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Abstract 

We study cooperation in economies of indefinite duration. Participants faced a 

sequence of prisoner’s dilemmas with anonymous opponents. We identify and 

characterize the strategies employed at the individual level. We report that (i) grim 

trigger does not describe well individual play and there is wide heterogeneity in 

strategies; (ii) systematic defection does not crowd-out systematic cooperation; (iii) 

coordination on cooperative strategies does not improve with experience. We discuss 

alternative methodologies and implications for theory. 
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1. Introduction 

Fostering cooperation in society can be problematic when agents who face a social dilemma do 

not know each other and cannot easily establish reputations. The individual appeal of 

opportunistic behavior is especially strong when it is difficult to communicate intentions, to 

maintain stable partnerships, or to monitor and to enforce cooperation of others. Yet, Folk 

Theorem-type results suggest that, over the long haul, none of these frictions present a 

fundamental obstacle to cooperation.1 Groups of self-regarding agents can overcome the short-

run temptation to cheat others by employing a social norm threatening permanent defection 

through a decentralized punishment scheme that spreads by contagion. Studying these dynamics 

is central because, as Binmore (2005, p.818) points out, “the ideas that motivate the folk theorem 

of repeated game theory remain our best hope of understanding how societies hold together and 

adapt to new challenges”. The open question is how, in practice, groups of agents reach 

cooperation when theoretically feasible and what strategies they adopt to sustain it.2 

     We address this question through an experiment where subjects faced an indefinitely 

repeated prisoner's dilemma implemented through a random stopping rule (e.g., as in Palfrey and 

Rosenthal, 1994, Dal Bó, 2005). Each subject was assigned to a group of four. In each period, 

each group was randomly divided into two pairs that played the prisoner’s dilemma. Subjects 

could not identify opponents and could only observe outcomes in their own pair. Each subject 

played a sequence of five supergames. In each supergame every subject was assigned to a 

different group formed according to a perfect stranger protocol. 

                                                 
1 The foundation for this statement traces back to the Folk Theorem in Friedman (1971) and the random-matching 
extensions in Kandori (1992) and Ellison (1994). 
2 The relevance of such a question has been recently emphasized by Ostrom (2010, p. 660), who writes that “Simply 
assuming that humans adopt norms […] is not sufficient to predict behavior in a social dilemma, especially in very 
large groups with no arrangements for communication.” 



 

 3 

Our design makes it possible to empirically identify and characterize strategies employed by 

subjects.  The empirical evidence about strategies adopted in indefinitely repeated games is still 

limited, and it is confined to two-person economies of short-duration with a subject pool of 

undergraduates (Engle-Warnick et al., 2004, Engle-Warnick and Slonim, 2006, Aoyagi and 

Fréchette, 2009, Dal Bó and Fréchette, 2011, Fudenberg et al., forthcoming). This study 

advances the understanding of how subjects play indefinitely repeated games by studying their 

behavior in four-person economies of substantially longer duration than in the literature, and 

with a varied subject pool (undergraduates, MBA students, white-collar workers). 

     We study economies where anonymous subjects are not in stable partnerships, which are the 

theoretical platform of an important segment of the economic literature. Consider for instance the 

matching models in macroeconomics as in Diamond (1982) or in Mortensen and Pissarides 

(1994), and the decentralized trading models in microeconomics as in Kandori (1992) and 

Milgrom, North, and Weingast (1990). A key feature of these models and of our experiment is 

that it is impossible for a subject to build a reputation. Clearly, no model can perfectly fit 

situations in the field and a similar argument generally applies to experiments. In our laboratory 

economies we control the informational flows and the matching process to capture essential 

“trade frictions” characteristic of larger economies. In particular: subjects may not know and 

may not trust each other, reputation is hard to establish, it is difficult or costly to monitor the 

actions of all other members of society, to communicate intentions, and institutions for 

enforcement have limitations.  

   Folk theorem-type results show that a long-run interaction can sustain a multiplicity of 

equilibrium outcomes but do not offer much guidance regarding which equilibrium will be 

selected. We report that full efficiency is rarely achieved in our experimental economies, which 
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suggests that efficiency may not be the key equilibrium selection criterion (see also Duffy and 

Ochs, 2009, and Duffy et al., forthcoming). Such result contrasts with the assumption in many 

applications of theories of infinitely repeated games. Moreover, in these theories the efficiency 

frontier is often traced through a “grim trigger” strategy whereby all players cooperate under the 

threat of a contagious process of economy-wide defection.3 We carry out an individual-level 

analysis that sheds light on empirically-relevant equilibrium selection criteria. We find that only 

one out of four individuals behaves in a manner consistent with the use of the grim trigger 

strategy. These findings challenge the descriptive power of theories based on the notion that 

everyone cooperates because of the threat of unforgiving, generalized punishment. The data 

suggest that subjects dealt with the heterogeneity in behavior by tolerating some defections in 

attempting to coordinate with a subset of participants in the economy. We observe that 

systematic defectors and systematic cooperators coexisted within most economies. Subjects tried 

out a variety of strategies but these attempts at coordinating failed to sustain high cooperation 

rates. 

     The paper proceeds as follows: Section 2 discusses related works; Section 3 presents the 

experimental design; Section 4 provides a theoretical analysis; Section 5 proposes an empirical 

procedure for classification of individual strategies and the main results are reported in Section 6; 

Section 7 presents results for a maximum likelihood analysis of strategies; Section 8 expands the 

analyses by considering an extended strategy set, and Section 9 concludes.  

2. Related experimental literature 

There are a few experimental studies of the strategies played by subjects in indefinitely repeated 
                                                 
3 This implies that to punish a single defection, innocent cooperators must also be penalized. In this sense, our work 
bears similarities to experiments with public good games and common pool resources (e.g., Ostrom et al., 1992, 
Fischbacher et al., 2001), where cooperation is not individually rational in the stage game but can be sustained in the 
indefinitely repeated game if the grim strategy is adopted. 



 

 5 

games. With one exception, discussed below, all studies we are aware of refer to two-person 

economies. The key differences in our set-up are the following: first, economies include four 

persons; second, subjects do not interact as partners; third, we consider long-duration economies. 

We now present an overview of the papers most related to our study. 

Engle-Warnick, McCausland, and Miller (2004) retrieve subjects’ strategies from 

experimental data on an indefinitely repeated prisoner’s dilemma. They model behavior using 

finite automata, as we do, while implementing a different experimental design and empirical 

technique. Their subjects interacted in a supergame as partners for 5 periods in expectation, 

while our subjects interacted as strangers for 20 periods in expectation. Unlike our study, they 

employ Bayesian methods and numerical techniques to estimate the distribution of strategies 

represented by automata with errors on actions. 

Engle-Warnick and Slonim (2006) study an infinitely repeated trust game with 5 periods of 

average duration. They empirically identify the strategies employed by subjects by formalizing 

strategies using the notion of finite automata (Rubinstein, 1986), as we do. They consider a large 

number of automata, which exclude the possibility of errors in the implementation of strategies. 

They find that the vast majority of data can be explained using only a small number of strategies. 

In particular they find support for grim trigger play between partners.  

Aoyagi and Fréchette (2009) study an indefinitely repeated prisoners’ dilemma with 

imperfectly observable actions, and 10 periods of average duration. They consider a family of 

threshold strategies where transitions between cooperative and punishment state depend on four 

free parameters. They find support for the use of forgiving strategies, rather than grim trigger.  

Dal Bó and Fréchette (2011) study an indefinitely repeated prisoner dilemma with an 

expected duration of two or four periods. They estimate subjects’ strategies fitting the data via a 
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maximum likelihood approach, to a set of six possible strategies. They look at the behaviour of 

experienced subjects. They find support for “tit for tat” and “always defect”, but unlike Engle-

Warnick and Slonim (2006), they do not find evidence for grim trigger strategies in their 

economies of two players and of very short duration.  

Fudenberg et al. (forthcoming) consider a design adapted from Dal Bó and Fréchette (2011) 

where actions are observed with noise and there are longer sequences of play. They fit the data 

using a set of twenty automata with up to four states following a maximum likelihood approach. 

The most common strategies are “tit for two tats” and strategies that trigger permanent 

punishment after the second or the third consecutive defection.  

Stahl (2009) studies the impact of reputation mechanisms in finitely repeated prisoner’s 

dilemmas with random matching. In the absence of a reputation mechanism, subjects did not 

sustain cooperation in economies of 22-24 members. With a color-coded reputation mechanism 

in place, cooperation was sustained through the use of strategies based on individual reputation, 

which is in line with the evidence in Camera and Casari (2009) for indefinitely repeated games in 

smaller economies. In contrast, the present study identifies strategies in economies where 

reputation mechanisms are ruled out by design and it focuses on individual behavior, which is 

not studied in Camera and Casari (2009). 

3. Experimental design 

The experiment is based on the same design of the Private Monitoring treatment in Camera and 

Casari (2009), which is suitable to study strategy selection in an indefinitely repeated prisoner 

dilemma where reputation formation is impossible. An economy comprises four persons who 

interact privately and anonymously. The interaction is private because subjects observe only 

outcomes in their pair but not in the rest of the economy (private monitoring). Subjects are not in 
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a stable partnership but are randomly matched in pairs after every encounter. The interaction is 

anonymous because subjects cannot observe identities. 

