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The Impact of Competition on Prices with Numerous

Firms∗

Xavier Gabaix David Laibson Deyuan Li

Hongyi Li Sidney Resnick Casper G. de Vries

January 23, 2013

Abstract

We use extreme value theory (EVT) to develop insights about price theory. Our

analysis reveals “detail-independent” equilibrium properties that characterize a large

family of models. We derive a formula relating equilibrium prices to the level of competi-

tion. When the number of firms is large, markups are proportional to 1/
(
nF ′

[
F−1 (1− 1/n)

])
,

where F is the random utility noise distribution and n is the number of firms. This im-

plies prices are pinned down by the tail properties of the noise distribution and that

prices are independent of many other institutional details. The elasticity of the markup

with respect to the number of firms is shown to be the EVT tail exponent of the dis-

tribution for preference shocks and in most leading cases is relatively insensitive to the

number of firms. For example, for the Gaussian case asymptotic markups are propor-

tional to 1/
√

lnn, implying a zero asymptotic elasticity of the markup with respect to

the number of firms. Thus competition only exerts weak pressure on prices. We also

study applications of the model, including endogenizing the level of noise.

∗Gabaix: NYU Stern, CEPR and NBER, xgabaix@stern.nyu.edu; Laibson: Harvard University and NBER,
dlaibson@harvard.edu; D. Li: Fudan University, deyuanli@fudan.edu.cn; H. Li: University of New South
Wales, hongyi@unsw.edu.au; Resnick: Cornell, sir1@cornell.edu; de Vries: Erasmus University Rotterdam,
Tinbergen Institute and Chapman University, cdevries@ese.eur.nl. We thank Timothy Armstrong, Jeremy
Bulow, Thomas Chaney, Victor Chernozhukov, Robert Hall, Rustam Ibragimov, Paul Klemperer, Johan
Walden and Glen Weyl for helpful conversations and seminar participants at the AEA, Chicago, MIT, NYU
and SITE for useful comments. This research was partially supported by the NSF and the Swiss National
Science foundation. D. Li’s research was partially supported by NNSFC Grant 11171074.
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1 Introduction

Economists model consumer choices as a function of deterministic factors —like measurable

product attributes —and noise (Luce 1959, McFadden 1981). Noise arises because of consumer

evaluation errors as well as true variation in tastes.

Drawing from extreme value theory (EVT), we develop tools to analyze the impact of

noise on equilibrium prices in three important classes of symmetric random utility models

—Hart (1985), Perloff and Salop (1985), and Sattinger (1984).1 Expressions for equilibrium

markups have been previously derived for these models. The existing markup formulae, how-

ever, include integrals that are generally analytically intractable. Only for a few specific

distributions are closed-form solutions available. Drawing from extreme value theory, the cur-

rent paper solves this tractability problem and provides a simple, useful formula for markups.

Our analysis also reveals important robust features about markups and relates these markups

to limit pricing, (i.e., Bertrand competition with heterogeneous firms).

Previous analysis of random-utility models has focused on a small number of special cases

in which markups turn out to be either unresponsive to competition or highly responsive

to competition. For instance, consider the Perloff-Salop model and assume that noise has

an exponential density or a logit (i.e. Gumbel) density. In this case, markups converge

to a strictly positive value as n, the number of competing firms, goes to infinity. Hence,

asymptotic markups have zero elasticity with respect to n (Perloff and Salop 1985, Anderson

et al. 1992). By contrast, when noise is uniformly distributed, markups are proportional to

1/n, so markups have a unit elasticity and hence a strong negative relationship with n (Perloff

and Salop 1985).

All three of these illustrative distributions – exponential, logit, and uniform – are appeal-

ing for their analytic tractability rather than their realism. In comparison to the Gaussian

distribution, the exponential and logit cases have relatively fat tails while the uniform case has

no tails. It is important to know how prices respond to competition when the noise follows

more general distributions, particularly distributions that are considered to be empirically

realistic.

We use extreme value theory to analyze general noise distributions. In each of the three

1Empirical IO models no longer use symmetric, random utility models (e.g., see the critiques in Bajari and
Benkard 2003 and Armstrong 2013). Accordingly, our findings are not directly applicable to the structural
models that are most frequently used in empirical IO. However, extensions of our work (see our conclusion)
may be useful for characterizing asymmetric models.
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random-utility models that we study —Hart, Perloff-Salop, Sattinger —we show that markups

are asymptotically proportional to 1/ (nF ′ [F−1 (1− 1/n)]), where F is the cumulative distri-

bution function (CDF) for noise. Moreover, we show that this markup turns out to be almost

equivalent to the markup obtained under limit pricing. The markup is asymptotically pro-

portional (and often equal) to the expected gap between the highest draw and second highest

draw in a sample of n draws.

This “detail-independence”for the value of the markup is surprising.2 The Hart, Perloff-

Salop, and Sattinger models differ in a host of important ways.3 Yet, these three models lead

asymptotically to the same value of the markup up to a scaling constant.

We pay particular attention to the Gaussian case because it is a leading approximation

of many natural phenomena. For the Gaussian case we show that asymptotic markups are

proportional to 1/
√

lnn, where n is the number of competing firms. This formula implies that

mark-ups fall slowly as n rises. Moreover, the elasticity of the markup with respect to n

converges to 0. Hence, the Gaussian case behaves much more like the exponential and logit

cases than like the uniform case. Rising competition in an environment with a Gaussian noise

distribution only produces weak downward pressure on prices.

We also show that for all “heavy-tailed”distributions (including subexponential distribu-

tions like the log-normal and power-law distributions like the Pareto distribution), mark-ups

increase as the number of competing firms increase.

More generally, if n is large we find that the elasticity of the markup with respect to the

number of firms equals the EVT tail exponent of the distribution; a magnitude that is easy

to calculate. These results demonstrate an intimate relationship between the economic logic

of competition in large economies and the mathematics of EVT. We conclude that markups

are surprisingly insensitive to the degree of competition in large economies, since markups

have a zero asymptotic elasticity for many empirically realistic noise distributions. Only noise

distributions with extremely thin tails (like the uniform distribution) and very heavy tails

(like the Pareto), have markups with elasticities different from zero.

Moving away from the specifics of random demand models, the tools that we develop allow

2The paradigm of a “detail-independence” or “universality” result is the central limit theorem: for large
n, when forming the mean, we obtain a distribution (the Gaussian) that is independent of the details of the
system. Likewise, power laws and Zipf’s law arise in detail-independent ways, which explains their prevalence
in economics (see Gabaix 1999, and the references therein).

