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Abstract

We study a decentralized trading model as in Peters (1984), where heterogeneous

market participants face a trade-off between price and trade probability. We present

a novel proof of existence of a unique demand vector in Nash equilibrium, based on

a recursive approach that exploits the monotonicity of matching functions.
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1 Introduction

We study existence of equilibrium in the static market considered in [5], where

an endogenous matching process partitions a countable population of hetero-

geneous sellers and homogeneous buyers in separate trading groups of different

sizes. We offer a new proof of existence and uniqueness of an equilibrium

demand vector.

The model is a sequential game of complete information. Each seller has

a fixed amount of a good that buyers desire in fixed amounts. Buyers can

compensate sellers by direct utility transfers. The interaction evolves across

three stages. First, sellers simultaneously and independently advertise a price

or, equivalently, a utility level promised to any buyer who trades with the seller.

In the second stage, buyers see all promised utilities and then, simultaneously

and independently, decide to visit one seller; in this sense, the matching process

is endogenous. Frictions arise in the third stage, when matches are realized and

sellers may trade only if they have been visited by at least one buyer. Because

sellers may be visited by more than one buyer but are capacity constrained,

they ration buyers at random. Because buyers visit exactly one seller and

cannot coordinate their visits, some sellers may remain unmatched. Hence,

market participants face a trade-off between price and probability of trade.1

Existence of equilibrium is usually studied in two steps. First, the equilib-

rium demand vector is determined in the “buyers’ game,” i.e., the continuation

game where buyers choose which seller to visit, given a vector of promised util-

ities. Second, the equilibrium distribution of promised utilities is determined

by studying the “sellers’ game,” i.e., the initial stage where sellers announce

1Models of this type have been used to study issues in IO, eg., [6, 8], and form the basis of
the so-called “directed search” literature, which mostly studies labor issues, e.g., [1, 2, 3, 4].

1



utilities taking as given the equilibrium demand vector.

This paper is about existence of equilibrium in the buyers’ game: it develops

a new proof of existence and uniqueness of an equilibrium demand vector.

The proof is based on a recursive (or iterative) approach, and is offered as

an alternative to the one developed in [5], which is based on a fixed-point

argument. The proof provides an algorithm helpful to compute the equilibrium.

Such methodological contribution deepens our understanding of equilibrium

and present a novel avenue of analysis to study heterogeneous markets with

endogenous matching.

2 The model

Consider an economy with finitely many players. Following the notation in

[5], let J = {1, . . . , J}, with J ≥ 2 be the set of heterogeneous sellers where

heterogeneity can be multidimensional (in which case we would need an index

to summarize it). Let I = {1, . . . , I} with I ≥ 2 be the set of homogeneous

buyers.

Each seller has one indivisible object, possibly differentiated, from which

she derives no utility. Each buyer desires to consume one object; let rj >

0 denote buyers’ reservation value from consuming object j. Buyers, who

have linear preferences2 and sellers, who may be risk-averse, play a sequential

game of complete information, over three stages. In the first stage, sellers

simultaneously and independently announce a price for the object they have;

full commitment to the announced price is assumed. Let v = (v1, . . . , vJ) ⊂ RJ
+

denote a “promised utility,” i.e., vj is the indirect utility for a buyer who

2The work in [7] considers risk-averse buyers.
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purchases the good offered by seller j at the price posted by that seller. Hence,

v is the strategy profile of all sellers. We think of vj as a decreasing function

of the price posted by seller j, hence we work with vj instead of the price. We

say that seller j “posts” vj ∈ [vj, vj] ⊂ R+.

In the second stage, buyers observe v and then simultaneously and inde-

pendently choose to visit a single seller. Let π(v) = (π1(v), . . . , πJ(v)) ∈ 4J−1

denote the strategy profile of buyers when they act symmetrically, i.e., πj(v)

denotes the probability that any buyer chooses to visit seller j = 1, . . . , J after

observing v. We call a match an encounter between one seller and i = 1, . . . , I

buyers.

In the third stage, matches are realized and a trade process takes place in

each match. Consider a match between a generic seller and i buyers; due to

capacity constraints, at most one buyer trade with the seller. Let ρ(i) ≤ 1

denote the probability that a generic buyer in the match trades with the seller.