  The underlying game is the prisoners’ dilemma described in Table 1. In the experiment, 

subjects could choose between Y, for cooperation, and Z for defection. Because of the empirical 

difficulty in supporting high levels of cooperation in economies of strangers, the parameters of 

the experiment are calibrated to promote some cooperative choices. This is necessary to study 

and draw conclusions about the type of strategies people adopt to support cooperative outcomes.4   

[Table 1 approximately here] 

A supergame (or cycle, as it was called in the experiment) consists of an indefinite interaction 

among subjects achieved by a random continuation rule; see Roth and Murninghan (1978). The 

interaction is of finite but uncertain duration, because in each period a cycle continues with a 

constant probability  For a risk-neutral subject  represents the discount factor. In each 

period the cycle is expected to continue for 19 additional periods. To implement this random 

stopping rule, at the end of each period the program drew a random integer between 1 and 100, 

using a uniform distribution. The cycle continued with a draw of 95 or below. All session 

participants observed the same random draw, which means that cycles for all economies 

terminated simultaneously.  

Each experimental session involved twenty subjects and five cycles. We built twenty-five 

economies in each session by creating five groups of four subjects in each of the five cycles. 

Matching across cycles followed a perfect stranger protocol: in each cycle each economy 

included only subjects who had neither been part of the same economy in previous cycles nor 

                                                 
4 We selected this parameterization as it scores high on the indexes proposed by Rapoport and Chammah (1965) and 
Roth and Murnighan (1978) that correlate with the level of cooperation in the indefinitely repeated prisoners’ 
dilemma in a partner protocol.  
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were part of the same economy in future cycles. Subjects did not know how groups were created 

but were informed that no two participants ever interacted together for more than one cycle. This 

matching protocol across supergames reduces the possibility of contagion effects, as opposed to 

a stranger protocol. In short, it is as if each subject had five distinct “lives” in a session. 

Participants in an economy interacted in pairs according to the following matching protocol 

within a supergame. At the beginning of each period of a cycle, the economy was randomly 

divided into two pairs. There are three ways to pair the four subjects and each one was equally 

likely. So, a subject had one third probability of meeting any other subject in each period of a 

cycle. For the whole duration of a cycle a subject interacted exclusively with the members of her 

economy. In each economy, subjects interacted locally in the sense that they could only observe 

outcomes in their pair. In addition, they could neither observe identities of opponents, nor 

communicate with each other, nor observe histories of others. As a consequence, subjects did not 

share a common history. With this private monitoring design, the efficient outcome can be 

supported as an equilibrium. 

     Studying strategy adoption within this experimental design offers several advantages in 

comparison to designs based on two-person economies. First, anonymity implies that strategies 

based on reputation cannot be employed. In empirical studies, these strategies show a strong 

drawing power, although they are not theoretically essential to sustain cooperation.5 Hence, with 

anonymity subjects are forced to consider other strategies. Second, in economies with more than 

two participants coordination on strategies and outcomes is more interesting and challenging. For 

                                                 
5 Our design adopts private monitoring and random matching among subjects as in the Private Monitoring treatment 
of Camera and Casari (2009), where subjects’ behavior substantially differed from behavior in a non-anonymous 
public monitoring treatment. With non-anonymous public monitoring subjects mostly defected with opponents who 
previously defected with her. Stahl (2009) reports that cooperation could be sustained in a finitely repeated 
prisoner’s dilemma game only when a color-coded reputation mechanism was introduced. 
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instance it is possible to study if and how a subset of subjects can separately coordinate on a 

strategy. Third, subjects are exposed to a variety of behaviors, which facilitates the empirical 

identification of strategies.  

The experiment involved three distinct groups of subjects: 40 undergraduate students from 

various disciplines at Purdue University, 20 full-time MBA students in the Krannert School of 

Management, and 40 clerical workers employed as staff throughout Purdue University. Both 

MBAs and undergraduates have a strong international component. The clerical workers are 

mostly long-time state residents, who exhibit a wide variation in age and educational 

backgrounds. Having multiple subject pools is methodologically appealing because it enhances 

the external validity of our results.6 

All 100 subjects were recruited through e-mail and in-class-announcements. The sessions 

were run in the Vernon Smith Experimental Economics Lab. No eye contact was possible among 

subjects. Instructions were read aloud with copies on all desks. A copy of the instructions is in 

the Appendix. Average earnings were $18 excluding show-up fees. A session lasted on average 

79 periods for a running time of about 2 hours, including instruction reading and a quiz. Each 

session had 20 participants and 5 cycles. 7 

4. Theoretical predictions  

The theoretical predictions are based on the works in Kandori (1992) and Ellison (1994), under 

the assumption of identical players, who are self-regarding and risk-neutral. Here we concisely 

                                                 
6 Differences across subject pools are studied in the companion paper Bigoni, Camera and Casari (2012). 
7 Sessions took place on the following dates: 21.4.05 (71), 7.9.05 (104), 29.11.05 (80), 06.12.05 (50), 07.02.07 (91). 
The total number of periods for the session is in parenthesis. Show-up fees are as follows: undergraduates received 
$5; clerical workers received $10; MBAs received $20. Data of the first two sessions are also analyzed in Camera 
and Casari (2009). The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007).  
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present the relevant theoretical predictions; for additional details see Camera and Casari (2009). 

The stage game is the prisoner dilemma in Table 1. Players simultaneously and independently 

select an action from the set {Y,Z}. Total surplus in the economy is maximized when everyone 

cooperates, i.e., when all players choose Y. Thus, we refer to the outcome where every player in 

the economy selects Y as the efficient or fully cooperative outcome. If both pairs in the economy 

select {Z,Z}, then we say that the outcome is inefficient. There exists a unique Nash equilibrium 

where both agents defect and earn 10 points. 

   Under private monitoring, indefinite repetition of the stage game with randomly selected 

opponents can expand the set of equilibrium outcomes. Following the work in Kandori (1992) 

and Ellison (1994), we present sufficient conditions so that the equilibrium set includes the 

efficient outcome, which is achieved when everyone cooperates in every match and all periods. 

The inefficient outcome can be supported as a sequential equilibrium using the strategy 

“always defect.” Since repeated play does not decrease the set of equilibrium payoffs, Z is 

always a best response to play of Z by any randomly chosen opponent. In this case the payoff in 

the indefinitely repeated game is the present discounted value of the minmax payoff, z/(). If δ 

is sufficiently high, then the efficient outcome can be sustained as a sequential equilibrium, by 

threatening to trigger a contagious process of defection, leading to minmax forever. In an 

economy with full cooperation, every player receives payoff y/(1). Hence, the main theoretical 

consideration is the following: 

Let *(0,1) be the unique value of  that satisfies 

032(2 =y)(hz)yhδ+z)(hδ  . 

If   *, then the efficient outcome is a sequential equilibrium. In the experiment, the efficient 

outcome can be sustained as an equilibrium, because =0.95 and *=0.443. 
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   We now provide intuition for the above statement. Conjecture that players behave according to 

actions prescribed by a social norm. A social norm is a rule of behavior that identifies desirable 

play and a sanction to be selected if a departure from the desirable action is observed. We 

identify the desirable action by Y and the sanction by Z. Thus, every player must cooperate as 

long as she has never played Z or has seen anyone select Z. However, if the player observes Z, 

then she must select Z forever after. This is known as a grim trigger strategy. 

Given this social norm, in equilibrium everyone cooperates so the payoff to everyone is the 

present discounted value of y forever: y/(1). A complication arises when a player might 

consider defecting, however, as defection always grants a higher payoff in the stage game. To 

deter players from behaving opportunistically, the social norm employs the threat of contagious 

process of defection leading to minmax forever. Notice that a player deviates in several 

instances—first, in equilibrium, if she has not observed play of Z in the past but chooses Z 

currently, and second, off-equilibrium, if she has observed play of Z in the past but plays Y 

currently. Cooperating when no defection has been observed is optimal only if the agent is 

sufficiently patient. The future reward from cooperating today must be greater than the extra 

utility generated by defecting today (unimprovability criterion). Instead, if a defection occurs and 

everyone follows the social norm, then everyone ends up defecting since the initial defection will 

spread by contagion. Given that our experimental economies have only four players, contagion 

can occur very quickly. 

For a strategy to be an equilibrium strategy, cooperating after observing a defection should 

also be suboptimal. Choosing Y can delay the contagion but cannot stop it. To see why, suppose 

a player observes Z. If she meets a cooperator in the next period, then choosing Y produces a 

current loss to the player because she earns y (instead of h). If she meets a deviator, choosing Y 
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also causes a current loss because she earns l rather than z. Hence, the player must be sufficiently 

impatient to prefer play of Z to Y. The smaller are l and y, the greater is the incentive to play Z. 

Our parameterization ensures this incentive exists for all  so it is optimal to play Z after 

observing (or selecting) Z.8 

   Two remarks are in order. First, due to private monitoring, T-periods punishment strategies 

cannot support the efficient outcome as an equilibrium. Suppose a pair of agents starts to punish 

for T periods, following a defection in the pair. Due to random encounters, this initial defection 

will spread at random throughout the economy. Hence, over time different agents in the economy 

will be at different stages of their T-periods punishment strategy. Hence, agents cannot 

simultaneously revert to cooperation after T periods have elapsed from the initial defection.9 

Second, cooperation is risk-dominant in our design, in the following sense. Consider two 

strategies, “always defect” against “grim trigger.” Grim trigger is risk-dominant if a player is at 

least indifferent to selecting it, given that everyone else is believed to select each strategy with 

equal probability. Indifference requires = 0.763.10  

5. Estimation procedure for individual strategies 

To empirically identify in the experimental data the strategies employed by each subject, we 

formalize strategies using the concept of finite automata. As a robustness check, we consider 

both deterministic automata as well as automata with a random element.  