3For instance, in the Perloff-Salop model consumers need to buy one unit of the good. In the Sattinger
model, they allocate a fixed dollar amount to the good. The Hart model does not impose either constraint.
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us to calculate the asymptotic behavior of integrals for a class of functions h (x), of the form∫
h (x) fk(x)F (x)ndx, (1)

where k ≥ 1, which appear in a very large class of economic situations, some of which we

will review later. For instance, this integral can be used to calculate the expected value of

a function of the maximum of n random variables, or the gap between the maximum and

the second largest value of those random variables. Using EVT we are able to derive robust

approximations of this integral for a large n. We illustrate the practical usefulness of this

integral by studying a series of examples in trade, macroeconomics, behavioral economics, and

several other fields.

Extreme outcomes and EVT techniques are important in many parts of economics. For

example, the Gumbel extreme value distribution is the foundation of the logit specification

for discrete choice with random demand (Luce 1959, McFadden’s 1981). This specification

has been used widely in the analysis of product differentiation, regional economics, geography

and trade, see e.g. Anderson et al. (1992), Dagsvik (1994), Dagsvik and Karlstrom (2005),

Ibragimov and Walden (2010), and Armstrong (2012). In international trade, Eaton and

Kortum (2002) and Bernard et al. (2003), used the aggregation properties of the Fréchet

extreme value distribution to analyze international trade at the producer level (see also Chaney

2008, 2012). Acemoglu, Chernozhukov and Yildiz (2006, 2009) identify the impact of the tail

specification on learning. In macroeconomics, Gabaix (2011) shows that the tails of the firm

size distribution play a role in macroeconomic fluctuations; extremes in the size distribution of

firms can emerge from random growth (Gabaix 1999, Luttmer 2006) or the network structure

of the buyer-supplier relations amongst firms (Acemoglu et al. 2012, Chaney 2012). Jones

(2005) models the distribution of innovative ideas and analyzes the impact of this distribution

on the bias of technical change. In applied finance, much use has been made of EVT in

risk management and systemic risk analysis; see e.g. Jansen and De Vries (1991) for an

early contribution and Ibragimov, Jaffee and Walden (2009, 2011) for recent examples. In an

application to the economics of health care, Garber, Jones and Romer (2006) discuss how the

distribution of benefits generated by medical innovations relates to the optimal scheme for

incentivizing innovation. EVT is also used extensively in the theory of auctions (e.g., Hong

and Shum 2004). We anticipate that the techniques developed in the current paper will be

useful in the setups discussed above, in addition to the basic price-theoretic setup we discuss
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here (e.g. Bulow and Klemperer 2002, 2012, Weyl and Fabinger 2012 for recent developments

in that area). As an example, Gabaix and Landier (2008) use some of the current paper’s

results to analyze the upper tail of the distribution of CEO talents.

The paper proceeds as follows. Section 2 provides a summary of the three illustrative

market models we analyze —Hart, Perloff-Salop and Sattinger. Section 3 presents our core

mathematical result: an asymptotic approximation of a key integral that is needed to char-

acterize economic environments in which extremes matter. Section 4 illustrates the value of

this approximation, by using it to study the three economic models. We show that the tail of

the noise distribution —captured by the tail exponent —is the crucial determinant of prices,

whereas the details of the demand-side modelling (e.g., Hart vs. Perloff-Salop vs. Sattinger)

matter little, or not at all, asymptotically. As many common noise distributions have a tail

index of zero, our results imply that in many market contexts additional competition has little

effect on prices, once the market goes beyond a small number of firms.

Section 5 presents extensions and applications of our three key models, in numerous fields,

including trade, macroeconomics, and behavioral economics. For example, when noise is

endogenous, competition increases the amount of noise supplied by firms, in a way we make

quantitatively precise. This section also demonstrates that our mathematical techniques and

economic insights are robust. Section 6 concludes and discusses an extension of our results to

a more general family of models.

We prove our main results (Theorems 1 and 2) in the Appendix, and our other results in

an online Appendix. The online appendix also discusses some additional details of our three

key models.

2 Economic Models

In the following three subsections we introduce three models of monopolistic competition under

oligopoly. The three models differ in the specification of the consumer’s utility function, but

all share the feature that the representative consumer’s preference for a given firm’s good is

represented by a random taste shock.

Each model features a representative consumer, and an exogenously specified number n of

firms. The timing of each model is as follows:

1. Firms simultaneously set prices;
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2. Random taste shocks are realized;

3. Consumers make purchase decisions;

4. Profits are realized.

The key economic object of interest is the price markup in a symmetric equilibrium, which

we derive by solving the first-order condition for each firm’s profit maximization problem.

The firm i’s profit function is given by

πi = (pi − c)D (p1, ..., pn; i)

where D (p1, ..., pn; i) is the demand function for firm i given the price vector (p1, ..., pn) of the

n goods, and where c is the marginal cost of production. The first order condition for profit

maximization implies the following equilibrium markup in a symmetric equilibrium

p− c = − D (p, p;n)

D1 (p, p;n)
. (2)

Here p is the symmetric equilibrium price, D (p, p′;n) denotes the demand function for a firm

that sets price p when there are n goods and all other firms set price p′, and D1 (p, p′;n) ≡
∂D (p, p′;n) /∂p. Denote the markup p− c in a symmetric equilibrium with n firms as µn.

The evaluation of this markup expression for the three models of monopolistic competition

gives rise to different integral problems, which we address in Section 4 (using tools developed

in Section 3.) We briefly discuss the features of each model, and list the resulting expressions

for price markups in terms of integrals. The derivation of these expressions from the first-

order conditions, as well as verification of the second-order conditions, is relegated to the

online Appendix.

2.1 Perloff-Salop (1985): Consumers demand a fixed unit amount

in the aggregate

In the Perloff-Salop model, a particular consumer can purchase exactly one unit of the dif-

ferentiated good. The consumer receives net utility Xi − pi by purchasing the good of firm
i, where Xi is a random taste shock, i.i.d. across firms and consumers, and pi is the price

charged by firm i. Thus the consumer chooses to purchase the good that maximizes Xi − pi.
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In a symmetric-price equilibrium, the demand function of firm i is the probability that the

consumer’s surplus at firm i, Xi − pi, exceeds the consumer’s surplus at all other firms,

D (p1, ..., pn; i) = P(Xi − pi ≥ max
j 6=i
{Xj − pj}) = P(Xi ≥ max

j 6=i
{Xj}). (3)

Let Mn denote the max {X1, ..., Xn}, whose density is nf(x)F n−1(x).4 Evaluation of (2)

gives the following markup expression for the symmetric equilibrium of the Perloff-Salop

model:

µPSn =
1

nE [f(Mn−1)]
=

1

n (n− 1)
∫
f 2(x)F n−2(x) dx

. (4)

Here F is the distribution function and f is the corresponding density of Xi.

