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Abstract
Endothelin-1 is the most potent vasoconstrictor agent currently identified, and it was originally
isolated and characterized from the culture media of aortic endothelial cells. Two other isoforms,
termed endothelin-2 and endothelin-3, were subsequently identified, along with structural
homologues isolated from the venom of Actractapis eng-addensis known as the sarafotoxins. In
this review, we will discuss the basic science of endothelins, endothelin-converting enzymes, and
endothelin receptors. Only concise background information pertinent to clinical physician is
provided. Next we will describe the pathophysiological roles of endothelin-1 in pulmonary arterial
hypertension, heart failure, systemic hypertension, and female malignancies, with emphasis on
ovarian cancer. The potential intervention with pharmacological therapeutics will be succinctly
summarized to highlight the exciting pre-clinical and clinical studies within the endothelin field.
Of note is the rapid development of selective endothelin receptor antagonists, which has led to an
explosion of research in the field.
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Introduction
The main purpose of this review is to provide a broad overview on the basic science of the
endothelin system and its clinical relevance. In the basic science portions of the review, we
will begin our discussion on the synthesis of endothelins, endothelin-converting enzymes,
and endothelin receptors. For our clinical discussion, we will describe the
pathophysiological intervention of pulmonary arterial hypertension with regard to the
endothelin system. We will also visit much-discussed topics of endothelin in heart failure,
systemic hypertension, and ovarian cancer. Other clinical interventions and diseases within
the context of endothelin have also been suggested, and we will conclude our discussion
with future possibilities for endothelin antagonist therapy.
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Endothelins
The human genes of endothelin-1 (ET-1), endothelin-2 (ET-2), and endothelin-3 (ET-3) are
located on chromosomes 6, 1, and 20, respectively. Endothelin-1 expression is determined
primarily at the level of gene transcription regulated by a promoter region located upstream
(5′) of the preproendothelin-1 gene. A binding site of GATA mediates basal levels of gene
transcription of preproendothelin-1 gene. Ap-1 nuclear factor and a hexonucleotide sequence
that control gene transcription are thought to be regulated by angiotensin II, transforming
growth factor beta, and/or acute phase reactants. Further post-transcriptional modulation
occurs via selective destabilization of preproendothelin-1 mRNA via ‘suicide motifs’
present in the non-translated 3′ region. This may account for a short, 15-min half-life of
preproendothelin-1 mRNA and thereby prevent excessive endothelin-1 production. Factors
known to promote endothelin-1 production include thrombin, insulin, cyclosporine,
epinephrine, angiotensin II, cortisol, inflammatory mediators, hypoxia, and vascular shear
stress. Endothelin production is inhibited by nitric oxide, nitric oxide donor drugs, and
dilator prostanoids via an increase in cellular cGMP, and natriuretic peptides via an increase
in cAMP levels [1]. The mature endothelin-1 peptide is generated by enzymatic cleavage of
the initial preproendothelin-1 gene product (Fig. 1). A short hydrophobic secretory sequence
is first removed to produce proendothelin-1, which is further cleaved at dibasic amino acid
pairs by the endopeptidase furin generating the 39-amino acid peptide big endothelin-1 [2].
Subsequent production of mature endothelin-1 by a proteolytic cleavage between Trp21 and
Val22 is catalyzed by the membrane bound metalloprotease endothelin-converting enzyme-1
(ECE-1) [3]. Although additional ECE isoforms have been identified in animals, a human
ECE-2 and ECE-3 have yet to be identified [4]. ECE gene knockout studies suggest that
ECE-1 is the major functional ECE for all three endothelin isoforms in vivo [5].
Endothelin-1 was initially considered to be produced de novo in response to the factors
described earlier. However, secretory vesicles containing both mature endothelin-1 and ECE
have been identified in endothelial cells [6]. Recently, a new endothelin peptide with 31
amino acids has been identified in humans. This endothelin is formed through the cleavage
of the big endothelin-1 between the Tyr31 and Gly32 amino acids by a human chymase
enzyme expressed in mast cells. This product has been termed endothelin-11–31 [7].
Endothelin-11–31 triggered pressor responses that were reduced by endothelin receptor
antagonists. These pressor responses to endothelin-11–31 were abolished by the neutral
endopeptidase inhibitor thiorphan, but were unaffected by the endothelin-converting enzyme
inhibitor CGS35066 [8]. Each of the three endothelin peptides is expressed in various tissues
and cells. ET-1 is produced by vascular endothelial and smooth muscle cells, airway
epithelial cells, macrophages, fibroblasts, cardiac myocytes, brain neurons, and pancreatic
islets [3, 9]. ET-2 is expressed in the ovary and intestinal epithelial cells [3]. ET-3 is found
in endothelial cells and intestinal epithelial cells. ET-3 mediates release of vasodilators,
including NO and prostacyclin [3].