An automaton is a convenient way to represent the process by which a player implements a 

                                                 
8   With our parameterization, the upper bound to  is 1.125 and the lower bound is 0.443. 
9 In every period of the session, all participants observed the same random integer 1,…,100, which could have 
served as a public randomization device. Hence, the efficient outcome could be sustained also by strategies based on 
contagious punishment that exploit the availability of a public randomization device; see Ellison (1994). 
10 Details on derivations are available upon request. See Blonski and Spagnolo (2001) for an application to infinitely 
repeated games among partners. Blonski, Ockenfels, and Spagnolo (2011) and Dal Bó and Fréchette (2010) present 
experimental evidence on how risk-dominance impact partners’ play in indefinitely repeated games. 
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rule of behavior in a repeated game (Rubinstein, 1986). The automaton is described by (i) a set 

of actions, (ii) a set of states for the player, (iii) an outcome function that specifies the action to 

be taken given the player’s state, and (iv) a transition function that specifies the next state that 

the player will reach, given his current state and the actions taken by the opponent. 

Automata with sufficiently many states can describe any type of behavior observed in the 

experiment. We consider only two-state automata. There are various reasons for doing so. This 

class of automata is small—there are only 25=32 two-state automata—and yet it allows to 

represent most common strategies in the literature, such as “tit-for-tat,” “grim trigger,” “always 

defect,” and “always cooperate.”11 Clearly, not all of these automata describe equilibrium 

strategies. Moreover, two-state automata describe strategies that are relatively simple, hence 

likely to be devised and used by experimental subjects. As an example Figure 1a illustrates “tit 

for tat” and “grim trigger.” Actions are either C=Cooperate or D=Defect; a circle corresponds to 

a state for the player, where the initial state is a bold circle; the outcome function is the identity 

function, i.e. the unique action prescribed is written inside each circle; the solid arrows represent 

transitions between states, which depend on the opponent’s action reported next to each arrow.  

    As seen above, an automaton defines a deterministic action plan, which provides a rigid rule to 

capture subject’s behavior. When fitting the data, we relax the rigidity of the rules of behavior by 

introducing a random element in the automata. This can accommodate subjects who make some 

mistakes in implementing a plan or who pursue some intentional experimentation within their 

strategy. The estimation procedure allows for random transitions, i.e., the possibility to reach the 
                                                 
11 There are 2 initial states identified by the action prescribed in that state, C and D, and 2 subsequent states, C or D, 
that are reached depending on the 4 possible outcomes of the match (each player has two actions). See Table 2. We 
use automata to represent subjects’ play because it is an empirically helpful technique to classify subjects’ behavior. 
Clearly, such a representation does not restrict in any way subjects’ freedom of choice during the experiment.  
Automata are simply a convenient tool to characterize subjects’ observed patterns of choice. Expanding the set of 
automata considered, for instance by including three- or four-state automata, would simply increase the number of 
classified individuals and would not alter the equilibrium set. 



 

 14

incorrect state with some probability p≥0.12 We estimate strategy fitting from a range of values 

for p from 0 through 0.40. This allows us to assess how the explanatory power of a given 

automaton varies as we increase the probability of errors. With two states, departures from a plan 

take one of two forms: the subject may either fail to switch state (say, keeps playing C instead of 

switching to D) or may incorrectly switch state (say, plays D instead of keep playing C). The 

dashed lines in Figure 1b represent such incorrect or accidental transitions for the case of grim 

trigger and tit-for-tat. Randomness on transitions is different from randomness on outcome 

functions, as in Engle-Warnick et al. (2004). 

[Figure 1 approximately here] 

We group the 32 strategies considered into six strategy sets (Table 2). The initial action is C for 

four strategy sets and is D for two sets. An additional distinction is whether play is unconditional 

or conditional on the observed outcome. Unconditional strategies prescribe only one action 

unless mistakes are made. Such strategies comprise the classes of automata called systematically 

cooperate and systematically defect, which include as a special case “always cooperate” and 

“always defect” (see the note to Table 2 for more details). Conditional strategies starting with C 

are divided into three groups: grim trigger, a set of forgiving strategies, and a set of 

unconventional strategies. Forgiving strategies prescribe a switch to playing D only if an 

opponent chooses D, but allow a switch back to C (e.g., “tit for tat”).  Unconventional strategies, 

instead, may prescribe D even if no defection has been observed. 

[Table 2 approximately here] 

The strategy-fitting procedure is a mapping from the experimental data into the strategy sets 

                                                 
12 Note that we are interested in social norms and especially the grim trigger strategy, because it sustains cooperative 
equilibria. If everyone plays grim trigger, one mistake moves the economy to permanent punishment. Errors in 
transitions allow us to study cases where players may reconsider the wisdom of carrying out extreme punishments or 
wish to give a second chance to cooperation. 
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of Table 2. The unit of observation is the sequence of all choices of a subject in a cycle, i.e., the 

behaviour of an individual or, simply, an individual. We may also refer to such a sequence as one 

observation. Hence, one subject contributes five observations in the dataset. For every 

individual, we first select the strategy that best describes (“fits”) her sequence of actions among 

the thirty-two strategies available. Then, we check whether the description of behavior provided 

by this best-fitting strategy is sufficiently accurate. If it is so, then we classify the individual by 

that strategy; otherwise, we say that the individual is unclassified by that strategy. Note that one 

individual could be classified by more than one strategy. Those who cannot be classified by any 

strategy are denoted unclassified individuals. 

We say that strategy q “fits” an observation (i.e., an individual) if it can generate an action 

sequence consistent with the behavior of the subject in the cycle. The definition of consistency 

allows for some experimentation or occasional mistakes. More precisely, let xq,t=1 if a subject’s 

action in period t of a cycle corresponds to the outcome generated by a correct implementation of 

strategy q, and let TxTX
T

qq /)(
1 , 


   denote the consistency score of that strategy, in a cycle 

of duration T. The score ranges from zero (no action taken is consistent with strategy q) to one 

(correct implementation of q).13 To account for the possibility that subjects may occasionally 

depart from the chosen plan of action, we presume a probability p of an incorrect transition exists 

that is (i) identical across subjects, (ii) constant across periods and cycles, and (iii) independent 

of the strategy considered. Under these conditions, the number n of a subject’s actions that are 

inconsistent with a strategy q in a cycle of duration T is distributed according to a binomial with 

                                                 
13 For example let q be “grim trigger” and suppose a subject observes D only in period 1 of a four-period cycle. The 
sequence CDDD generates the score Xq=4/4=1. With random transitions, however, the sequence CDCC would 
generate Xq=3/4 because only the action in period 3 is inconsistent with grim trigger. An incorrect transition occurs 
in period 2 (from state D to C, whereas D should be an absorbing state), but the action in period 4 is consistent with 
being (incorrectly) in state C. 
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parameters p and T-1. The expected number of inconsistent actions increases with T and 

decreases with p so that if p and T are sufficiently small the expected number of inconsistent 

action is lower than one. Hence, the average length of a cycle is a crucial design parameter. 

Fixing p, we say that strategy q fits an observation or, equivalently, that one individual is 

classified according to strategy q, if the following three conditions are satisfied. First, q correctly 

predicts the initial action, 11, qx . This is because errors in transition can occur only across 

periods; hence, an error can be made only after period 1. Second, q must have the largest 

consistency score among all strategies considered, )()( ' TXTX qq  for all q’≠q. Finally, if n 

actions are inconsistent with q, then the probability of such a realization must be within chance, 

given p and T. As a statistical test, strategy q does not fit the observation if the observation lays 

in the 10% right tail of the distribution of errors, i.e., the strategy does not fit the observation if 

the probability of observing n or more inconsistent actions is smaller than 10%. To fix ideas, 

suppose p=0.05. According to our criterion, not even one inconsistent action is admissible in 

cycles lasting less than four periods. In a cycle lasting 20 periods, instead, we expect one 

incorrect transition and admit at most two incorrect transitions; this means that, for example, a 

“grim trigger” player who has started punishing has the chance to move back to a cooperative 

state and to retrace his steps back to full defection, and yet to be classified as “grim trigger,” 

according to this third condition. If one or more of the above conditions is not met, then the 

observation is “unclassified.” 

Definition: The total fit N(q) of a strategy q is the number of observations that q fits. The total fit 

N(Q) of a strategy set Q is the number of observations that can be explained by at least one 

strategy qQ. 
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Both the total fit of a single strategy and the total fit of a strategy set are useful measures 

because individuals could sometimes be classified by more than one strategy. For this reason, the 

total fit of a strategy q provides an upper bound for the number of individuals that employ 

strategy q.14 . This problem of classification overlap is more relevant for subjects who did not 

experience a sufficient variety of actions in a cycle or played a short cycle. For instance,  in a 

two-period cycle “grim trigger” and “tit-for-tat” identically fit the observation C in period 1 and 

D in period 2 when the initial opponent plays D, and also fit the observation CC when the initial 

opponent plays C. When a subject observes the same action (e.g., C) in every meeting, we cannot 

infer what the subject would have done if D was observed. As a consequence, if one sums up the 

total fit of single strategies in a set Q, qQ N(q), then the figure may be greater than the total fit 

N(Q) of the set Q, and can even exceed the total number of observations. 