2.2 Sattinger (1984): Consumers demand a fixed dollar amount in

the aggregate

Sattinger (1984) analyzes the case of multiplicative random demand. There are two types of

goods. One is a composite good purchased from an industry with homogenous output, and

the other is obtained from a monopolistically competitive (MC) market with n differentiated

producers. The consumer has utility function

U = Z1−θ[
n∑
i=1

AiQi]
θ, (5)

where Z is the quantity of the composite good, Ai = exp(Xi) is the random taste shock, and

Qi is the quantity consumed of good i. The Xi are i.i.d. across consumers and firms and have

distribution function F . The consumer faces the budget constraint y = qZ +
∑

i piQi where y

is the consumer’s endowment, q is the price of the composite good and pi is the price of good

i.

One shows that the demand function of firm i is

D (p1, ..., pn; i) =
θy

pi
P
(
eXi

pi
≥ max

j 6=i

eXj

pj

)
. (6)

4Indeed,
P (Mn ≤ x) = P (Xi ≤ x for i = 1...n) = P (Xi ≤ x)

n
= F (x)

n
.
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Evaluation of (2), see the online appendix, gives the following markup expression for the

symmetric equilibrium of the Sattinger model:

µSattn =
1

nE [f(Mn−1)]
=

c

n (n− 1)
∫
f 2(x)F n−2(x) dx

. (7)

Note that the markup expressions for the Perloff-Salop and Sattinger models are almost

identical, except for the marginal costs factor c from (2). Thus

µSattn = c · µPSn . (8)

2.3 Hart (1985): Consumers’demand is flexible in quantity and

value

Hart (1985) analyzes a model of monopolistic competition where both the quantity and the

dollar amount spent depend on the prospective utility of the good purchased. In comparison, in

the Perloff-Salop model from section 2.1, the quantity demanded is fixed; while in the Sattinger

model (section 2.2), dollar expenditure is also fixed. The Hart model thus allows us to study

the impact of competition in a slightly richer economic context than the previous models of

monopolistic competition. Interestingly, with a particular choice of noise distribution, the Hart

(1985) model generates the same demand function, see our Proposition 6, as the traditional

Dixit-Stiglitz (1979) model, but within a random utility framework.

In Hart’s model, the consumer’s payoff function is:

U =
ψ + 1

ψ

(
n∑
i=1

AiQi

)ψ/(ψ+1)

−
n∑
i=1

piQi. (9)

where i is the index of the consumed good, Ai = eXi is the associated random taste shock, Qi

is the consumed quantity and pi is the unit price of good i. The Xi are i.i.d. across consumers

and firms and have distribution function F ; note that this specification allows for negative

realizations of Xi. Hart shows that the demand function for firm i is

D (p1, ..., pn; i) = E

[
eψXi

p1+ψ
i

1{eXi/pi≥maxj 6=i e
Xj /pj}

]
. (10)

Evaluation of (2), see the online appendix, gives the following markup expression for the
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symmetric equilibrium of the Hart model:

µHartn /c =

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x) dx∫
eψxf (x)F n−1 (x) dx

)−1

(11)

=

(
ψ + (n− 1)

E
[
eψMn−1f (Mn−1)

]
E [eψMn−1 ]

)−1

(12)

Note that, by comparing (6) with (10) and (7) with (11):

DHart (p1, ..., pn; i)
∣∣
ψ=0

= DSatt (p1, ..., pn; i) / (θy) ,

µHartn

∣∣
ψ=0

= µSattn ,

where DHart is the demand function in the Hart model and DSatt is the demand function in

the Sattinger model. In the special case ψ = 0, the Hart model generates the same demand

functions and markups as the Sattinger model.

3 Extreme Value Theory and Related Results

Solving for the symmetric equilibrium outcome in the models discussed above, for distribution

function F , requires the evaluation of integrals of the form∫
xjeψxfk(x)F (x)n−ldx (13)

where k, l ≥ 1 and j, ψ ≥ 0. For large n, such integrals mainly depend on the tail of the

distribution F , which suggests that techniques from Extreme Value Theory (EVT) may be

applied. (See de Haan (1970), Resnick (1987), and Embrechts et al. (1997) for an introduction

to EVT.)

This section develops the mathematical tools that we will use to asymptotically evaluate

(13). Section 3.1 states a number of technical assumptions and introduces notation. Section

3.2 presents the main mathematical results. Proofs are relegated to the Appendix.
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3.1 Preliminaries

First, we introduce a few useful objects. Recall from Section 2 that we define:

Mn ≡ max
i=1,...,n

Xi,

to be the maximum of n independent random variables Xi with distribution F . Also, define

the counter-cumulative distribution function F (x) ≡ 1 − F (x).5 We are particularly inter-

ested in the connection between Mn and F
−1

(1/n); informally in analogy with the empirical

distribution function, one may think of F
−1

(1/n) as the “typical”value of Mn. In fact, the

key to our analysis is to formalize this relationship between F
−1

(1/n) and Mn for large n.

Our analysis is restricted to what we call well-behaved distributions:

Definition 1 Let F be a distribution function with support on (wl, wu). Let f = F ′ be

the corresponding density function. We say F is well-behaved iff f is differentiable in a

neighborhood of wu, limx→wu F/f = a exists with a ∈ [0,∞], and

γ = lim
x→wu

d

(
F (x)

f (x)

)
/dx (14)

exists and is finite. The γ is called the tail index of F .

Being well-behaved imposes a restriction on the right tail of F . The case γ < 0 consists

of thin-tailed distributions with right-bounded support such as the uniform distribution. The

case γ = 0 consists of distributions with tails of intermediate thickness. A wide range of

economically interesting distributions fall within this domain, ranging from the relatively

thin-tailed Gaussian distribution to the relatively thick-tailed lognormal distribution, as well

as other distributions in between, such as the exponential distribution. The case γ > 0 consists

of fat-tailed distributions such as Pareto’s power-law and the Fréchet distributions.

Being well-behaved in the sense of Definition 1 is not a particularly strong restriction. It is

satisfied by most distributions of interest, and is easy to verify. Condition (14) is well-known

in the EVT literature as a second-order von Mises condition; for example, (14) is a slightly

stronger version of the assumption found in Pickands (1986). Table 1 lists several well-behaved

5Strictly speaking, we abuse notation in cases where F is not strictly increasing by using F
−1

(t) to denote
F
←

(t) = F← (1− t), where F← (t) = inf {x ∈ (wl, wu) : F (x) ≥ t} is the generalized inverse of F (Embrechts
et al. 1997, p.130). This is for expositional convenience; our results hold with the generalized inverse as well.
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densities f , the tail index γ of the associated distribution F , and corresponding values for

F
−1

(1/n) and nf
(
F
−1

(1/n)
)
(which will be useful for our analysis). Note that tail fatness

is increasing in γ.

