ! H+ + NO3
� 4.5 	 109 M�1 s�1e

2NO + 1/2O2 + H2O ! 2NO2
� + 2H+ 9 	 106 M�2 s�1f

Photolysis rate constants were calculated based on the intensity of the
source.

aGetoff [1989].
bPadmaja and Huie [1993].
cSchwartz [1984].
dStrehlow and Wagner [1982].
eLoegager and Sehested [1993].
fZafiriou and True [1979].
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mean branching ratios of ethyl and propyl nitrate are not
different from one another, within the uncertainty of the
measurements. The branching ratios for all three alkyl
nitrates exhibit no temperature-dependence over the meas-
ured range of 5–30�C.
[15] The ratio of formation of n-propyl to isopropyl

nitrate in the propane experiments was 0.52 ± 0.06. The
interpretation of this ratio is complicated by the fact that it
reflects both the relative rates of H abstraction at the
primary and secondary carbons of propane, and the branch-
ing ratio for alkyl nitrate formation at the resulting n-propyl
and isopropyl peroxy radicals. Kwok and Atkinson [1995]
used kinetic gas phase data to estimate the relative reactivity
of various H-atoms on alkanes toward abstraction by OH. If
this relative reactivity applies to the aqueous phase, the ratio
of n-propyl and isopropyl peroxy radicals in these experi-
ments should be 0.36. This would imply that that branching
ratio for isopropyl nitrate formation is 0.63, lower than that
of the n-propyl nitrate (0.94). This result is quite different
from those of Atkinson et al. [1982] in the gas phase, which
suggested that n-propyl nitrate has a lower branching ratio
than isopropyl nitrate. Experimental work is needed in order
to determine the relative reactivity of OH toward various H-
atoms on alkanes in the aqueous phase.
[16] For the analogous gas phase reactions the ethyl and

propyl nitrate yields are 1% and 2% respectively, signifi-
cantly lower than the aqueous phase yields measured here.
As shown by Atkinson et al. [1982, 1983, 1987] alkyl
nitrates are produced in the gas phase (at least partly) via
a chemical activation unimolecular isomerization mecha-
nism, with the yield increasing at higher pressures as
expected from standard Lindemann-Hinshelwood unimo-
lecular reaction theory. The low yields measured by Atkin-
son et al. [1982, 1983, 1987] are not in the high-pressure
limit and are expected to be higher at higher pressures and
in the condensed phase.

3.2. Experimental Results-Natural Water Irradiations

[17] Table 2 lists the production rates of alkyl nitrate
production for surface water samples, normalized to solar
noon at the equator. The rates ranged from 0.2–12.0 	
10�18 mol cm�3 s�1 for ethyl nitrate, 0.2–7.1 	 10�18 mol

cm�3 s�1 for isopropyl nitrate, and 0.1–2.0 	 10�18 mol
cm�3 s�1 for n-propyl nitrate.
[18] The ratios of the production rates of the alkyl nitrates

formed relative to one another were relatively constant
among the waters studied, with ethyl nitrate formation rates
significantly larger than those of the propyl nitrates. Iso-
propyl nitrate formed at a rate approximately 3–4 times that
of n-propyl nitrate. This is significantly different from the
relative amounts of propyl nitrates formed in the yield
experiments. This indicates that the OH-initiated oxidation
of alkanes dissolved in seawater is probably not the princi-
ple source of alkyl peroxy radicals, and suggests that other
pathways involving photolysis of CDOM are responsible.
The formation of alkyl nitrates can potentially serve as a
tracer for the formation rate and speciation of carbon-
centered radicals in seawater.
[19] The formation rate of alkyl nitrates is related to