To obtain a tighter classification of individuals, the strategy-fitting procedure is refined as 

follows. First, strategy sets are constructed in order to include closely-related strategies. It is thus 

possible that a single individual is classified by two strategies if they are in the same set, but less 

likely if they belong to different sets. Second, the strategy fitting procedure has been run 

separately for individuals who observed heterogeneous actions, i.e. for the subsample of the data 

where opponents played both C and D. Tracing the response to out of equilibrium behavior 

improves the chances for unique identification. Third, the estimation on this subsample is also 

carried out for deterministic strategies. This further reduces classification overlap; for instance, 

an individual cannot be identified both by “grim trigger” and by strategies in the set 

“systematically cooperate”.15 

                                                 
14 This measure is context-independent, i.e., it is invariant to the number and type of strategies considered. 
15 More specifically, we find the following among all classified individuals: first, the average individual is classified 
by 4.51 strategies (1827/405, Table 2) and by 1.70 strategy sets (688/405, Table 3). Second, focusing on strategy 
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6.  Results 

There are seven main results. Result 1 concerns an analysis of strategy play at the aggregate 

level. Results 2-7 are about individuals, i.e., strategies employed by single subjects in each cycle. 

     Result 1. Consider subjects’ behavior at the aggregate level. In period 1 subjects exhibited a 

high cooperation rate. If in the cycle subjects observed a defection, then they persistently 

lowered her cooperation rate. 

This finding is broadly consistent with the theories in Kandori (1992) and Ellison (1994) 

regarding the existence of a rich equilibrium set, including full cooperation, under private 

monitoring.  

Choices in the first period of each economy help us determine whether some equilibrium 

(among the many possible) had a particularly strong drawing power. Average cooperation level 

in period 1 was 67.2%, and in all periods it was 53.8%. Hence, we can rule out that subjects 

attempted to coordinate on defection (see Table 4 for cooperation rates disaggregated by cycle 

and for period 1 in each cycle). What behavior can explain such patterns of cooperation? Due to 

private monitoring, cooperation cannot be supported through T-period trigger strategies. In 

contrast, grim trigger can theoretically sustain an equilibrium with 100% cooperation. To 

investigate whether the data are consistent with such strategies, we ran a probit regression that 

explains subjects’ choice to cooperate (1) or not (0) using two groups of regressors. In this 

regression, the unit of observation is a subject’s choice in a period. We introduce dummy 

variables that control for fixed effect (cycles, periods within the cycle, subject), as well as for the 

                                                                                                                                                             
sets, the average individual is classified by 1.43 strategy sets when her opponents play both C and D (454/317, Table 
3). Third, this figure further reduces to 1.28 with deterministic automata (234/182, Table 3, p=0). 
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duration of the previous cycle. To trace the response of subjects in the periods following an 

observed defection we include a “grim trigger” regressor that has value 1 in all periods following 

an observed defection (0 otherwise). We also include five “lag” regressors that have value 1 only 

in one period following an observed defection (0 otherwise). More specifically, the “lag n” 

regressor takes value 1 after one, two, three, four or five periods after the observed defection 

(n=1,2,3,4,5, respectively) and 0 in all other periods. If subjects switched from a cooperative to a 

punishment mode after seeing a defection, then the estimated coefficient of at least one of the six 

strategy regressors should be negative. For example, if subjects punished for just two periods 

after a defection, then the sum of the estimated coefficients of grim trigger and “lag n” regressors 

should be negative for the first two periods after a defection (0 afterwards).  

The key result from this analysis is: the defection of an opponent triggered a persistent 

decrease in cooperation with very little reversion to a cooperative mode. Figure 2 provides 

supporting evidence; it illustrates the marginal effect of experiencing a defection on the 

frequency of cooperation in the following periods.16 The marginal effect curves are L-shaped, 

i.e., after an initial drop, the curves look generally flat, and no recovery to pre-defection 

cooperation levels after five periods can be detected.17 Instead, if subjects adopted a strategy that 

allows for reversion to full cooperation, then curves should be U-shaped.18  

[Figure 2 approximately here] 

Cooperation was the focal point of period 1 play for subjects. When first confronted with a 

defection in the match, a substantial fraction of initial cooperators responded with an immediate, 

                                                 
16 The representation for “any more than five” period lags is based on the marginal effect of the grim trigger 
regressor only. The representation for period lags 1 though 5 is based on the sum of the marginal effects of the grim 
trigger regressor and the “lag n” regressors with the appropriate lag. 
17 The marginal effects of “lag 1” and “lag 5” regressors are not significantly different (p-value: 0.1144). 
18 Additional details on supporting evidence, including regression results, are in the supplementary appendix. 



 

 20

downward and persistent shift in the frequency of cooperation. Similar analyses are carried out 

by Camera and Casari (2009) both for anonymous and non-anonymous economies. Depending 

on the anonymity level, such Probit regression analysis revealed substantial differences in the 

empirical choice of strategies. The present study enhances the validity of the earlier results on 

anonymous economies, by using a larger and more diverse subject pool. 

The above analysis is compatible with a fraction of subjects acting as if playing “Grim 

trigger” and others playing “Always defect” or “Always cooperate.” However, this is not the 

only pattern of strategies that could possibly generate this result. Therefore, to expand on this 

initial assessment we carried out a statistical analysis of strategies adopted at the individual level, 

proceeding as follows. First, we empirically identify strategies and determine the number of 

observations that can be explained by those strategies. Second, we empirically characterize the 

strategies most commonly used. Third, we analyze the dynamics of behavior by subject to 

understand whether subjects learn to coordinate on certain outcomes and cooperative strategies.  

As discussed in the previous Section, the unit of observation is the sequence of all choices of 

a subject in a cycle, i.e., the individual. Since there are 100 subjects and five cycles, there are 500 

individuals. As an initial step, we wish to determine (i) whether the 32 simple strategies 

considered classify a high or small number of individuals and (ii) which strategies are most 

successful in doing so. A central result is that, given the identification technique proposed in 

Section 5, a high number of individuals can be classified. 

     Result 2. Consider the behavior of single individuals. When allowing for limited randomness 

in behavior (p=5%), thirty-two simple strategies classify 81% of individuals. 

The empirical findings are reported starting with Figure 3, illustrating the percentage of 

classified individuals as we vary the probability p of incorrect transition (i.e., the 
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experimentation rate) from 0 to 0.40. Varying the probability p serves as a robustness check. 

Figure 3 shows the marginal gain in total fit as one changes the probability of incorrect 

transition. Fully deterministic automata (p=0) classify more than half of the individuals. The total 

fit is 53.0% of individuals. If we increase the probability of incorrect transitions to p=0.05, then 

the total fit of the entire strategy set improves substantially, reaching 81.0%. The fit then slowly 

tapers out. With p=0.30 we classify almost 100% of individuals. Therefore, in the analysis that 

follows, we will report results for p=0.05, unless otherwise stated, and will include detailed 

results in Tables 3-4. 

[Figure 3 approximately here] 

No single group of strategies classifies a majority of individuals. “Systematically cooperate,” 

which is the most relevant group, classifies 26.8% of individuals when p=0 and 42.4% when 

p=0.05 (Table 3). Considering p=0.05 (Table 2), the best-fitting single strategy is one of those in 

the “systematically cooperate” class and it classifies 37.6% of individuals. When taking just two 

strategies into account (11100 and 00000), the total fit is 59.8%.19 When taking into account 

differences in cycle duration, these figures are in line with the results reported in other studies. In 

an indefinitely repeated trust game, Engle-Warnick and Slonim (2006) achieve a total fit of 

89.6% when they employ 32 strategies. When taking just two strategies into account they fit 

66.8%. However, the average length of a cycle in Engle-Warnick and Slonim (2006) was 5.1 

periods, considerably shorter than in our experiment, which matters for comparison purposes 

because statistically a strategy has more difficulty in fitting behavior emerging from longer 

cycles. Longer cycles allow a better identification of strategies, so as cycle duration increases a 

larger strategy set is needed to fit a given number of observations. To see why, consider that a set 

                                                 
19 00000 corresponds to unconditional defection; 11100 describes the behavior of someone who always cooperates 
but may switch to permanent defection by mistake. 
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of just two strategies such as “grim trigger” and “always defect” fits 100% of observations of 

one-period cycles. This explains why it is more difficult to classify individuals who played 

longer cycles; unclassified individuals played cycles lasting 25.8 periods on average, as opposed 

to 13.6 periods for classified individuals. The key issue is thus to determine under what 

dimensions unclassified and classified individuals differ.20  

[Table 3 approximately here] 

     Result 3. Classified individuals exhibited higher average payoffs than unclassified 

individuals. 

Support for Result 3 is in Table 3. Mean profits are significantly greater for classified than 

unclassified individuals (18.7 vs. 15.2; p-value is 0.061 when controlling for cycle length and 

0.014 without it; N1=96, N2=406). This suggests, although it does not prove, that the two-state 

automata considered include the best-performing strategies.  