Table 1: Properties of Common Densities
Distributions are listed in order of increasing tail fatness whenever possible.

f γ nf
(
F
−1

(1/n)
)

F
−1

(1/n)

Uniform 1, x ∈ [−1, 0] −1 n − 1
n

Bounded Power Law α (−x)
α−1

, α ≥ 1, x ∈ [−1, 0] −1/α αn1/α −n−1/α

Weibull α(−x)α−1e−(−x)
α

, α ≥ 1, x < 0 −1/α αn1/α ∼ −n−1/α

Gaussian (2π)−1/2e−x
2/2 0 ∼

√
2 lnn ∼

√
2 lnn

Rootzen Class κλφxa+φ−1e−x
φ

, x > 0, φ > 1 0 ∼ φλ1/φ (lnn)
1−1/φ ∼ (lnn)

1/φ

Gumbel exp(−e−x − x) 0 ∼ 1 ∼ lnn

Exponential e−x, x > 0 0 1 lnn

Log-normal (2π)−1/2x−1e−(log2 x)/2, x > 0 0 ∼
√
2 lnn

F
−1
(1/n)

∼ e
√
2 lnn

Power law αx−α−1, α > 0, x ≥ 1 1/α αn−1/α n1/α

Fréchet αx−α−1e−x
−α
, α > 0, x ≥ 0 1/α αn−1/α ∼ n1/α

Definition 1 ensures that the right tail of F behaves appropriately. To ensure that the

integral (13) does not diverge, we also impose some restriction on the rest of F . The following

notation will simplify the exposition of our results.

Definition 2 Let j : R→ R have support on (wl, wu). The function j(x) is [wl, wu)-integrable

iff ∫ w

wl

|j (x)| dx <∞

for all w ∈ (wl, wu).

For example, in Theorem 2 we require that f 2 be [wl, wu)-integrable. Verification of this

condition is typically straightforward; it is useful to note, for example, that f 2 (x) is [wl, wu)-

integrable if f = F ′ is uniformly bounded.

Finally, the following definition of regular variation will be useful.

Definition 3 A function h : R+ → R is regularly varying at ∞ with index ρ if h is strictly

11



positive in a neighborhood of ∞, and

∀λ > 0, lim
x→∞

h (λx)

h (x)
= λρ. (15)

We indicate this by writing h ∈ RV ∞ρ .

Analogously, we say that h : R+ → R is regularly varying at zero with index ρ if, ∀λ >
0, limx→0 h (λx) /h (x) = λρ, and denote this by h ∈ RV 0

ρ . Intuitively, a regularly varying

function h (x) with index ρ behaves like xρ as x goes to the appropriate limit, perhaps up to

logarithmic corrections. For instance, xρ and xρ |lnx| are regularly varying (with index ρ) at
both 0 and∞. Much of our analysis will require the concept of regular variation; specifically,
we will require that certain transformations of the noise distribution F be regularly varying.

In the case ρ = 0, we say that h is slowly varying (for example lnx varies slowly at infinity

and zero).

Finally, following the notation of Definition 1, define

wl = inf{x : F (x) > 0} and wu = sup{x : F (x) < 1} (16)

to be the lower and upper bounds of the support of F , respectively.

3.2 Core Mathematical Result

Our core mathematical result documents an asymptotic relationship betweenMn and F
−1

(1/n).

Theorem 1 Let F be a differentiable CDF with support on (wl, wu), F = 1−F , f = F ′, and

assume that F is strictly increasing in a left neighborhood of wu. Let G : (wl, wu) → R be a
strictly positive function in a left neighborhood of wu. Suppose that Ĝ (t) ≡ G

(
F
−1

(t)
)
∈ RV 0

ρ

with ρ > −1, and that
∣∣∣Ĝ (t)

∣∣∣ is integrable on t ∈ (t, 1) for all t ∈ (0, 1) (or, equivalently,

G (x) f(x) is [wl, wu)-integrable in the sense of definition 2). Then, for n→∞

E [G (Mn)] =

∫ wu

wl

nG (x) f(x)F (x)n−1dx ∼ G

(
F
−1
(

1

n

))
Γ (ρ+ 1) (17)

where Mn is the largest realization of n i.i.d. random variables with CDF F .

The intuition for equation (17) is as follows. By definition of Mn, if X is distributed as

F and if Mn and X are independent, then P [X > Mn] = 1/ (n+ 1); that is, E
[
F (Mn)

]
=

12



1/ (n+ 1) ≈ 1/n. Consequently, we might conjecture (via heroic commutation of the expec-

tations operator) that

E [Mn] ≈ F
−1
(

1

n

)
(18)

and that E [G (Mn)] ≈ G (E [Mn]) ≈ G
(
F
−1

(1/n)
)
.

It turns out that this heuristic argument gives us the correct approximation, up to a

correction factor Γ (ρ+ 1). 6

We next present an intermediate result that is technically undemanding but will allow us

to apply Theorem 1 to expressions of the form (13).

Lemma 1 Let F be well-behaved with tail index γ. Then

1. f
(
F
−1

(t)
)
∈ RV 0

γ+1.

2. If wu =∞, then F−1
(t) ∈ RV 0

−γ. If wu <∞, then wu − F
−1

(t) ∈ RV 0
−γ.

3. If a is finite, then eF
−1

(t) ∈ RV 0
−a.

Lemma 1 ensures that when F is well-behaved, (13) satisfies the conditions imposed in

Theorem 1 for a wide range of parameter values. The following proposition is then an imme-

diate implication of Theorem 1 and Lemma 1.

Proposition 1 Let F be well behaved with tail index γ. Let j, ψ ≥ 0, k ≥ 1 and let xjeψxfk(x)

be [wl, wu)-integrable. If j > 0, assume that wu > 0. If ψ = 0, we can treat ψa = 0 in the

6To understand the correction factor, start with the linear case G (x) = x, in which case the theorem gives

E [Mn] ∼ F
−1

(1/n) Γ (−γ + 1). Then the correction factor arises because the distribution of the maximum
is Fn(x), not F (x). For distributions with an exponential type tail, γ = 0 and no correction is required. For
distributions with a power type tail and finite mean, γ ∈ (0, 1), an upward correction is needed. To provide
some intuition for this, consider the log (− logP {Mn ≤ t}), and where the distribution F is either Gumbel or
Fréchet, see Table 1. In case of the Gumbel one finds log n − t, while the Fréchet gives log n − α log t. Take
n and t large. In the Gumbel case n plays a minor role, while in the case of the distribution n and t are of
similar order of magnitude, so that n affects the distribution and its moments. More generally, if G (x) is not
linear, the tail behavior of G (x) interacts with the tail behavior of F (x). Both functions then determine ρ in
the correction factor as indicated in the theorem. For example, take G(x) = xm and F (x) = 1− x−α, m < α,
then E [(Mn)

m
] ' nm/αΓ (1−m/α).
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following expressions. If (k − j − 1) γ − ψa+ k > 0, then as n→∞,∫ wu

wl

xjeψxfk(x)F (x)n−ldx

∼

 n−1
(
F
−1

(1/n)
)j
eψF

−1
(1/n)fk−1

(
F
−1

(1/n)
)

Γ ((k − j − 1) γ − ψa+ k) : wu =∞

n−1wjue
ψwufk−1

(
F
−1

(1/n)
)

Γ ((k − 1) γ + k) : wu <∞
.