nitrite concentration, as might be expected since nitrite
photolysis is the primary source of NO in seawater. The
alkyl nitrate production rate in the Newport Pier and Laguna
Beach waters was increased significantly by addition of
nitrite prior to irradiation (Table 2). A more detailed study
of the nitrite dependence of alkyl nitrate formation was
carried out using the filtered open ocean water sample. This
water sample originally had a nitrite level of 4 	 10�8 M
and production rates of 2.0 ± 0.1 	 10�19, 1.5 ± 0.5 	
10�19, and 0.5 ± 0.2 	 10�19 mol cm�3 s�1 for ethyl,
isopropyl, and n-propyl nitrate respectively. Increasing the
nitrite concentration to 1.2 	 10�6 M increased the pro-
duction rate of ethyl, isopropyl, and n-propyl nitrate to 6.8 ±
1.5 	 10�18, 3.8 ± 0.2 	 10�18, and 1.0 ± 0.2 	 10�18 mol
cm�3 s�1. Alkyl nitrate production appears to have a
logarithmic dependence on nitrite concentration (Figure 1).
This suggests alkyl nitrate production may be nitrite (NO)
limited at low nitrite levels. At higher nitrite concentrations,

Table 2. The Rates of Formation of Ethyl (EtNO3), Isopropyl

(i-PrNO3), and N-Propyl (n-PrNO3) Nitrate Normalized to Sunlight

Intensity for Water Samples Irradiated in the Laboratory

Water
Filtered
(Yes/No)

Nitrite
(10�6 M)

Production Rate
(10�18 mol cm�3 s�1)

EtNO3 i-PrNO3 n-PrNO3

Sheriff’s Station No 1.5 8.4 5.1 1.5
Yes 1.5 12.0 7.1 2.1

Newport Pier No 0.1 0.4 0.2 0.6
No 1.0 6.5 2.8 1.3
Yes 0.1 0.4 0.2 0.6
Yes 1.0 5.8 2.6 1.5

Laguna Beach No 0.2 1.0 0.5 0.1
No 1.2 8.2 4.0 1.0
Yes 0.2 1.1 0.7 0.2
Yes 1.1 5.1 1.9 0.5

Open Ocean Yes 0.0 0.2 0.2 0.1
Yes 1.2 6.8 3.8 1.0

Samples collected at Newport Pier, Laguna Beach, and the open ocean
were irradiated with and without the addition of nitrite. The standard
deviations (1s) of the production rates were 10%.

Figure 1. The formation rates of ethyl, isopropyl, and
n-propyl nitrate as a function of nitrite in open ocean water.
This sample was collected from the surface ocean at 35�N
123�W and represents oligotrophic ocean waters. 6 ethyl
nitrate, ~ isopropyl nitrate, . n-propyl nitrate.
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the production of alkyl peroxy radicals may become rate
limiting.
[20] The alkyl nitrate production rate in natural waters

should also reflect the production rate of the precursor
peroxy radicals, and should therefore also be related to
CDOM concentrations and/or reactivity. In these experi-
ments, fluorescence was measured to determine the relative
abundance of CDOM. However, in these waters (as in many
natural waters) nitrite and CDOM levels strongly co-vary.
Differentiating between the effects of nitrite and CDOM
requires a detailed understanding of the nitrite dependence
of alkyl nitrate production. Further studies to examine these
relationships are in progress.

3.3. Discussion

[21] The aqueous reaction of ROO + NO appears to be an
efficient source of alkyl nitrates in the aqueous phase,
suggesting that this mechanism is a likely source of alkyl
nitrates in seawater. As stated earlier, there are natural
sources of alkyl peroxy radicals and NO in seawater. The
results of this study do not exclude the possibility of other
production mechanisms for alkyl nitrates in seawater.
[22] The rates observed in the natural water experiments