Endothelin-converting enzyme
ECE-1 was first isolated and purified from aortic endothelial cells [10]. It is inhibited by the
combined ECE and neutral endopeptidase (NEP) inhibitor phosphoramidon or selective
ECE inhibitor CGS35066, but not by selective NEP inhibitors such as thiorphan or
kelatorphan [11]. Structurally, ECE-1 exists as a transmembrane 758-amino acid dimer,
linked by a single disulphide bridge. A short (1–56) N-terminal intracellular region is
connected by a 21-amino acid transmembrane portion. ECE-1 belongs to a family of neutral
metalloprotease enzymes, which includes NEP and the human Kell blood group proteins
[12]. However, ECE is unique amongst this group in that it recognizes a relatively long C-
terminal portion of big endothelin-1 (residues His27 to Gly34) in addition to the cleavage
site between residues 21 and 22 [13]. The ECE-1 gene is located on chromosome 1 at the
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p36 band [14]. cDNA cloning studies have demonstrated that differential gene splicing leads
to the production of four isoforms of ECE-1, termed ECE-1a, ECE-1b, ECE-1c, and
ECE-1d, which differ in structure only at the N-terminus. ECE-1a is responsible for
generating the majority of functional endothelin-1 from big endothelin-1. ECE-1a is
expressed by endothelial cells and is located intracellularly. The enzymatically active C-
terminal segment faces the intra-luminal region of the Golgi apparatus. A generator role for
ECE-1a is further suggested by the presence of characteristic promoter regions for this gene,
indicating that it is a constitutively expressed ‘housekeeping’ gene. In contrast, ECE-1b
spans the plasma membrane of effector cells, such as vascular smooth muscle cells,
converting extracellular big endothelin-1 to endothelin-1. A ‘responder/regulator’ role for
ECE-1b to extracellular big endothelin-1 is suggested from its promoter region containing
potential receptor sites for transcription factors, allowing modulation activity. ECE-1c
contributes to the elevation of ET-1 peptide levels in diabetes. In particular, expression of
ECE-1c seems to respond to high glucose levels in endothelial cells [15]. It is also
speculated that different ECE-1 isoforms may be responsible for different cellular functions
in cancers. For example, transient ECE-1c overexpression increased cancer invasiveness
through Matrigel™, whereas transient ECE-1a expression suppressed invasion. In addition,
transient ECE-1a expression in stromal cells strongly counteracts the effect of transient
ECE-1c expression in cancer cells. Thus, it is concluded that ECE-1a and ECE-1c are
significant, but with reciprocal effects on cell invasion [16].

Transfection of preproendothelin-1 and ECE-1b genes into cultured cells demonstrates that
ECE-1b expressed at the cell surface is relatively inefficient at proteolysis of exogenous big
endothelin-1, with only around 10% converted to endothelin-1. On the other hand, between
50 and 90% of the endothelin peptides secreted are in the mature endothelin-1 form [12],
which suggests that endogenously generated endothelin-1 secreted luminally is the most
functionally important source and confirms a predominantly autocrine/paracrine function of
endothelin-1. Such a theory is supported by the low concentration of endothelin-1 in the
plasma, which is probably insufficient to activate endothelin receptors. Concentrations of
angiotensin II and atrial natriuretic peptide in plasma are normally up to ten times greater
than those of circulating endothelin-1. In addition, endothelin-1 has a half-life of less than 5
min in plasma, with the main clearance in the lungs and kidneys [17, 18]. It is likely that
much higher concentrations of endothelin-1 occur at the junctions between endothelial and
vascular smooth muscle cells and that at least some of the plasma endothelin-1 represents
overspill from this site. One might conclude, therefore, that plasma levels of endothelin-1 in
pathological states represent an unreliable index of vascular endothelin activity [19].
Conversely, urinary concentrations of endothelin-1 may reflect local renal endothelin
activity, but not systemic endothelin function.