Proposition 1 allows us to approximate (13) for well-behaved distributions7. The parameter

restriction (k − j − 1) γ − ψa + k > 0 is necessary to ensure that (13) does not diverge. For

our purposes, this restriction is rather mild, as we will see when we apply Proposition 1

in the subsequent sections. One notable exception is that when ψ > 0, we cannot analyze

heavy-tailed distributions (which have fatter-than-exponential tails) such as the lognormal

distribution; for these distributions, a =∞.
Here we define a distribution to be heavy-tailed if eλxF (x)→∞ as x→∞ for all λ > 0.

To see why a = ∞ in this case, note that limx→∞ F (x) /f (x) = ∞ implies − d
dx

logF (x) =

o (1) as x→∞, so − logF (x) = o (x) and e−λx = o
(
F (x)

)
for all λ.

4 Asymptotic Markups

This section applies our newly-developed mathematical tools to the integral problems raised

in Section 2. Section 4.1 derives asymptotic expressions for the Perloff-Salop, Sattinger, and

Hart markups and price elasticities. Section 4.2 discusses the implications of these findings:

specifically, how the choice of noise distribution determines the relationship between compe-

tition and prices. Section 4.3 briefly discusses some implications for consumer surplus under

random demand frameworks.

4.1 Asymptotic Expressions for Markups

Taking Proposition 1 and substituting into (4), (7) and (11), we immediately obtain asymp-

totic approximations for equilibrium markups for each of the Perloff-Salop, Sattinger and Hart

models.

7For antecedents to this result, see Resnick (1971) or Maller and Resnick (1984).
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Theorem 2 Assume that F is well-behaved, and that f 2 (x) is [wl, wu)-integrable. For the

Perloff-Salop and Sattinger models, assume that −1.45 ≤ γ ≤ 0.64.8 For the Hart model with

parameter ψ, assume that −1 < γ ≤ 0; if γ = 0, we further require that 1− ψa > 0.

Then the symmetric equilibrium markups in the Perloff-Salop, Sattinger and Hart models are

asymptotically

µPSn = µSattn /c ∼ µHartn /c ∼ 1

nf
(
F
−1 ( 1

n

))
Γ (γ + 2)

. (19)

with F (x) ≡ 1− F (x).

Theorem 2 treats the Hart model for the case where taste shocks have weakly thinner

tails than the exponential distribution. There is no such restriction for the Perloff-Salop and

Sattinger models; we are able to obtain markup expressions for fat-tailed taste shocks as well.

The proof of Theorem 2 is in the Appendix.

Theorem 2 delivers the perhaps unexpected result that the three models generate as-

ymptotically equal (up to a multiplicative constant) markups. Hence, they exhibit a sort of

“detail-independence”: equilibrium markups do not depend on the details of the model of

competition. This logic underlying this phenomenon will be developed in section 4.4. The

markup under a limit pricing model of competition is also asymptotic to our markups in The-

orem 2. Hence, the key ingredient in the modeling is the specification of the noise distribution,

rather than the details of the particular oligopoly model.

The key mathematical objects in Theorem 2, γ and f
(
F
−1

(1/n)
)
, are easy to calculate

for most distributions of interest. Table 1 lists nf
(
F
−1

(1/n)
)
and γ for commonly used

distributions, from which the asymptotic markup may immediately be calculated.

The following proposition shows that γ has a concrete economic implication. The tail

parameter γ in (14) is the asymptotic elasticity of the markup with respect to the number of

firms. In other words, the markup behaves locally as µ ∼ knγ. We interpret n as a continuous

variable in the expression of the markup.

Proposition 2 Assume that the conditions in Theorem 2 hold. Further, assume that logF (x) f 2 (x)

is [wl, wu)-integrable. Then the asymptotic elasticity of the Perloff-Salop, Sattinger and Hart

8This is the range over which the second order condition holds (see the online appendix for details); the
first order condition holds whenever γ > −2.
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markups with respect to the number of firms n is:

lim
n→∞

n

µn

dµn
dn

= γ.

For taste shocks with distributions fatter than the uniform (γ > −1), Proposition 2 shows

that the mark-up falls more slowly than 1/n. The proof is relegated to the online Appendix.

Finally, the following fact, which is easily verified using Lemma 3 part 6, may often be

useful to simplify calculations further. As n→∞,

1

nf
(
F
−1

(1/n)
) ∼

γF
−1

(1/n) , γ > 0

−γ(wu − F
−1

(1/n)), γ < 0
.

4.2 Applications to Markup and Industry Equilibrium

We discuss the economic implications of the industry equilibrium. We will use µn to denote

the Perloff-Salop markup (with n firms) while keeping in mind that, by virtue of Theorems

2, the Hart, Perloff-Salop, Sattinger markups are asymptotically equal up to a constant mul-

tiplicative factor. This allows us to unify the discussion for all three models.

To analyze the impact of competition on markups, we examine the equilibrium markup

for various noise distributions. Table 2 shows how markups change as competition intensifies.

The distributions in Table 2 are generally presented in increasing order of fatness of the

tails. For the uniform distribution, which has the thinnest tails, the markup is proportional

to 1/n. This is the same equilibrium markup generated by the Cournot model. However the

uniform cum Cournot case is unrepresentative of the general picture. Table 2 implies that

markups scale with nγ. For the distributions reported in Table 2, γ is bounded below by −1,

so the uniform distribution is an extreme case.

In the Perloff-Salop and Sattinger cases, for the distributions with the fattest tails, the

markups paradoxically rise as the number of competitors increases.9 Intuitively, for fat-tailed

noise, as n increases, the difference between the best draw and the second-best draw, which

is proportional to nf
(
F
−1

(1/n)
)
, increases with n (see section 4.4 below). However, even

though markups rise with n, profits per firm go to zero (keeping market size constant) since

firm prices scale with nγ but sales volume per firm is proportional to 1/n in the Perloff-Salop

9No symmetric price equilibrium can be calculated in the Hart model for these distributions, because each
firm would face infinite demand.
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Table 2: Asymptotic Expressions for Markups
This table lists asymptotic markups (under symmetric equilibrium) for various noise distributions as a

function of the number of firms n. f defines the density function and describes any parameter restric-

tions on f . (B(a, b)) is the Euler beta function. Distributions are listed in order of increasing tail fatness.