As it may be expected, classified individuals exhibited lower volatility of play than unclassified 

individuals. Volatility of play is defined as the frequency of switch between cooperation and 

defection choices. The average switch frequencies for classified individuals are significantly 

lower than for unclassified individuals: 9.3% vs. 34.3% (p-value of 0.005 in both cases; N1=94, 

N2=406).21 Interestingly, both classified and unclassified individuals faced a volatile 

                                                 
20 We generated data on individual play through simulations, to determine whether p increases the fit by simply 
capturing random play. Each simulated player was assigned action C or D at random in each period, drawing from a 
fixed probability distribution, which corresponded to the empirically observed distribution of actions in the 
experiment. When running the same strategy-fitting procedure on this simulated dataset, we classify 25% of 
individuals when p=0 and 41% when p=0.05. These figures are directly comparable with those from the 
experimental data in Table 3 (53% and 81%, respectively). Adding a probability p of incorrect transition does 
increase the number of individuals classified, but to a much lesser extent than in the experimental data. Hence, p 
does not simply capture random play in the experimental data. 
21 The p-values reported in this Section are obtained from regressions results as explained below. We did not rely on 
statistical tests because observations are generally not independent. Statistics are computed aggregating observations 
by subject and cycle, unless otherwise noted. Thus we always have 500 observations in total. Strictly speaking, these 
observations are independent only if we focus on the first cycle. In this Section comparisons are carried out through 
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environment. Hence, the difference in switch frequency is not a mere consequence of being 

exposed to opponents with more erratic behavior. 

The Z-tree software recorded the number of seconds a subject employed to make each choice. 

The decision time is the number of seconds elapsed between the appearance of the input screen 

and the confirmation of the choice. Decision time is an additional descriptive variable for 

subjects’ strategies for which there is a growing interest in experimental economics as well as 

psychology (e.g., Chabris at al. 2008, or see Kosinski, 2006 for psychology).  In particular, the 

literature has suggested that decision time is related to the difficulty of the task, learning, and 

impulsive or deliberate nature of the decision being made (Rubinstein, 2007). The median 

decision time for choosing between C and D is more than 35% longer for unclassified than 

classified subjects (Table 3: 4.26 vs. 3.09 seconds). However, this difference is not significant. 

One could think of two alternative interpretations of Result 3. On the one hand, unclassified 

individuals may be more sophisticated than classified individuals, and so they adopt strategies 

that are more complex than the ones that can be identified by two-state automata. This greater 

complexity requires higher cognitive effort, thus longer decision time, and include more frequent 

action switches due to richer contingencies. On the other hand, unclassified individuals may 

simply be undecided on what behavior to adopt, and so experiment more within their strategy. 

The difference in profits for classified and unclassified subjects emerging from Table 3 suggests 

that experimentation is a likely explanation.22  

                                                                                                                                                             
regressions where the dependent variable is alternatively (i) average frequency of switch, (ii) average profit, and (iii) 
mean decision time per observation. The independent variable is a dummy taking value 1 if the observation is 
classified by any of the 32 strategies considered (zero otherwise). The regression includes fixed effects at the subject 
level, and errors are computed clustering at the session level. Full regression results are available upon request. 
22 Notice however that this does not imply that every set of classified strategies does better than any set of 
unclassified strategies. For example, in stationary environments (last two panels of Table 3), individuals following 
“systematically cooperate” earn less than unclassified individuals because defecting always increases payoffs. 
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Having described a central difference between classified and unclassified individuals, we 

now turn to examining what strategies characterize the behavior of classified individuals. We are 

especially interested in the grim trigger strategy, as it has a prominent role in the way folk 

theorems define the equilibrium set and the efficiency frontier. Such a strategy supports 

cooperation by prescribing the harshest possible penalty through decentralized, contagious 

punishment. Hence, it may appeal to subjects interested in sustaining cooperation in four-person 

economies where individual reputation cannot be developed.  

     Result 4. The grim trigger strategy classifies at most one individual out of four, even when 

allowing for limited randomness in behavior. 

At most 26.8% of individuals’ behavior is consistent with adoption of the grim trigger 

strategy.  This percentage falls to 18.4% when considering deterministic automata. Recall that 

we use the word “individual” to denote the sequence of all choices of a subject in a single cycle. 

This classification does not require a subject to follow the same strategy consistently across all 

cycles. Support for Result 4 comes from Table 3. There is a discrepancy between the results from 

the Probit analysis (Result 1) and fitting automata on individuals (Result 4).23 Our probit analysis 

overestimates the behavior compatible with grim trigger in comparison with the classification of 

individuals based on automata. To reconcile this apparent discrepancy, we note that a strong 

aggregate response to an observed defection may result from use of strategies that prescribe 

punishment forms other than grim trigger. From Table 3, one can see that 33.6% of individuals 

employ conditional punishment strategies that are unlike grim trigger. Adoption of such 

strategies can generate the observed aggregate pattern of response to a defection. 

                                                 
23 As pointed out by a referee, the disparity between aggregate and individual behavior is what one would expect in 
economies where some subjects playing “Grim Trigger” coexisted with subjects playing “Always defect” and 
“Always cooperate.” 
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     Result 5. There was heterogeneity in individual behavior and no single strategy can classify 

the majority of individuals. 

Table 3 displays a summary of results from the empirical identification of strategies. The data 

suggest the use of heterogeneous strategies. The most common behavior was consistent with 

“systematically cooperate.” The three other largest clusters of classified individuals acted as if 

having adopted a strategy from classes of strategies, which we denoted “systematically defect,” 

“forgiving.” and “grim trigger”. Interestingly, individuals adopting unconditional strategies 

greatly outnumbered those using conditional ones, which marks a difference from other 

experimental studies about cooperative tasks (Fischbacher et al., 2001) in which a majority of 

subjects adopt strategies of conditional cooperation. We address this discrepancy in Section 8, 

where we consider also conditional strategies with longer memory. Moreover, twice as many 

individuals selected a strategy with cooperation as the initial action, as opposed to an initial 

defection. In sum, the data suggest the existence of heterogeneity in the strategies followed by 

individuals and a “preference” for strategies that, roughly speaking, are more cooperative. 

   As a robustness check, Table 3 reports the strategy-fitting procedure run on three disjoint 

subsamples: observations in which opponents (i) cooperated as well as defected, (ii) always 

cooperated, (iii) always defected. Not surprisingly, it is easier to classify observations in a 

stationary environment because subjects tend to adopt more stable behavior, which is consistent 

with a wide set of the strategies studied. The percentage of classified individuals grows from 

78% (317 out of 406) in subsample (i) to 94% (88 out of 94) in subsamples (ii) and (iii). 

However, subsample (i) is clearly the most useful for the purpose of identifying strategies, and 

Result 5 is robust when we only consider subsample (i). Among classified individuals, the grim 
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trigger strategy was only the third most common strategy (22.7%). Instead, behavior consistent 

with “systematically cooperate” had the highest total fit and classified 45.8% of individuals. 

Conversely, “systematically defect” classified 33.4% of the individuals.  

To sum up, the strategy fitting analysis uncovered significant heterogeneity in individual 

behavior. Only a minority of individuals acted as if using grim trigger (see also Offerman et al., 

2001), while a significant fraction of individuals exhibited unconditional behavior, i.e., played an 

action that was fixed and independent of the opponents’ actions. The uncovered heterogeneity in 

individual behavior sheds light on the observed patterns of cooperation in society. When people 

follow a social norm that involves threats of unforgiving economy-wide punishment, it may take 

just one individual that follows a different strategy to completely unravel cooperation. This 

suggests that, for a given degree of heterogeneity in the population, full cooperation is harder to 

sustain in larger economies. Studying four-person economies is an initial step in this direction. 

Up to this point the analyses were static. Further information can be gathered by extending the 

analysis to study dynamic patterns of choices. 

     Result 6. Individual behavior changed with experience: 81% of subjects changed strategy 

from cycle to cycle. Yet, experience did not lead to the general adoption of any specific strategy. 

Recall that each subject in the experiment generates five observations on strategies, i.e., five 

individuals, one per cycle. If a given strategy q fits all five observations generated by a subject, 

then we say that strategy q classifies that subject. When we follow each subject across cycles, the 

data yields a very strong result. Only 19 out of 100 subjects can be classified according to the 

same strategy in all cycles. Of these, 11 and 7 can be classified as playing “systematically 

cooperate” and “systematically defect,” while only 1 subject adopted a steady behavior 

consistent with grim trigger. This suggests that most subjects experimented with various 
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strategies across cycles perhaps in an effort to search for a strategy that is a “best response” to 

play experienced in earlier cycles. In principle, the possibility to experiment with strategies 

across cycles could improve the chances to reach full cooperation in later cycles. However the 

data show this was not the case, despite the fact that the economies had only four subjects. Local 

interactions and anonymity proved to be frictions sufficient to put full cooperation out of reach.  

The presence of a learning pattern is confirmed by the analyses of decision times. Decision 

times display two major patterns (see Table 4). The median decision time is much longer in cycle 

1 than other cycles, which suggest learning takes place (9.50 seconds in cycle 1 vs. 2.2 seconds 

in cycle 5). Also, within each cycle the mean decision time is much longer in period 1 than other 

periods (13.53 vs. 3.18 seconds), which suggests that the initial decision in a cycle is the most 

difficult to make. Both patterns emerge when subjects choose either C or D in period 1, which 

suggests that subjects choose a strategy in the first period of a cycle, thus they need to spend 

more time thinking. A longer decision time in period 1 of later cycles may reflect 

experimentation with strategies across cycles.  