It is assumed that the assignment rule ρ is match- and buyer-independent.

Conditional on being visited by i ≥ 1 buyers, the seller trades with probability

iρ(i) ≤ 1. That is, the seller trades with at most one buyer (due to capacity

constraints) and may not trade at all.3

A payoff of zero is given to players who are unmatched or do not trade. If

trade takes place, then the buyer receives the promised utility vj and transfers

utility rj−vj to seller j. Thus, we can think of rj−vj as a price. Players max-

3The work in [5] considers random rationing ρ(i) = 1
i , so a buyer with no competitors

trades with certainty. One can also think about cases in which buyers who are offered the
good do not purchase it with some exogenous probability θ ∈ [0, 1). This can occur for
instance if buyers’ valuations rj for the good sold by seller j are i.i.d. and are realized

after visiting the seller. Here, trade may fail to take place and we have ρ(i) = 1−θi
i , for all

i = 1, . . . , I. Or there may be a seller-specific shock preventing the execution of a trade; if
this occurs with probability aj at seller j, then the analysis that follows is unchanged and
we simply redefine the promised utility as νj = ajvj .
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imize their unconditional payoff (or expected utility) without the possibility to

communicate with each other and to coordinate their actions.4

3 The main result

We study strongly symmetric equilibrium, i.e., an outcome in which all players

of the same type adopt identical strategies in and out of equilibrium. This is

the focus in the literature; see [5]. Given symmetry, we study the behavior of

a generic buyer.

3.1 Preliminaries

Consider any seller. Let qi(I, π) denote the probability that 0 ≤ i ≤ I buyers

visit this seller, when buyers identically choose to visit the seller with prob-

ability π. As a result of independent, simultaneous and symmetric choice of

buyers, the distribution of buyers at any seller is binomial with parameters

with π and I; see [5]. Hence, qi(I, π) is a smooth of function of π, and it

satisfies

qi(I, π) :=
I!

i!(I − i)!
πi(1− π)I−i, for all i = 0, . . . , I. (1)

Let M(π) denote the unconditional probability that a seller trades, given π.

Let H(π) denote the conditional probability that a buyer trades conditional

on visiting this seller, when every other buyer visits that same seller with

probability π. Hence, H(πj)vj is the buyer’s payoff conditional on visiting

4The seller’s payoff function is not needed for the results, hence is not specified. Clearly,
seller’s ex-post profit should decrease in the utility promised to the buyer; see [5].
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seller j. We have

H(π) :=
∑I−1

i=0 q
i(I − 1, π)ρ(i+ 1)

M(π) :=
∑I

i=1 q
i(I, π)iρ(i).

(2)

The literature typically assumes that for each π, (i) M is C2, M′ > 0 and

M′′ < 0; (ii) H is C2, H′ < 0 and H′′ > 0; (iii) H(π)−1 is convex; (iv) H(π)v

is quasiconcave. To prove our main result we only need monotonicity of H;

one can show that the above assumption emerge endogenously in a symmetric

outcome.5

3.2 Recursive equilibrium in the buyers’ game

Consider the subgame where buyers choose sellers based on the posted promised

utility vector v, i.e., the “buyers’ game.” In symmetric equilibrium all buyers

visit seller j with identical probability πj(v) (other, non-symmetric equilibria

are possible; see [2]).

Definition 1. Given v, a symmetric equilibrium in the buyers’ game is a vector

π(v) such that:
∑
j∈J

πj(v) = 1; if πj(v) > 0 for j ∈ J , then H(πj(v))vj =

max
k∈J
H(πk(v))vk.

If πj(v) > 0, then the buyers’ payoff from visiting that seller is no less

than the payoff from visiting any other seller. Hence, if buyers randomize

visits across sellers, then their payoffs from visiting any of these sellers are

5For completeness, we do so in an online Appendix. The properties of M are derived by
direct differentiation, with some rearrangement. Mathematical induction is used to derive
the properties of H and 1/H.
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equivalent, i.e.,

H(πj(v))vj = H(πk(v))vk for all j, k ∈ Γ(v) := {i ∈ J |πi(v) > 0}.