suggest that photochemical production is environmentally
significant. Chuck [2002] reported mixed layer alkyl nitrate
concentrations in the Atlantic Ocean ranging from 1.7–7.7
	 10�15 mol cm�3 for ethyl nitrate. For a station just north
of the equator, Chuck [2002] reported a mixed layer con-
centration for ethyl nitrate of 
3.3 	 10�15 mol cm�3. The
ethyl nitrate production rate in our open ocean seawater
sample, normalized to equatorial sunlight intensity, was 2 	
10�19 mol cm�3 s�1 (Table 2). Assuming that alkyl nitrate
is produced photochemically in the upper 10 meters of the
ocean and is vertically mixed to an average mixed layer
depth of 75 m, this production rate would generate the
observed mixed layer concentrations in approximately 5
hours of solar noon conditions.
[23] Based on the observations made in these experi-

ments, alkyl nitrates can be expected to be readily formed
anywhere ROO and NO radicals occur in solution. This
includes fresh water bodies such as rivers and lakes and
atmospheric solutions such as aerosols and cloud droplets.
One would also expect alkyl nitrates to form in intracellular
fluids where both alkyl peroxy and NO radicals occur
[Stamler et al., 1992; Halliwell and Gutteridge, 1989].
These studies suggest that alkyl nitrates may be useful
probes for understanding the radical chemistry of natural
waters and biological solutions.

[24] Acknowledgments. We would like to thank Elliot Atlas for
discussion stimulating this research and for providing standards. We also
thank Don Blake, Jeff Gaffney, and Catherine Clark. This project was
partially funded by the DOE Global Change Education Program and the
NSF Chemical Oceanography Program (OCE-0196465) and NASA
(NAG5-6659).

References
Atkinson, R., S. M. Ashmann, W. P. L. Carter, and A. M. Winer, Kinetics of
the gas-phase reactions of OH radicals with alkyl nitrates at 299 ± 2K,
Int. J. Chem. Kinet., 14, 919–926, 1982.

Atkinson, R., W. P. L. Carter, and A. M. Winer, Effects of temperature and
pressure of alkyl nitrate yields in the photo oxidations of n-pentane and n-
heptane, J. Phys. Chem., 87, 2012–2018, 1983.

Atkinson, R., S. M. Ashmann, and A. M. Winer, Alkyl Nitrate formation
from the reaction of a series of branched RO2 radicals with NO as a
function of temperature and pressure, J. Atmos. Chem., 5, 91–102, 1987.

Atlas, E., W. Pollock, J. Greenberg, and L. Heidt, Alkyl nitrates, non-
methane hydrocarbons and halocarbon gases over the equatorial Pacific
Ocean during Saga 3, J. Geophys. Res., 98, 16,933–16,947, 1993.

Blake, N. J., et al., Aircraft measurements of the latitudinal, vertical, and
seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS
during the First Aerosol Characterization Experiment (ACE 1), J. Geo-
phys. Res., 104, 21,803–21,817, 1999.

Blough, N. V., Photochemistry in the sea-surface micro layer, in The Sea-
Surface and Global Change, edited by P. S. Liss and R. Duce, pp. 383–
424, Cambridge Univ. Press, New York, 1997.

Chuck, A. L., Biogenic halocarbons and light alkyl nitrates in the marine
environment, Ph.D. diss., Univ. of East Anglia, Norfolk, UK, 2002.

Chuck, A. L., S. M. Turner, and P. S. Liss, Direct evidence for a marine
source of alkyl nitrates, Science, 297, 1151–1154, 2002.

Darnell, K. R., W. P. L. Carter, A. M. Winer, A. C. Lloyd, and J. N. Pitts Jr.,
Importance of RO2 + NO in alkyl nitrate formation from C4–C6 alkane
photooxidations under simulated atmospheric condition, J. Phys. Chem.,
80, 1948–1950, 1976.

Faust, B. C., and J. Hoignè, Sensitized photo oxidation of phenols by fulvic
acidand innaturalwaters,Environ. Sci. Technol.,21, 10,957–10,964,1987.