µBLP , µPS , µSatt, µHart are respectively markups under the BLP, Perloff-Salop, Sattinger, Hart models. As-

ymptotic approximations are calculated using Theorem 2 except where the markup can be exactly evaluated.

Note that µ is asymptotically equal for all four models for large n. Note that the Hart markup is not defined

for distributions fatter than the exponential. Neither do we calculate the BLP markup for distributions

fatter than the exponential or with a bounded support.

f µPSn = µSattn /c µHartn /c limn→∞ µn

Uniform 1, x ∈ [−1, 0] 1/n ∼ 1/n 0

Bounded Power Law
α (−x)α−1

α > 0, x ∈ [−1, 0]

Γ(1−1/α+n)
αΓ(2−1/α)Γ(1+n) ∼

n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Weibull
α (−x)α−1 e−(−x)α

α ≥ 1, x < 0

1
αΓ(2−1/α)

n1−1/α

n−1 ∼
n−1/α

αΓ(2−1/α) ∼ n−1/α

αΓ(2−1/α) 0

Gaussian (2π)−1/2 e−x
2/2 ∼ (2 lnn)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−x
φ ∼ 1

φλ1/φ
(lnn)1/φ−1 0

Gumbel exp(−e−x − x) n
n−1 ∼ 1 1

Exponential e−x, x > 0 1 1

Rootzen Gamma

(τ < 1)

τxτ−1e−x
τ

x > 0, τ < 1
∼ 1

τ (lnn)1/τ−1 − ∞

Log-normal
exp(−2−1 log2 x)

x
√

2π

x > 0
∼ 1√

2 lnn
e
√

2 lnn − ∞

Power law
αx−α−1

α > 1, x ≥ 1

Γ(1+1/α+n)
αΓ(2+1/α)Γ(1+n) ∼

n1/α

αΓ(2+1/α) − ∞

Fréchet
αx−α−1e−x

−α

α > 1, x ≥ 0

1
αΓ(2+1/α)

n1+1/α

n−1 ∼
n1/α

αΓ(2+1/α) − ∞
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case and 1/n1+γ in the Sattinger case.

This phenomenon whereby prices rise with more intense competition has recently attracted

some attention. Chen and Riordan (2008) present a model where markups rise when com-

petition goes from one to two firms. As in our paper, this is because consumers can become

less price-sensitive when there are more firms.10 In the context of a broad analysis of pass-

through, Weyl and Fabinger (2012) clarifies this effect by showing that the right-hand side

of our mark-up formula (19) falls with n for log-concave distributions, and rises with n for

log-convex distributions. The result can also be verified by taking the derivative of our asymp-

totic formula with respect to n. Weyl and Fabinger (2012) show how in the log-concave case

pricing strategies are strategic complements, while in the log-convex case, they are strategic

substitutes.11

Thin-tailed distributions (e.g. uniform) and fat-tailed distributions (e.g. power-laws) are

the extreme cases in Table 2. Most of the distributional cases imply that competition typically

has remarkably little impact on markups. For instance with Gaussian noise, the markup µn is

proportional to 1/
√

lnn, and the elasticity of the markup with respect to n is asymptotically

zero. So µn converges to zero, but this convergence proceeds at a glacial pace. Indeed, the

elasticity of the markup with respect to n converges to zero.

To illustrate the slow convergence, we calculate µn when noise is Gaussian for a series of

values of n. Table 3 shows that in the models we study and with Gaussian noise, a highly

competitive industry with n = 1, 000, 000 firms will retain a third of the markup of a highly

concentrated industry with only n = 10 competitors. We also compare markups in our

monopolistic competition models to those in the Cournot model, which features markups

proportional to 1/n and a markup elasticity w.r.t. n of −1 (note that this is equal to markups

in the Perloff-Salop model with uniformly distributed noise.)

More generally, in cases with moderate fatness, such as the Gumbel (i.e. logit), exponential,

and log-normal densities, the markup again shows little (or no) response to changes in n.

Nevertheless, the markups become unbounded for the lognormal distribution. Finally, the

case of Bounded Power Law noise shows that an infinite support is not necessary for our

results. In this case the markup is proportional to n−1/α and markup decay remains slow for

large α.

10See also Bénabou and Gertner (1993), Carlin (2009), Bulow and Klemperer (2002) and Rosenthal (1980)
for perverse competitive effects generated by different microfoundations.
11For more background, see Bulow, Geanakoplos and Klemperer (1985).
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Table 3: Markups with Gaussian Noise and Uniform Noise
Markups are calculated for (i) the symmetric equilibrium of the Perloff-Salop model for Gaussian noise and

(ii) under Cournot Competition, for various values of the number of firms n. Note that markups in the

Sattinger model and the Hart model are asymptotically equal, up to a constant factor c, to markups in the

Perloff-Salop model. n is the number of firms in the market. Markups are normalized to equal one when

n = 10.

n Markup with Gaussian noise Markup under Cournot Competition

10 1 1

100 0.61 0.1

1, 000 0.47 0.01

10, 000 0.40 0.001

100, 000 0.35 0.0001

1, 000, 000 0.32 0.00001

In practical terms, these results imply that in markets with noise we should not necessarily

expect increased competition to dramatically reduce markups. The mutual fund industry

may exemplify such stickiness. Currently 10,000 mutual funds are available in the U.S. and

many of these funds offer similar portfolios. Even in a narrow class of homogenous products,

such as medium capitalization value stocks or S&P 500 index funds, it is normal to find

100 or more competing funds (Hortacsu and Syverson 2004). Despite the large number of

competitors in such sub-markets, mutual funds still charge high annual fees, often more than

1% of assets under management. Most interestingly, these fees have not fallen as the number of

homogeneous competing funds has increased by a factor of 10 over the past several decades.12

12Finally, we add a note about the well-known behavior of markups when the noise is multiplied by a
constant. Consider random shock X and its linear transform X ′ = σX + k. A higher σ means that there is a
higher standard deviation of the noise, while k is simply a shift. Calling µn = µn (1, 0) the markup under X
and µn (σ, k) the markup under the distribution of X ′, we have µPSn (σ, k)

′
= σµPSn i.e., the markup is simply

multiplied by σ, while k does not matter for the markup (it is the difference in qualities that matters, not
their absolute level). Likewise, µSattn (σ, k)

′
= σµSattn , and µHart (ψ, σ) = σµHart (ψσ, 1). So asymptotically,

the markup is simply multiplied by σ.
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4.3 Consumer Surplus

Sometimes the random utility framework is criticized as generating too high a value for con-

sumer surplus. Indeed, if the distribution is unbounded, the total surplus goes to ∞ as the

number of firms increases. Our analytical results allow us to examine this criticism. For

brevity, we restrict ourself to the Perloff-Salop case, with unbounded distributions and γ ≥ 0.