Given v, the set Γ(v) is the collection of sellers who are “in the market,” i.e.,

the set of sellers that may be visited by a buyer. The complementary set

J \Γ(v) contains “idle” sellers, i.e., sellers that post a specific utility v but are

certain not to be visited by any buyer. Given Definition 1

H(v) := H(πk(v))vk for k ∈ Γ(v)

V (vk) := H(0)vk ≤ H(v) for k ∈ J \Γ(v) .
(3)

H(v) is the expected utility derived from visiting any sellers who is in the

market, in buyers’ equilibrium; this payoff is independent of k for k ∈ Γ(v).

Instead, V (vk) denotes the expected utility derived from visiting idle seller k;

this out-of-equilibrium payoff depends on k.

Proposition 1. Fix v 6= 0. There exists a unique equilibrium vector π(v) for

the buyers’ game.

Proof. Fix v 6= 0, and consider the choice π(v) of a generic buyer. The proof

is in two parts. First, construct a demand distribution π through an iterative

process. Second, prove that this equilibrium π is unique by means of contra-

diction.

Without loss of generality, let v1 ≥ v2 ≥ . . . ≥ vJ with v1 > 0. Suppose

the buyer considers sellers one at a time, according to an iterative process.

Let ηsj (v) denote the probability that this generic buyer visits seller j when

the first s = 1, . . . , J sellers have been considered for a possible visit. Hence,
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s∑
j=1

ηsj (v) = 1, so that η1
1(v) = 1. Since promised utilities v are fixed, we omit

v as an argument when understood.

For the initial step of the iterative decision process, define η1 as the J-dimensional

vector

η1 := (η1
1, 0, . . . , 0).

This means that when only seller one is being considered for a visit, then the

buyer goes there with probability 1 because v1 > 0. Since the sequence vj is

decreasing, for 2 ≤ s ≤ J recursively define

ηs(ηs−1) =

 (ηs1, . . . , η
s
s, 0, . . . , 0) s.t. H(ηsj )vj = H(ηss)vs, j ≤ s, if V (vs) > H(ηs−1

1 )v1

(ηs−1
1 , . . . , ηs−1

s−1, 0, . . . , 0), otherwise

Start by noting that η = ηJ satisfies Definition 1, therefore η is a candidate

equilibrium vector of buyers’ choices. It should be clear that continuity of H,

H′ < 0 and the recursive construction of η ensure that η exists. We also have

that

H(ηs−1
j )vj ≤ H(ηsj )vj for j = 1, . . . , s− 1.

This means that the vector η maximizes the payoff of the generic buyer.

We claim that if any other vector of buyers’ choices π exists that satisfies

Definition 1, then π = η. That is, a unique equilibrium demand distribution

exists. To prove it, suppose by means of contradiction that π 6= η. Let Γπ(v)

and Γη(v) denote the sets of sellers who are in the market associated to π and

η. There are three cases to consider.

Case 1: Γπ = Γη = Γ

If π 6= η then πi 6= ηi for some i ∈ Γ. Without loss of generality, consider
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πi < ηi. If H(πi)vi > H(ηi)vi, then

H(πj)vj > H(ηj)vj for all j ∈ Γ = Γπ = Γη

because π and η are assumed to satisfy Definition 1 and, in particular the

indifference condition H(πi)vi = max
j∈J
H(πj)vj.

Now note thatH′ < 0 implies πj < ηj for all j ∈ Γ. Hence,
∑
i∈Γπ

πi = 1 <
∑
i∈Γη

ηi.

This gives us the desired contradiction. Hence π = η.

Case 2: Γπ ( Γη

We consider only this inclusion because the other way around simply means

changing the role of η and π. This case is studied in two steps. First we claim

that ηi < πi for all i ∈ Γπ; intuitively, if there are less idle sellers under η than

π, then the probability of visiting any seller cannot be greater under η than π.

Suppose by means of contradiction that ηi ≥ πi for some i ∈ Γπ. Then, ηk ≥ πk

for all k ∈ Γπ by the same argument developed in case 1 above (indifference).

This gives us a contradiction because
∑
i∈Γη

ηi > 1 =
∑
i∈Γπ

πi. Hence ηi < πi for

all i ∈ Γπ.