[Table 4 approximately here] 

The data suggest that subjects dealt with the heterogeneity in behavior by tolerating some 

defections in attempting to coordinate with a subset of participants in the economy. Unlike in 

two-person economies, in four-person economies a coalition of subjects can profitably 

coordinate on cooperation. To fix ideas, given the parameterization chosen, a subject can earn 

more than the minmax payoff even if two persons in the economy always defect. The key 

requirement is that the remaining subject must cooperate sufficiently often. If two subjects 

always defect, then a subject who always cooperates earns more than the minmax payoff as long 

as the third subject cooperates at least 75% of the times. This suggests that a stable subset of 
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systematic cooperators could emerge even if there are systematic defectors. The empirical 

relevance of these behavioral considerations is well illustrated in the result that follows. 

     Result 7. Systematic defectors and systematic cooperators coexisted within most economies. 

To provide evidence for Result 7, we categorize each of the 125 experimental economies 

depending on the classification of individuals within each economy. Individuals classified as 

systematic cooperators coexisted with systematic defectors in more than half of the economies.24 

In addition, we categorize the 212 individuals classified by the “systematic cooperation” class 

according to their presence within each economy. Only 41 individuals were the sole systematic 

cooperator in the economy, while 56 individuals were found in economies where everybody 

systematically cooperated. The remaining 115 individuals systematically cooperated in 

economies where someone, though not everyone, sometimes defected.25 In other words, the data 

show that oftentimes subjects unconditionally cooperated even in economies where defectors 

were present, which supports the view that subgroups successfully coordinated on cooperation. 

As earlier noted, disciplining a lone, anonymous defector by punishing future random opponents 

impairs the possibility of coordinating on cooperation with the others. This provides a behavioral 

justification for why grim trigger is not the strategy of choice in our experimental economies. 

Indeed, Results 7 shows that persistent opportunistic behavior goes often unpunished.    Clearly, 

there may be other reasons for the observed behavior, such as other regarding preferences. Other-

                                                 
24 In only 3 economies we could not classify individuals as either systematic cooperators or systematic defectors; in 
64 economies both classes of strategies were observed; in 39 economies there were systematic cooperators but no 
systematic defectors; and in 19 economies the reverse was true. The average length of cycles in each of these four 
categories of economies was, respectively, 32.7, 11.8, 18.2, and 22.4 periods. This evidence also suggests, although 
it does not prove, that strategies based on the public randomization device were uncommon. 
25 Subjects who followed “systematically cooperate” faced environments characterized by different degrees of 
cooperation: 48 subjects faced 100% cooperation; 61 faced a cooperation rate between 67% and 99%; 64 subjects 
faced a cooperation rate between 33% and 66%, and 39 faced less than 33% cooperation. This means that the 
expected payoff for a subject following “systematically cooperate” is at least 15.3 points, which is higher than the 
minmax payoff of 10. 
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regarding preferences may support or hinder the use of “systematically cooperate” strategies 

depending on what motivates subjects. On the one hand, altruistic motives and positive 

reciprocity may prevent subjects from punishing after observing a defection because punishment 

destroys surplus and harms cooperators and defectors alike. On the other hand, positional 

motives reinforce the urge to punish after a defection in order to prevent others from getting 

ahead in terms of relative share of income. 

7. Strategy identification through maximum likelihood 

Here, we estimate the importance of each candidate strategy with a maximum likelihood 

approach, as in Dal Bó and Fréchette (2011) and Fudenberg et al. (forthcoming). This 

methodology enhances comparability with related studies and allows us to study the case when 

automata can make errors in implementing actions, as opposed to errors in transitions.  

The estimation comprises a set of twenty-six strategies.26 The estimation employs data from all 

cycles and presumes that subjects (i) have a given probability of choosing one of the 26 

strategies, (ii) may change strategies from cycle to cycle and (iii) may make errors on actions, 

i.e., with some probability may choose an action that is not recommended by the strategy. 27  

The maximum likelihood estimation differs from the one presented in Section 5  because (a) 

it relies on the assumption that subjects may make errors in actions (not in transitions) and (b) it 

estimates the prevalence of errors in implementing actions (the parameter ), rather than 

                                                 
26 There are 26 strategies now because if there are no errors in transitions, then every strategy in the class 
“Systematically cooperate” (Systematically defect”) coincides with the one-state automaton “Always cooperate” 
(Always defect). All two-state automata in the class “Systematically cooperate” (“Systematically defect”) prescribe 
the same behavior as the strategy “Always cooperate” (“Always defect”). 
27 The estimation was executed adapting the code included in the supplementary material of Dal Bó and Fréchette 
(2011), where the reader can also find the details of the estimation procedure. However, unlike in Dal Bó and 
Fréchette (2011) and Fudenberg et al. (forthcoming), our estimation procedure assumes that subjects may change 
strategies from cycle to cycle; the code has been adapted accordingly. 
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imposing a maximal number of errors (the parameter p).28 One can illustrate the difference 

between errors in actions and in transitions using as an example the “Grim trigger” automaton.  

If everyone plays grim trigger, then a single wrong choice moves the economy to permanent 

punishment, which is an absorbing state because a mistake is never forgotten. Instead, mistakes 

in transition allow for a sort of experimentation within the strategy, as it is still possible to 

change state and revert to a cooperative mode, hence we may observe “fresh starts” or alternating 

spells of cooperation and punishment. The maximum likelihood estimates the prevalence of 

errors in actions (the parameter ) and “classifies” every individual. Instead, fitting automata to 

observations, as done in Section 6, implies that a fraction of observations may end up 

“unclassified.” Because this fraction depends on the exogenously-specified maximal number of 

errors in transitions (the parameter p), the strategy-fitting procedure helps us assessing the 

sensitivity of results to increasing margins of error (Figure 3).  

[Table 5 approximately here] 

Table 5 reports the estimates of the population proportions for each of the 26 strategies. These 

maximum likelihood estimates confirm the main results on strategy identification reported in 

Section 6. The four most likely strategies are “Always cooperate”, “Grim trigger”, “Tit-for-Tat” 

and “Always defect” and, as noted in Result 5, there is significant heterogeneity in individual 

behavior with no strategy clearly prevailing. In line with Result 4, grim trigger can account only 

for a minority of observations, in the order of one out of five. Table 5 provides additional support 

for the finding that a significant fraction of individuals (more than 50%) exhibited unconditional 

behavior, i.e., chose an action that was fixed and independent of the actions of previous 

opponents. In short, the results reported in Section 6 are robust to the use of a maximum 
                                                 
28 The assumption that subjects can make mistakes in implementing actions also underlies the approach adopted by 
Engle-Warnick, McCausland, and Miller (2004). 
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likelihood approach and to consideration of errors in actions. The strategy-identification 

approach proposed in Section 5 allows us to perform additional empirical analyses of the 

behavior of individuals, such as differentiating classified and unclassified individuals. It also 

allows us to assess how the explanatory power of a given strategy varies as we increase the 

probability of errors. 

 The finding that a majority of subjects followed strategies compatible with unconditional 

behavior departs from findings in other experimental studies about cooperation (e.g., Fischbacher 

et al., 2001), and so it should be further investigated. Indeed, it is possible that some observations 

could result from subjects using complex conditional strategies that cannot be represented by 

two-state automata. More concretely, consider an individual who starts defecting after suffering 

several defections in the previous four rounds. This individual could be classified as 

“systematically cooperate” when allowing for some errors in transitions, although she may in 

fact punish as part of a strategy conditional on the number of defections suffered. We investigate 

this possibility in Section 8, where we repeat the strategy-fitting procedures adopted in Sections 

6 and 7 for an expanded set of strategies. 

8. Robustness check on strategy classification 

We expand the strategy set to also include 11 conditional cooperative strategies with longer 

memory. In particular, we follow Fudenberg et al. (forthcoming) and include “lenient” variants 

of grim trigger and of “forgiving” strategies. These strategies prescribe initial cooperation and a 

switch to defection after the player has met k≥1 defecting opponents. We consider variants in 

which the punishment can be either permanent (as in Grim trigger) or temporary (as in TFT); the 

triggering event can be a cumulative, a consecutive or a proportional count of defections (see 

notes to Tables 6-7). 
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[Table 6 approximately here] 

  Table 6 reports the results for the classification approach proposed in Section 5. When 

considering the full sample, the conditional strategies with longer memory classify only 26 

observations that were not already classified under any of the one- and two-state deterministic 

automata. Hence, the fraction of classified individuals marginally increase from 53% to 58.2% 

(p=0). In addition, no single strategy with longer memory that we considered has a total fit as 

high as “always cooperate” (which is 134 in the full sample and 70 in the sample restricted to 

opponents playing both C and D). To further assess the power of strategies with longer memory, 

Table 6 reports the number of individuals classified by each new strategy in addition to those 

jointly classified by “always cooperate,” “grim trigger,” and “tit-for-tat” (last column). One can 

see a substantial overlap between the individuals classified by the above 3 strategies and the 11 

conditional strategies with longer memory. 