Fischer, R., R. Weller, H. W. Jacobi, and K. Ballschmiter, Levels and
pattern of volatile organic nitrates and halocarbons in the air at Neumayer
Station (70�S), Antarctic, Chemosphere, 48, 981–992, 2002.

Getoff, N., Advancements of radiation induced degradation of pollutants in
drinking and wastewater, Appl. Radiat. Isot., 40, 585–594, 1989.

Grasshoff, K., Methods of Seawater Analysis, Verlag Chemie, Weinheim,
Germany, 1976.

Halliwell, B., and J. M. C. Gutteridge, Free Radicals in Biology and Med-
icine, 2nd ed., Oxford Univ. Press, New York, 1989.

Kwok, E. S. C., and R. Atkinson, Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reac-
tivity relationship: An update, Atmos. Environ., 29, 1685–1695, 1995.

Loegager, T., and K. Sehested, Formations and decay of peroxynitric acid:
A pulse radiolysis study, J. Phys. Chem., 97, 6664–6669, 1993.

Mill, T., D. G. Hendry, and H. Richardson, Free radical oxidants in natural
waters, Science, 207, 886–887, 1980.

Moore, R. M., and N. V. Blough, A marine source of methyl nitrate,
Geophys. Res. Lett., 29(15), 1737, doi:10.1029/2002GL014989, 2002.

Padmaja, S., and R. E. Huie, The reaction of nitric oxide with organic
peroxyl radicals, Biochem. Biophys. Res. Commun., 195, 539–544, 1993.

Schwartz, S., Gas-aqueous reactions of sulfur and nitrogen oxides in liquid-
water clouds, in SO2, NO and NO2 Oxidation Mechanisms: Atmospheric
Considerations, Acid Precip. Ser., 3, edited by J. G. Calvert, pp. 173–
208, Butterworth-Heinemann, Woburn, Mass., 1984.

Smart, P. L., B. L. Finlayson, W. D. Rylands, and C. M. Ball, The relation
of fluorescence to dissolved organic carbon in surface waters, Water Res.,
10, 805–811, 1976.

Smith, K. L., and E. R. M. Druffel, Long time-series monitoring of an
abyssal site in the NE Pacific: An introduction, Deep Sea Res., Part,
II,45, 573–586, 1998.

Stamler, J. S., D. J. Singel, and J. Loscalzo, Biochemistry of nitric oxide
and its redox-activated forms, Science, 258, 1898–1902, 1992.

Strehlow, H., and I. Wagner, Flash photolysis in aqueous nitrite solutions,
Z. Phys. Chem. Munich, 132, 151–160, 1982.

Thompson, A. M., et al., Ozone observations and a model of marine bound-
ary layer photochemistry during SAGA-3, J. Geophys. Res., 98, 16,955–
16,968, 1993.

Zafiriou, O. C., and M. B. True, Nitrite photolysis in seawater by sunlight,
Mar. Chem., 8, 9–32, 1979.

Zhou, X., and K. Mopper, Determination of photochemically produced
hydroxyl radicals in seawater and freshwater, Mar. Chem., 30, 71–88,
1990.

�����������������������
E. E. Dahl and E. S. Saltzman, Department of Earth System Science,

University of California at Irvine, Irvine, CA 92612, USA. (edahl@uci.edu;
esaltzma@uci.edu)
W. J. de Bruyn, Department of Physical Sciences, 1 University Drive,

Orange, CA 92866, USA. (debruyn@chapman.edu)

4 - 4 DAHL ET AL.: AQUEOUS PHASE YIELD OF ALKYL NITRATES FROM ROO + NO


	The Aqueous Phase Yield Of Alkyl Nitrates From Roo+No: Implications For Photochemical Production In Seawater
	Recommended Citation

	The Aqueous Phase Yield Of Alkyl Nitrates From Roo+No: Implications For Photochemical Production In Seawater
	Comments
	Copyright


	The aqueous phase yield of alkyl nitrates from ROO + NO: Implications for photochemical production in seawater