Now we show that π 6= η is impossible. Fix i, j ∈ Γη, i ∈ Γπ, j ∈ J \Γπ.

Notice that the last two relations imply H(πi)vi ≥ H(0)vj, hence vi > vj. Now

recall that ηi < πi and H′ < 0. Therefore we have the contradiction

seller j is in the market under η︷ ︸︸ ︷
H(0)vj > H(ηi)vi ≥

seller j is idle under π︷ ︸︸ ︷
H(πi)vi ≥ H(0)vj .

Therefore π = η.

Case 3: Neither Γπ ⊂ Γη nor Γπ ⊃ Γη

Consider sellers i and j such that i ∈ Γη\Γπ and some j ∈ Γπ\Γη. Without
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loss of generality choose i and j so that vj ≤ vi. Since j ∈ Γπ and i ∈ J \Γπ,

we have
seller i is idle under π︷ ︸︸ ︷
H(πj)vj ≥ H(0)vi , i.e. vj > vi.

This gives us a desired contradiction which completes the proof that π = η.
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Supplementary Material:
Endogenizing the regularity properties

Key properties of matching and payoff functions are usually assumed in the literature
to prove existence of equilibrium in the entire game.1

Here, we show that such properties emerge endogenously in a symmetric outcome.
In doing so, we consider ρ(i) = 1−θi

i , for all i = 1, . . . , I, as it generalizes the typical
case where θ = 0.

Proposition. Let qi(I, π) := I!
i!(I−i)!π

i(1−π)I−i for all i = 0, . . . , I and ρ(i) = 1−θi
i ,

for all i = 1, . . . , I. For each π ∈ [0, 1], we have

• M(π) is twice continuously differentiable, strictly increasing, and concave.

• H(π) is twice continuously differentiable, strictly decreasing, and convex.

• H(π)−1 is convex, i.e. 2(H′(π))2 −H′′(π)H(π) ≥ 0

• H(π)v is quasiconcave.

Proof. Consider a generic seller.

The function M(π). Notice that

Iπ

i+ 1
qi(I − 1, π) =

Iπ

i+ 1
· (I − 1)!

i!(I − 1− i)!
πi(1− π)I−1−i

=
I!

(i+ 1)!(I − (i+ 1))!
πi+1(1− π)I−(i+1) = qi+1(I, π) .

From (2) in the paper, the functions M(π) and H(π) are twice continuously differ-
entiable, because qi(I, π) is smooth in p for all i. Now notice

M(π) =

I∑
i=1

qi(I, π)−
I∑
i=1

qi(I, π)θi = 1− q0(I, π)−
I∑
i=1

qi(I, π)θi

= 1−
I∑
i=0

qi(I, π)θi = 1−
I∑
i=0

(
I

i

)
(πθ)i(1− π)I−i

= 1− (1− (1− θ)π)I

1For a recent example consider properties (i)-(iii) in [1, Assumption 2].
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where the last line follows from the binomial formula. It is clear that M′(π) > 0
and M′′(π) < 0 by direct differentiation.
The functions H(π) and 1/H(π). Without loss of generality, set θ = 0. Thus

H(π) =
M(π)

Iπ
=

1− (1− π)I

Iπ

H′(π) =
1

Iπ2
[
(1− π)I−1(1− π + Iπ)− 1

]
.

• We show that H′(π) < 0 for I ≥ 2.
The proof is by induction on I. Define the term

A(π, I) := (1− π)I−1(1− π + Iπ)− 1.

We have

H′(π) =
1

Iπ2
A(π, I)

Clearly A(π, 1) ≤ 0. Consider the following induction hypothesis: A(π, I) < 0
for some I ≥ 2. We need to prove that A(π, I + 1) < 0. We have

A(π, I + 1) = (1− π)I(1− π + Iπ + π)− 1 = (1− π)I−1(1− π)(1 + Iπ)− 1

= (1− π)I−1(1− π + Iπ − Iπ2)− 1 < (1− π)I−1(1− π + Iπ)− 1

= A(π, I)

Hence A(π, I) < 0 for all I ≥ 1. It follows that H′(π) < 0.