Endothelin receptors
Another important discovery is the identification of two seven-transmembrane G protein-
coupled endothelin receptors, endothelinA and endothelinB receptor (ETA and ETB,
respectively) [20, 21]. The isoforms of endothelin exert their physiological effects in a
receptor-mediated fashion. The two subtypes of endothelin receptors can be distinguished
pharmacologically by the order of their affinity for the three endothelin isopeptides; ETA
receptor is ET-1-selective, with an affinity order of ET-1 ≥ET-2 > ET-3, whereas ETB
receptor exhibits similar affinities for all three isopeptides [20, 21]. These receptors are both
distributed in various tissues and cells, but with different levels of expression, suggesting the
presence of a multifunctional ET system. ETA receptors are located on vascular smooth
muscle cells [20], and when activated, produce a sustained vasoconstriction that has a slow
onset. In contrast, ETB receptors are located on both endothelial [22] and vascular smooth
muscle cells [23]. Activation of ETB receptors on endothelial cells causes vasodilation
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through the release of vasodilators acting on smooth muscle cells [24]. Moreover, ETB
receptor inhibits cell growth and vasoconstriction in the vascular system and functions as a
clearance receptor, based on the evidence that selective ETB receptor blockade inhibits the
accumulation of intravenously administered radiolabeled ET-1 in tissue [3, 25]. The ETB
receptor-mediated clearance mechanism is particularly important in the lung, which clears
about 80% of circulating ET-1 [26]. The ETA receptor couples to the pertussis toxin
insensitive Gαq/11 to cause activation of phospholipase C, leading to an increase in inositol
phosphate production and activation of protein kinase C in vascular smooth muscle cells
[27, 28]. Judging from the data that activation of the ETA receptor increases in cAMP
production and protein kinase A activity [29–31], the ETA receptor couples to Gαs, the G
protein that activates adenylate cyclase. Moreover, the ETA receptor couples to Gα12 and
induces the stress fiber formation [31, 32]. On the other hand, the ETB receptor couples to
Gαi/o to inhibit cAMP formation [33–35], Gαq/11 to stimulate phosphoinositide hydrolysis
[36, 37], and Gα13 to induce stress fiber formation [32, 38].

Pathophysiology of ET in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is a progressive and fatal condition characterized by
a sustained increase in pulmonary vascular resistance, leading to right ventricular failure and
premature death. ET-1 has been implicated as a mediator of increased vascular tone and
vascular remodeling in pulmonary hypertension [39]. There is increasing evidence that
pulmonary vascular smooth muscle cells, as well as endothelial cells, synthesize and release
ET-1, particularly when stimulated by cytokines [40]. ET-1 is also produced in the lung in
response to increased pressure. Expression of ET-1 mRNA increases in pulmonary vascular
endothelial cells of patients with pulmonary hypertension [39]. In patients with pulmonary
hypertension, a significant correlation between serum levels of ET and pulmonary vascular
resistance, right atrial pressure, and oxygen saturation has been reported [41, 42]. In
thromboembolic pulmonary hypertension, it was shown that there is upregulation of the ETB
receptor in the pulmonary artery [43]. Overexpression of ET-1 in experimental PAH models
is localized to the medial layer of the pulmonary arterial tree [44]. ETA and ETB receptors
are also upregulated [44]. Importantly, both nonselective (bosentan) and selective
(sitaxentan, atrasentan, and TBC-3711) ETA receptor antagonists are effective in PAH,
reducing pulmonary artery pressure and inhibiting vascular remodeling in animal model
studies. Bosentan was granted FDA approval for treatment of patients with NYHA/WHO
functional class III or IV symptoms based on the results of two trials [45, 46]. Open-label
continuation studies in each trial population demonstrated that the effects of bosentan were
maintained beyond the initial 12-week study period. Survival at 1 and 2 years in the patients
initially treated with bosentan was 96 and 89%, respectively, compared to predicted rates in
historical controls of 69 and 57%. Complementary outcomes were obtained with sitaxentan
[47]. Sitaxentan was granted a license for use in PAH in 2006. ET receptor antagonists are
now established in American and European guidelines for the treatment of NYHA class III
or IV patients with idiopathic PAH who either do not respond to acute vasodilators or
remain class III despite vasodilator responsiveness.