Note also that most individuals classified by “always cooperate” are classified also by one or 

more conditional strategies with longer memory (126 out of 134). This is not surprising: any 

observation consisting of an uninterrupted sequence of cooperative actions is compatible with 

“always cooperate” and with cooperative strategies in which punishment is triggered by a 

condition that never took place. Grim2 is largely responsible for the increase in the total number 

of classified observations. 

[Table 7 approximately here] 

  Table 7 reports the results obtained using the maximum likelihood approach. When considering 

the full sample, the parameter  marginally decreases from 0.54 to 0.48. We find that “Always 

cooperate” and “Grim trigger” lose some share, which is captured by lenient longer-memory 

variants of conditional cooperative strategies (i.e., Grim and Tit-for-tat). Yet, we also find that 
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the two unconditional strategies “Always cooperate” and “Always defect” are still the ones that 

capture the behavior of the greatest shares of individuals. 

To sum up, based on the strategy classification method, one cannot strictly rule out that 

individuals classified as “Always cooperate” are following conditional strategies with longer 

memory. In Table 6, the longer-memory strategies considered classify most of the observations 

also classified by “Always cooperate.” However, based on the maximum likelihood estimates, 

we find that the unconditional strategy “Always cooperate” is still the one that captures the 

greatest share of cooperative strategies (Table 7).  

9.  Final Remarks  

This experimental study offers novel insights about subjects’ strategies in decentralized trading 

environments where mutual gains from cooperation coexist with incentives to behave 

opportunistically. We studied economies where subjects faced an indefinite sequence of 

prisoner’s dilemmas played in pairs with changing opponents. Because the interaction was 

anonymous, subjects could not build a reputation. Moreover, each economy comprised four 

subjects, which made coordination harder to achieve than in two-person economies that have 

been the focus of previous experiments with indefinite interaction. 

We empirically study equilibrium and strategy selection in supergames. In our setup, a social 

norm based on the threat of contagious punishment can support full cooperation. The analysis 

accounts for equilibrium strategies—such as grim trigger and unconditional defection—as well 

as for non-equilibrium strategies—such as tit-for-tat and unconditional cooperation. The 

experimental design helps the empirical identification of individual strategies thanks to 

substantially longer sequences of play than previous work, a design based on four-person 

economies, and a diverse subject pool (college students, MBA students, and white-collar 
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workers).  

An assessment based on a standard Probit regression analysis suggests that there is a strong 

initial attempt to coordinate on cooperation and the first experienced defection triggered a 

permanent downward shift in cooperation levels. More in-depth strategy-identification analyses 

reveal that grim trigger is not the prevalent norm of behavior. Subjects did not follow social 

norms that rely on contagious punishment schemes. Furthermore, we found substantial 

heterogeneity in the strategies used, which persisted with experience. These findings are robust 

to the adoption of three alternative strategy-identification techniques: fitting deterministic 

automata; fitting automata that can transition from state to state stochastically; identifying 

strategies through a maximum likelihood approach. 

Subjects tried to reach a cooperative outcome but did so without being able to coordinate 

their strategy choices, independently searching for suitable strategies. In such an environment, 

unilaterally adopting grim trigger does not make full cooperation more likely. In fact, if a 

subgroup of subjects wants to coordinate on cooperation, then playing grim trigger may 

jeopardize coordination attempts and simply drag the economy towards full defection. This may 

explain why grim trigger was uncommon in the data and why systematic defection did not crowd 

out systematic cooperation. 

Grim trigger seems to be rare also in field settings with repeated social dilemmas. Ostrom 

(2010) surveyed field studies of community management of fisheries and water resources and 

did not find a single case where harvesters used the grim trigger strategy. These considerations 

point to a weak predictive power of theories based on homogeneous agents who adopt strategies 

of uncompromising, contagious punishment. This suggests care must be taken in drawing 

immediate conclusions from applications based on folk theorems. For example, theories that 
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trace the efficiency frontier by presuming everyone follows a norm of unforgiving, universal 

punishment, have low descriptive power vis-à-vis our experiment. Adoption of a social norm 

based on grim trigger did not emerge in our economies where reputation-based strategies were 

unavailable. The possibility to resort to norms of decentralized, contagious punishment did not 

stave-off opportunistic behavior. On the contrary, most subjects were willing to forgive a 

defection, to different degrees. Some reacted to a defection with a temporary punishment, while 

others systematically cooperated even in the presence of relentless defectors. 

These findings suggest that, on the one hand further investigations should be conducted with 

larger economies, to determine whether the findings with four-agent economies hold when the 

economy’s size increases. On the other hand, a theoretical challenge remains, which is to 

increase the descriptive power of folk theorem-type results in interactions among strangers. 
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Tables and Figures 
 
 

 (A) Notation in the theoretical analysis  (B) Parameterization of the experiment 

Table 1: The stage game 
 
 

Strategies starting with 
C=cooperate 

  Strategies starting with 
D=defect 

 

Strategy Strategy Set N  Strategy Strategy Set N 
11111 168 00000 111 
11110 178 01000 109 
11101 166 00100 94 
11100 

Systematically cooperate 

188 01100 

Systematically defect 

98 
11000 Grim trigger 134 00001 26 
11010 113 00010 11 
11011 103 00011 5 
11001 

Forgiving 
107 01001 25 

10111 10 01010 13 
10110 13 01011 7 
10101 13 00101 21 
10100 21 00110 9 
10011 2 00111 3 
10010 9 01101 22 
10001 7 01110 11 
10000 

Unconventional 

24 

 

01111 

Unconventional 

6 

Table 2: Classification of strategies 
 

Notes: In this table p=0.05. N is the number of observations classified by a strategy. Each of the 32 strategies is 
coded as a five-element vector. Each element corresponds to a state, i.e., an action to be taken, with C =1 and D=0. 
The first element is the initial state. The remaining four elements identify the state reached following current play 
(equivalently, the action to be implemented in the next round). Denote c and d the actions of the opponent. The 
second element in the vector identifies the state reached if (C,c) is played. The remaining elements identify the states 
reached given play (C,d), (D,c) and (D,d), respectively. For instance the automaton 11010 represents “tit-for-tat.” It 
starts with C, prescribes play D in two instances, if (C,d) or (D,d) are the outcomes (third and fifth element in the 
sequence), and prescribes play C if (C,c) or (D,c) are the outcomes. The first four automata in each column are 
called “systematically cooperate” and “systematically defect” because they prescribe the automaton should remain 
always in the initial state (cooperate or defect) unless a random shock generates a transition to an incorrect state. For 
instance, with 11110 the agent starts in state C and remains in C; state D can be reached only by mistake, in which 
case the player remains in D only if her opponent plays d (last element of the vector). Clearly the automaton 11111 
is unconditional cooperation (always cooperate), i.e., does not allow for mistakes or experimentation. The same 
holds for unconditional defection, 00000 (always defect). 

Player 1/ 
Player 2 

Cooperate 
(Y) 

Defect 
(Z) 

 Player 1/ 
Player 2 

Cooperate 
(Y) 

Defect 
(Z) 

Cooperate 
(Y) 

y,y  l,h  
 Cooperate 

(Y) 
25, 25 5, 30 

Defect 
(Z) 

h,l z,z  
 Defect 

(Z) 
30, 5 10, 10 
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32 automata Random transitions (p=0.05)  Deterministic (p=0.00) 
 N median response time average profit  N average profit 
All Observations 500 3.42 18.06  500 18.06 
 C in period 1 336 3.51 17.68  336 17.68 
 D in period 1 164 2.93 18.85  164 18.85 
 Classified 405 3.09 18.74  265 19.82 
  C in period 1 272 3.38 18.28  173 19.45 
   -systematically cooperate 212 3.00 18.60  134 19.92 
   -forgiving 130 4.33 20.52  90 22.44 
   -grim trigger 134 3.45 20.79  92 22.18 
   -unconventional 44 4.35 14.40  28 15.20 
  D in period 1 133 2.56 19.67  92 20.50 
   -systematically defect 120 2.49 19.51  86 20.33 
   -unconventional 48 5.09 21.87  28 24.16 
 Unclassified 95 4.26 15.18  235 16.08 
  C in period 1 64 4.32 15.11  163 15.80 
  D in period 1 31 4.20 15.33  72 16.74 
Opponents play both C & D 406 3.50 17.12  406 17.12 
 Classified 317 3.41 17.65  182 18.13 
  C in period 1 201 3.84 16.90  105 17.26 
   -systematically cooperate 145 3.41 16.69  70 16.71 
   -forgiving 68 8.00 17.16  28 18.53 
   -grim trigger 72 4.85 17.86  30 18.02 
   -unconventional 32 3.45 16.63  19 18.26 
  D in period 1 116 2.54 18.95  77 19.31 
   -systematically defect 106 2.46 18.89  74 19.31 
   -unconventional 31 5.54 20.39  13 21.35 
 Unclassified 89 4.06 15.24  224 16.31 
  C in period 1 62 4.21 15.07  158 15.94 
  D in period 1 27 3.44 15.63  66 17.17 
Opponents always play C 75 2.2 25.83  75 25.83 
 Classified 73 2.14 25.79  73 25.79 
  C in period 1 60 2.00 25.06  60 25.06 
   -systematically cooperate 59 2.00 25.00  59 25.00 
   -forgiving 59 2.00 25.00  59 25.00 
   -grim trigger 59 2.00 25.00  59 25.00 
   -unconventional 1 6.00 28.33  1 28.33 
  D in period 1 13 2.86 29.16  13 29.16 
   -systematically defect 10 5.01 30.00  10 30.00 
                          - unconventional 13 2.86 29.16  13 29.16 
 Unclassified 2 4.94 27.23  2 27.23 
  C in period 1 1 4.55 26.13  1 26.13 
  D in period 1 1 5.33 28.33  1 28.33 
Opponents always play D 19 6.84 7.52  19 7.52 
 Classified 15 6.84 7.44  10 7.03 
  C in period 1 11 7.60 6.63  8 6.29 
   -systematically cooperate 8 8.05 5.96  5 5.00 
   -forgiving 3 4.00 8.44  3 8.44 
   -grim trigger 3 4.00 8.44  3 8.44 
   -unconventional 11 7.60 6.63  8 6.29 
  D in period 1 4 2.37 9.64  2 10.00 
   -systematically defect 4 2.37 9.64  2 10.00 
                          - unconventional 4 2.37 9.64  2 10.00 
 Unclassified 4 6.56 7.83  9 8.06 
  C in period 1 1 8.00 6.67  4 7.33 
  D in period 1 3 5.43 8.22  5 8.65 