Expected gross surplus is E [Mn], where Mn is the highest of n draws. Theorem 1 shows that

E [Mn] ∼ Γ (2− γ)F
−1

(1/n) for γ ≥ 0. For all the distributions that we study except the

unbounded power law case, F
−1

(1/n) rises only slowly with n. Hence, even for unbounded

distributions, and large numbers of producers, consumer surplus can be quite small. For

example, for the case of Gaussian noise when consumer preferences have a standard devia-

tion of $1, F
−1

(1/n) ∼
√

2 lnn. So, with a million toothpaste producers, consumer surplus

averages only $5.25 per tube. Hence, in many instances, the framework – even with un-

bounded distributions – does not generate counterfactual predictions about consumer surplus

or counterfactual predictions about the prices that cartels would set.

4.4 Limit Pricing Model Interpretation

We now derive equilibrium markups for an alternative model of oligopolistic competition,

and show that it produces markups that are asymptotically equal to those from the Perloff-

Salop, Sattinger, and Hart models. Importantly, we explain how the same logic underlies the

equilibriummarkups for all of these models. This generates an simple but useful interpretation

of our economic results from Section 4. As an aside, we demonstrate an equivalence between

our results and the mathematics of second-price auctions in Section 5.4.

This model is sometimes called “limit pricing”, and has proved very useful in trade and

macroeconomics (e.g. Bernard et al. 2003, see also Auer and Chaney 2009). Each firm i

draws a quality shock Xi, then sets a price pi. (This is in contrast with the models of Section

2, where prices are set before taste shocks are observed.) The representative consumer needs

to consume one unit of the good, and picks the firm with the largest of Xi−pi. As before, call
Mn = maxi=1...nXi the maximum draw of the n qualities, and Sn the second-largest draw. In

the competitive equilibrium, the firm with the highest quality, Mn, gets all the market share,

and sets a price p = c + Mn − Sn. This is just enough to take all the market away from the

firm with the second-highest quality. So, the markup is µLPn = Mn − Sn.
The next Proposition analyzes the average behavior of that Limit Pricing markup.
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Proposition 3 Let F be well-behaved with tail index γ < 1, and assume that xf (x) is

[wl, wu)-integrable. Call Mn and Sn, respectively, the largest and second largest realizations of

n i.i.d. random variables with CDF F . Then limit pricing markup is µLPn = Mn − Sn, and

E
[
µLPn

]
∼n→∞

Γ (1− γ)

nf
(
F
−1 ( 1

n

)) . (20)

We see that the markup is asymptotic to the markup in the other three random utility

models, derived in Theorem 2. This strengthens the result that the behavior in the markup

is in many ways independent of the details of the modelling of competition. There is also an

intuitive interpretation for Proposition 3, which clarifies the general economics of competition

with a large number of firms.

We observed that E
[
F (Mn)

]
' 1/ (n+ 1), which suggested that Mn will be close to

F
−1

(1/n). Similarly, with Sn the second-highest draw, E
[
F (Sn)

]
' 2/ (n+ 1). So it is likely

that Sn−1 ≈ F
−1

(2/n). So

E
[
µLPn

]
≈Mn − Sn ≈ F

−1
(1/n)− F−1

(2/n) = F
−1

(1/n)− F−1
(1/n+ 1/n)

≈ − dF
−1

(x)

dx

∣∣∣∣∣
x=1/n

· 1

n
by Taylor expansion

=
1

nf
(
F
−1

(1/n)
) .

Proposition 1 shows that the heuristic argument generates the right approximation for the

distributions when γ = 0 (e.g. Gaussian, logit (Gumbel), exponential, and lognormal), and

that the approximation remains accurate up to a corrective constant in the other cases. So

an informal intuition for the Perloff-Salop, Sattinger and Hart models is as follows. To set

its optimum price, a firm conditions on its getting the largest draw, then evaluates the likely

draw of the second highest firm, and engages in limit pricing, where it charges a markup equal

to the difference between its draw and the next highest draw.

5 Extensions and Applications

This section discusses two extensions of our basic models and an application to trade / macro-

economics. Section 5.1 endogenizes the degree of product differentiation between firms, and
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in doing so demonstrates a connection between our results and the functional form of the

Dixit-Stiglitz (1977) demand function. The Dixit-Stiglitz specification is highly popular in

macroeconomics. We develop a simple macroeconomic framework in Section 5.2 to demon-

strate how the random demand specification may be used in place of the common Dixit-Stiglitz

specification. In Section 5.3, we enrich the Perloff-Salop model and show that (i) our math-

ematical methods can be applied to richer oligopoly models that incorporate complicated

assumptions about consumer preferences (beyond the standard models that we previously

introduced), and that (ii) our economic insights about the "noise-dependence" of equilibrium

markups remain under such additional assumptions.

5.1 Endogenous Product Differentiation or Noise

Until now, we have assumed that the standard deviation of the noise term is exogenous. We

now relax this assumption and allow firms to choose the degree of product differentiation (in

the traditional economic interpretation), or the degree of “confusion” (in a complementary

behavioral interpretation). In the course of this analysis, we also show that the Hart model

with (i) Gumbel-distributed noise and (ii) endogenous product differentiation, produces the

familiar Dixit-Stiglitz (1997) demand function.

Assume that firms can choose the degree to which their own product is differentiated from

the rest of the market; specifically, assume that each firm i can choose σi at a cost c (σi) so

that the firm’s demand shock is Xi = σiX, where X has CDF F . The game then has the

following timing:

1. firms simultaneously choose (pi, σi)

2. random taste shocks are realized

3. consumers make purchase decisions

4. profits are realized

Firm i’s profit function is given by

π ((pi, σi) , (p, σ) ;n) = (pi − c (σi))D ((pi, σi) , (p, σ) ;n)

in step 1, where D ((pi, σi) , (p, σ) ;n) is the demand for good i when the firm chooses (pi, σi)

and the remaining n − 1 firms choose (p, σ). Each firm i then chooses (pi, σi) to maximize
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π ((pi, σi) , (p, σ) ;n). The symmetric equilibrium is then characterized by

(p, σ) = arg max
(p′,σ′)

π ((p′, σ′) , (p, σ) ;n) .