• We show that H′′(π) > 0 for I ≥ 2. By direct differentiation we have:

H′′(π) =
π

Iπ4
{
A′(π, I)π − 2A(π, I)

}
where

A′(π, I) := −I(I − 1)(1− π)I−2π.

Hence, if A′(π, I)π − 2A(π, I) > 0, then H′′(π) > 0. The proof is by induction
on I:

A′(π, I)π − 2A(π, I) = −I(I − 1)(1− π)I−2π2 − 2(1− π)I−1(1− π + Iπ) + 2

For I = 2 we have A′π − 2A = 0. For the induction hypothesis suppose
A′π − 2A > 0 for some I ≥ 3, that is

2[(1− π)I−1(1− π + Iπ)− 1] < −I(I − 1)(1− π)I−2π2

2



We need to show that this is true for I + 1, i.e.,

2(1− π)I(1− π + Iπ + π)− 2 ≤ −I(I + 1)(1− π)I−1π2

2[(1− π)I−1(1− π)(1 + Iπ)− 1] ≤ −I(I − 1)(1− π)I−1π2 − 2I(1− π)I−1π2

2[(1− π)I−1(1− π + Iπ)− 1] ≤ −I(I − 1)(1− π)I−1π2

By virtue of the induction hypothesis we have

2[(1− π)I−1(1− π + Iπ)− 1] < −I(I − 1)(1− π)I−2π2 < −I(I − 1)(1− π)I−1π2

so the statement is true for I + 1.

• We prove H′′(π)H(π)− 2 (H′π))2 < 0.
Notice that

H′′(π)H(π)− 2
(
H′π)

)2
=

π

Iπ4
{
A′(π, I)p− 2A(π, I)

} 1− (1− π)I

Iπ
− 2

(
1

Iπ2

)2 [
(1− π)I−1(1− π + Iπ)− 1

]2
∝
[
A′(π, I)π − 2A(π, I)

] [
1− (1− π)I

]
− 2 [A(π, I)]2

We want to prove that[
A′(π, I)π − 2A(π, I)

] [
1− (1− π)I

]
− 2 [A(π, I)]2 < 0.

Using the definition for A′ and A this can be rearranged as

−(I − 1)π
[
1− (1− π)I

]
< 2A(π, I)(1− π).

Again, we use the proof by induction. Notice that for I = 2 the inequality
above holds. For the induction hypothesis, suppose it also holds for some
I ≥ 2. Then we must show that it holds for I + 1, i.e.

−Iπ
[
1− (1− π)I+1

]
< 2A(π, I + 1)(1− π).

This inequality is rearranged as

−Iπ
[
1− (1− π)I

]
+ Iπ2(1− π)I < (1− π)2[(1− π)I−1(1− π + Iπ)− 1]

= 2(1− π)A(π, I)

3



The left hand side can be rearranged as follows:

−(I − 1)π
[
1− (1− π)I

]
− π

[
1− (1− π)I

]
+ Iπ2(1− π)I

= −(I − 1)π
[
1− (1− π)I

]
+ π

[
−1 + (1− π)I−1(1− π + Iπ)− Iπ2(1− π)I−1

]
= −(I − 1)π

[
1− (1− π)I

]
+ π

[
A(I, π)− Iπ2(1− π)I−1

]
,

therefore it is smaller than 2(1 − π)A(π, I) because (i) A(π, I) − Iπ2(1 −
π)I−1 < 0 due to A(π, I) ≤ 0, and (ii) by induction hypothesis above. Hence
H′′(π)H(π)− 2 (H′(π))2 < 0 for all I ≥ 2.

Quasiconcavity of H(π)v. If H(π)v = r ≥ 0, then the superior set is defined
by Sr = {(π, v) ∈ [0, 1] × [v, v] : H(π)v ≥ r}. The set Sr is convex because if
(π, v), (π′, v′) ∈ Sr then for λ ∈ (0, 1), we have

r

H(πλ)
≤ λ

r

H(π′)
+ (1− λ)

r

H(π)
≤ λv′ + (1− λ)v

where πλ = λπ′ + (1− λ)π. The first line follows from convexity of 1
H(π) ; the second

line follows from (π, v), (π′, v′) ∈ Sr.
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