Pathophysiology of ET in heart failure
Circulating ET-1 levels have been correlated with the severity of hemodynamics and with
symptoms in patients with congestive heart failure [48, 49]. ET-1 contributes to acute and
chronic increases in vascular resistance, ventricular and vascular remodeling, inflammation
and arrhythmogenesis in models of heart failure. Tissue endothelin levels are increased in
the failing human heart. Studies have also shown that big endothelin can be used as an
independent predictor of survival [50]. It is likely that there is interplay between the ET
system and neurohormonal system, because the activation of one system appears to increase
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levels of the other. ET-1 appears to exert differential effects on the normal and failing
myocardium. Patients with reduced left ventricular function have increased contractility in
response to ETA receptor blockade, whereas patients with normal left ventricular function
manifest a reduction in contractility. ETA receptors are upregulated in heart failure, whereas
the ETB receptor appears to be downregulated [51, 52]. Preliminary clinical trials with
bosentan, darusentan, and BQ-123 show short-term hemodynamic benefits [53–55]. In
addition, studies of intravenous tezosentan for patients with acutely decompensated heart
failure were reported to improve cardiac index and pulmonary capillary wedge pressures
[56]. However, five Randomized Intravenous TeZosentan (RITZ) trials for the treatment of
congestive cardiac heart failure have been disappointing [57–63]. In stable patients with
chronic heart failure, clinical trials of endothelin receptor antagonism also failed to
demonstrate any benefit in clinically relevant end points (clinical status, mortality or
hospitalization for heart failure) and were beset with toxicity problems [64, 65].

Pathophysiology of ET in systemic hypertension
The identification of endothelin as a vasoconstrictor [2] and the discovery of its release from
vascular endothelial cells suggested that ET was involved in the pathogenesis of
hypertension and vascular disease [66]. Further support for this hypothesis came from case
reports of hemangioendothelioma patients who presented with markedly elevated levels of
plasma ET-1 and hypertension, but who showed normalization of elevated ET-1 and blood
pressure levels after tumor surgery [67]. In contrast, ET-1 plasma levels are generally
normal in patients with essential hypertension; however, local ET-1 levels increase in the
vascular wall with hypertension [68, 69]. Some studies demonstrate that the potent
antihypertensive effects and end-organ protection by endothelin receptor antagonists in
experimental hypertension are more effective in patients with high salt intake or angiotensin
II level [70]. In addition, acute blockade of ETA receptors ameliorates myocardial ischemia
and biochemical changes caused by infarction in mice with coronary atherosclerosis [71].
Indeed, ET has strong growth-promoting activity in the vascular wall, and both endothelin
and its receptors are widely expressed in macrophages, vascular smooth muscle cells, and
fibroblasts [72]. Although plasma levels of ET are not consistently elevated in patients with
systemic hypertension, there is often an exaggerated vasodilator response to ET receptor
blockade in these patients [73]. This could contribute to a change in the sensitivity of the
vasculature to endogenous ET-1 being altered as part of the disease. Other studies suggest
that certain polymorphisms of the genes coding for ET-1 and endothelin receptors could be
associated with chronic elevations in blood pressure [74]. In experimental animals with
induced hypertension, ETA receptor blockade prevents vascular hypertrophy and attenuates
left ventricular hypertrophy [75]. Hypertension develops in ETB knockout mice and blood
pressure rises after ETB blockade in humans [76, 77]. In patients with essential
hypertension, the nonselective ET receptor antagonist TAK-044 caused greater forearm
vasodilatation compared with normotensive controls, and the nonselective antagonist
bosentan resulted in greater forearm vasodilatation than the selective ETA receptor blocker
BQ-123 [78, 79]. A 4-week treatment trial with bosentan, at a fairly high dose of 1,000 mg
twice per day, produced a fall in ambulatory diastolic blood pressure of approximately 10
mmHg, an effect similar to treatment with 20 mg of enalapril [80]. These data suggest that
ET antagonists may represent a new class of drug in the treatment of patients with
uncontrolled hypertension. Moreover, ETA receptor antagonists can reduce blood pressure
substantially in hypertensive patients with chronic kidney disease [81]. This effect is
synergistic to angiotensin-converting enzyme inhibitors and abolished by significant
concurrent ETB receptor blockade [82]. Furthermore, in diabetic and nondiabetic renal
disease patients, ET receptor antagonists may produce favorable renal hemodynamic
changes that reduce proteinuria [83, 84]. Thus, the ET antagonist may offer benefits to
patients with chronic kidney disease that extend beyond blood pressure lowering.
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Pathophysiology of ET in ovarian cancer
In addition to its role as a vasoconstrictor, ET-1 is known to be a potent mitogen that
stimulates proto-oncogene expression in vascular and non-vascular cells. Elevated
expression of ET-1 has been reported in many tumors, and it is believed to be a vital
“hormone” in the growth and progression of prostate, ovarian, colorectal, bladder, breast,
and lung carcinomas. Currently, the endothelin system in cancer biology has been an intense
focus in both basic and clinical science settings. In particular, ET receptor activation plays a
huge role in cancer cells or cancer-related cells, including proliferation, resistance to
apoptosis, angiogenesis, migration, neovascularization, and subsequent invasion [85].