 

Table 3: Analysis of individual strategies 
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Notes: The unit of observation is the sequence of all choices of a subject in a cycle, i.e., an individual. When no 
confusion arises we refer to such a sequence as one observation. There are 500 observations. N refers to the number 
of observations classified by the corresponding strategy. An observation is classified according to strategy set Q, if 
at least one strategy qQ fits, i.e.: (i) the initial action is correctly predicted by q; (ii) q has the largest consistency 
score (see explanation in text) among all strategies in Q; and (iii) when we allow for random transitions, the 
probability of observing n or more inconsistent actions is smaller than 10% given the experimentation parameter 
p=0.05. Otherwise, the observation is “Unclassified.” Clearly, if we do not allow for random transitions, i.e. p=0, 
then item (iii) is modified as follows: the probability of observing any inconsistent action must be zero. 

 

 

 

 

 

 Cycle  

 1 2 3 4 5 Total 

                                                  (1 obs. = a single choice in a period)       

Cooperation in all periods (in %) 53.9 54.3 48.3 57.6 54.6 53.8 

Cooperation in period 1 (in %) 74.0 64.0 65.0 68.0 65.0 67.2 

Coordination on cooperation (in %) 33.3 31.0 30.6 40.3 34.5 33.9 

Average profit per period (in points) 18.09 18.15 17.24 18.64 18.19 18.06 

Median decision time (in seconds) 9.50 3.96 2.37 2.00 2.20 3.42 

Switch frequency (in %) 33.2 25.3 25.6 23.9 32.8 28.2 

   All observations                                           (1 obs = an individual)      500 

Classified observations (in %) 76.0 83.0 69.0 89.0 88.0 81.0 

      of which: classified by grim trigger 23.0 18.0 25.0 31.0 37.0 26.8 

Subsample: opponents play both C and D (N)      406 

Classified observations (in %) 75.3 81.9 61.7 87.3 85.3 78.1 

      of which: classified by grim trigger 18.8 14.9 13.6 18.3 24.0 17.7 

 

Table 4: Summary statistics by cycle 

Notes: “Cooperation” reports the percentage of C choices; “Coordination on cooperation” reports the percentage of 
subject pairs were both chose C: it indicates the mean of cc where cc is 1 for a C choice when the opponent chose C 
and is 0 for  a C choice when the opponent did D and for a D choice. 
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Strategies starting with C=cooperate  Strategies starting with D=defect 
Strategy Strategy Set Coeff. S.E.  Strategy Strategy Set Coeff. S.E. 

11111 Systematically cooperate 0.336 0.043*** 00000 Systematically defect 0.282 0.056*** 

11000 Grim trigger 0.190 0.043*** 00001 0.000 0.002 
11010 0.158 0.041*** 00010 0.000 0.000 
11011 0.000 n.a. 00011 0.000 0.000 
11001 

Forgiving 

0.000 0.002 01001 0.005 0.005 
10111 0.000 0.000 01010 0.000 0.013 
10110 0.002 0.004 01011 0.000 0.000 
10101 0.000 0.000 00101 0.003 0.004 
10100 0.015 0.017 00110 0.000 0.004 
10011 0.000 0.000 00111 0.000 0.001 
10010 0.000 0.000 01101 0.009 0.010 
10001 0.000 0.006 01110 0.000 0.000 
10000 

Unconventional 

0.000 0.002 

 

01111 

Unconventional 

0.000 0.000 
  0.542 0.064***      

 

Table 5: Maximum likelihood estimates of individual strategies 

Notes: p-values are calculated using bootstrapped standard errors. The coefficient for strategy 11011 is not estimated 
directly, but it is implied by the fact that the proportions must sum to one.  is an endogenous parameter of the 
estimation that measures the probability of errors. A larger  denotes a higher probability of errors. * Significant at 
the 10% level, ** significant at 5% level, *** significant at 1% level. 
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N 
 

Observations not classified by either “always 
cooperate,” “grim trigger,” or “tit-for-tat” 

 
All Observations 500 336 

 
Classified by at least one of the  
26 strategies with short memory. 265 101 

 

 
Classified by at least one of the  
37 strategies 291 127 

  Grim 2 A 107 18 

  Grim 3 A 102 4 

  Grim 2 B 112 14 

  Grim 3 B 123 4 

  Grim 33% 103 1 

  Grim 67% 123 9 

  Grim 100% 118 0 

  2TFT 87 3 

  3TFT 91 4 

  TF2T 109 11 

  TF3T 120 1 

 Unclassified 209 0 

     

Opponents play both C and D 406 309 

 
Classified by at least one of the  
26 strategies with short memory. 182 85 

 

 
Classified by at least one of the  
37 strategies 207 110 

  Grim 2 A 46 17 

  Grim 3 A 39 4 

  Grim 2 B 51 13 

  Grim 3 B 60 4 

  Grim 33% 41 1 

  Grim 67% 61 9 

  Grim 100% 56 0 

  2TFT 26 2 

  3TFT 30 3 

  TF2T 48 10 

  TF3T 57 1 

 Unclassified 199 0 

Table 6: Conditional strategies with longer memory 

Notes: Strategy Grim2 (Grim3) triggers to permanent punishment when two (three) past opponents defected. 
Strategies Grim A consider the total number of past defections (in the cycle), while Grim B considers only the 
number of consecutive defections. Strategy Grim33% (Grim67%, Grim100%) triggers the punishment phase when 
the frequency of defections reaches 33% (67%, 100%). Strategy TF2T (TF3T) prescribes C unless each of the last 
two (three) opponents played D. Strategy 2TFT (3TFT) prescribes C unless a defection was suffered in either of the 
last 2 (3) rounds. Automata are deterministic, i.e., p=0. The automaton “always cooperate” is 11111, “grim trigger” 
is 11000, and “tit-for-tat” is 11010. 
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Strategies starting with C=cooperate  Strategies starting with D=defect 
Strategy Strategy Set Coeff. S.E.  Strategy Strategy Set Coeff. S.E. 

11111 Systematically cooperate 0.138 0.040*** 00000 Systematically defect 0.282 0.064*** 
11000 Grim trigger 0.050 0.025** 00001 0.000 0.000 
11010 0.067 0.022* 00010 0.000 0.000 
11011 0.000 0.001 00011 0.000 0.000 
11001 

Forgiving 

0.002 0.004 01001 0.005 0.006 
10111 0.000 0.000 01010 0.001 0.014 
10110 0.002 0.004 01011 0.000 0.000 
10101 0.000 0.002 00101 0.004 0.005 
10100 0.004 0.008 00110 0.000 0.000 
10011 0.000 0.000 00111 0.000 0.000 
10010 0.000 0.000 01101 0.007 0.011 
10001 0.000 0.006 01110 0.000 0.000 
10000 

Unconventional 

0.000 0.001 

 

01111 

Unconventional 

0.000 0.000 
Grim 2 A 0.038 0.021* 2TFT 0.012 0.012 
Grim 3 A 0.038 0.035 3TFT 0.025 0.024 
Grim 2 B 0.022 0.020 TF2T 0.072 0.025*** 
Grim 3 B 0.086 0.025*** TF3T 0.061 n.a.** 
Grim 33% 0.000 0.011    
Grim 67% 0.085 0.052    
Grim 100% 

Variants of Grim trigger 

0.000 0.014 

 

 

Variants of Tit-for-tat 

  
  0.486 0.064***      

 
Table 7: Maximum likelihood estimates of conditional strategies with longer memory 

 
Notes: p-values are calculated using bootstrapped standard errors. The coefficient for strategy 
TF3T is not estimated directly, but it is implied by the fact that the proportions must sum to one. 
 is an endogenous parameter of the estimation that measures the probability of errors. A larger  
denotes a higher probability of errors. * Significant at the 10% level, ** significant at 5% level, 
*** significant at 1% level. For the definitions of the variants of Grim trigger and Tit-for-tat see 
the notes to Table 6.  
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          a - Automaton   b - Automaton with random transitions 

 
 
Grim Trigger 

 
 

 
Tit-for-tat 
 
 

 
Figure 1: Strategy representation using automata (C=cooperate, D=Defect) 

 

 
Figure 2: Aggregate response to an observed defection 
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Figure 3: Percentage of classified observations 
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