The ET-1 and ETA receptor mRNA levels are detected in almost all primary and metastatic
ovarian carcinomas. Their mRNA levels are especially higher in tumors than in normal
ovarian tissues. A high level of ET-1 is found in ascitic fluids of ovarian cancer patients. In
addition, ETA expression is higher in grade 3 and 4 cancers than early grade ovarian cancers
correlated. The high expression of ET-1 and its receptors in human cancer cells and human
tumors further suggests a potential role for ET-1 in tumor growth promotion or maintenance
through a possible autocrine or paracrine mechanism [86–90]. More importantly, ETA is one
of the genes more highly expressed in post-chemotherapy samples than in samples of
untreated primary ovarian tumors [91].

As a growth-regulatory peptide, ET-1 also acts synergistically with other growth factors that
have been implicated in cancer progression [92]. In particular, high ET-1 level is correlated
with an increased vascular endothelial growth factor (VEGF), which is associated with
neovascularization [90]. Transactivation of the epidermal growth factor (EGF) receptor in
ET-1-induced mitogenic signaling in human ovarian carcinoma cells has been reported [93].
Furthermore, ET-1-induced cyclooxygenase-2 and prostaglandin E2 release and estrogen
signaling have been shown to be important in the overall cellular proliferation processes [94,
95].

Many potential targets for the endothelin system have been suggested in ovarian carcinoma
cells. One of the remedies includes the anti-tumor effect of green tea polyphenol
epigallocatechin-3-gallate [96]. Two most actively studied drugs, however, are atrasentan
(ABT-627, Abbott Laboratories, Abbott Park, IL) and zibotentan (ZD4054, AstraZeneca,
Macclesfield, UK). These two pharmacological agents have oral bioavailability and bind to
ET-1 receptor blocking signal transduction pathways implicated in cell proliferation and
processes involving cancer growth [97–99].

Both atrasentan and zibotentan prevent ET-1-mediated survival signaling pathways and
decreased proliferation in ovarian OVCA 433 and HEY cells. These agents significantly
reduce tumor growth in animals bearing ovarian tumor xenografts in vivo. Furthermore,
many clinical studies have shown that blocking ET-1 receptor inhibits tumor growth and/or
reduces metastatic potential of ovarian cancer [100–104]. Treatment with either agent
provides no detectable signs of acute or delayed toxicity. Both atrasentan and zibotentan
give comparable results to those of paclitaxel. However, a combinational therapy of ET-
receptor blocker and paclitaxel provide a better recovery or prolonged tumor growth
inhibition. It is believed that atrasentan or zibotentan can actually enhance paclitaxel activity
in human ovarian carcinoma in vitro and in vivo [89, 102, 104].

Conclusions and perspective
Since its discovery over 20 years ago, endothelin has been recognized to function not only
as a vasoconstrictor but also as a multifunctional peptide with cytokine- or hormone-like
activity. From the basic science perspective, ET has been shown to regulate a wide spectrum
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of physiological cellular activities, including mitogenesis, cell survival, angiogenesis, bone
remodeling, stimulation of nociceptors, tumor-infiltrating immune cells, epithelial-to-
mesenchymal transition, invasion, and metastatic dissemination. From the clinical
perspective, the therapeutic efficacy of ET antagonists has become the first clinical
indication for pulmonary arterial hypertension. Other cardiovascular-related diseases have
shown promising clinical indications. Furthermore, exciting new results from basic science
studies have associated endothelin antagonist therapy to many other cancer-related diseases,
including targets for pharmacotherapy of female malignancies [105]. Without doubt, a
detailed understanding of the molecular mechanisms of endothelin is a crucial step in
identifying new effective therapies for other diseases.
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Fig. 1.
Endothelin-1 (ET-1) is transcripted and translated as a prepro-ET-1. Dibasic-pair-specific
endopeptidase cleaves prepro-ET-1 to form pro-ET-1 or big ET-1. The precursor big ET-1 is
further cleaved by endothelin-converting enzyme (ECE) to the vaso-active peptide ET-1.
ET-1 can activate endothelin receptors type-A (ETA) and type-B (ETB). While ETA is
localized in vascular smooth muscle cells, ETB resides in vascular smooth muscle and
endothelial cells. Activation of ETA or ETB in smooth muscle cells results in
vasoconstriction. Activation of ETB in endothelial cells will induce nitric oxide (NO)
production through endothelial nitric oxide synthase (eNOS). NO is a potent vasodilator in
smooth muscle cells. Activation of ET receptors in non-vascular cells has also been
implicated with other cellular functions (see text for more details)
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