Our techniques allow us to analyze the symmetric equilibrium outcome of this game, for

each of the Perloff-Salop, Sattinger and Hart models.

Proposition 4 Consider the Perloff-Salop, Sattinger and Hart models where firms simulta-

neously choose p and σ, under the same assumptions as Theorem 2. Assume that wu > 0.13

Further, in the Perloff-Salop and Sattinger cases, assume that xf 2 (x) dx is [wl, wu)-integrable,

and that c′ > 0, c′′ > 0, limt→∞ c
′ (t) = ∞. In the Hart case, assume that c′ > 0, (ln c)′′ >

0, limt→∞ (ln c (t))′ =∞.
Then the equilibrium outcome with n firms is asymptotically, as n→∞

µPSn (σn) =
µSattn (σn)

cSatt (σn)
∼ µHartn (σn)

cHart (σn)
∼ σn

nf
(
F−1

(
1− 1

n

))
Γ (γ + 2)

,

cPS
′
(σn) =

cSatt
′
(σn)

cSatt (σn)
∼ cHart

′
(σn)

cHart (σn)
∼
{
F
−1

(1/n) : wu <∞
F
−1

(1/n)
Γ(γ+2)

: wu =∞
.

In other words, at the symmetric equilibrium, the normalized marginal cost of σ —that is

c′ (σn) in the Perloff-Salop case and c′ (σn) /c (σn) in the Sattinger and Hart cases —asymptot-

ically equals F
−1 ( 1

n

)
, up to a scaling constant. In particular, the normalized marginal cost of

σ goes closer to the upper bound of the distribution as the number of firms increases. Hence,

Proposition 4 quantitatively characterizes the monotonic relationship between the number

of firms and the degree of endogenous product differentiation (in the traditional economic

interpretation), and/or the relationship between the number of firms and the degree of en-

dogenous confusion (in the behavioral interpretation). We note that this effect of competition

on the supply of confusion or noise is potentially important (see e.g., Gabaix and Laibson

2006, Spiegler 2006, Carlin 2009, and Ellison and Ellison 2009).

We can use the limit pricing heuristic from Section 4.4 to obtain an intuition for this

result. Consider the Perloff-Salop case. Since the firm engages in limit pricing, it can charge

13This assumption that the largest possible realization of Xi is positive (possibly infinite) makes the firm’s
problem economically sensible. If, on the contrary, wu ≤ 0, then each realization of Xi would be negative
with probability 1. In that case, increasing σ would reduce the attractiveness of the firm’s product to the
consumer. To eliminate this possibility, we assume wu > 0.
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a markup of σMn − σ∗Sn where σ is the firm’s product differentiation choice and σ∗ is the
choice of all other firms, which we take as given. The marginal value of an additional unit of

noise σ is thus Mn ' F
−1 ( 1

n

)
.

5.2 A Trade / Macroeconomic Style Framework with Endogenous

Markups

To model pricing power in trade and macroeconomic models, economists typically utilize the

monopolistically competitive differentiated goods specification of Dixit and Stiglitz (1977)

with a large number of goods. Shocks to the demand side are often modeled by shocking

the coeffi cient of substitution in the Dixit Stiglitz specification; see e.g. Woodford (2003, ch.

6), Smets and Wouters (2003) and Gali et al. (2012). This practice is criticized by Chari,

Kehoe and McGrattan (2009), who argue that such shocks are not structural.14 To meet

this criticism, we investigate the implications of a random demand specification. As we show

below, demand shocks in the random demand approach are taken into account by the firms

when setting prices, rather than treating these exogenously. Here we take an extreme view of

demand shocks and model these as a taste of the entire population for a specific item from

the set of differentiated goods (one year everybody desires a BlackBerry, the next year the

iPhone).

To be able to demonstrate the implications of random demand for macro, we develop

two trade / macro style models. One is based on the traditional Dixit Stiglitz specification,

the other is based on the random demand specification. (See the online appendix for more

details.) The two models only differ with respect to utility function. The familiar Dixit-Stiglitz

specification with endogenous labor supply is

U = Z1−θ

[
1

n

n∑
i=1

Q
1/(1+τ)
i

]θ(1+τ)

− 1

1 + η
L1+η, (21)

where Z is the composite good, the Qi are the differentiated goods and L is labor. The

substitution coeffi cient τ is constrained to τ ∈ (0,∞), which implies concavity; θ ∈ (0, 1).

The random demand model is based on Sattinger’s (1984) type utility function (5) amended

14See Atkeson and Burstein (2008), Melitz and Ottaviano (2009) and Auer and Chaney (2009) for other
ways to generate varying markups in trade.
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with the same disutility of labor as in the Dixit-Stiglitz specification

U = Z1−θ

[
n∑
i=1

exp (Xi)Qi

]θ
− 1

1 + η
L1+η. (22)

In this setup the taste shock affects all consumers equally, i.e. the demand shocks Xi are

identical across consumers.

The supply side technologies are linear:

Z = BN and Qi = ANi, (23)

where A and B are the labor productivity coeffi cients while N and Ni are the respective

labor demands. Note that A and B also capture the supply side productivity shocks. Perfect

competition in the composite goods market implies that prices equal the per unit labor costs.

The differentiated goods producer exploits his direct pricing power, but ignores his pricing

effect on the price index of the differentiated goods and the consumer income. For the random

demand case, the markup is µn from (7), in the Dixit-Stiglitz specification the markup is τ .

Note that the markup factors τ and µn can take on similar values, cf. Table 2. The models’

solutions from the first order conditions is given in the online Appendix.

The respective labor productivities for the competitive good are as follows:

Lemma 2 The Dixit-Stiglitz and random demand labor productivities are

Qj/L =
θA

1 + (1− θ) τ and Qi/L =
θA

1 + (1− θ)µn
. (24)

There is an immediate implication:

Corollary 1 The labor productivity in the Dixit-Stiglitz specification is a mixture of demand

and supply shocks, while in the random demand specification there are only supply shocks.

The main difference between the two demand specifications stems from the way in which

demand shocks impinge on the macro variables. Woodford (2003, ch. 6), Smets and Wouters

(2003) and Gali et al. (2012) generate demand shocks by shocking τ . This is different from the

demand shock that arises from the random utility concept. Letting τ be random produces a

time varying markup factor. The markup factor µn in the case of random utility, though, is not
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random, see (7). Only the amount demanded is random as Xi is part of the demand function.

The deterministic markup in case of the random demand model can be explained by the fact

that the uncertainty is anticipated on the supply side and ‘disappears as an expectation’.

In the random demand expression from (24) the number of competitors n plays a role

through the markup µn. In the case of the Dixit-Stiglitz specification, however, n does not

enter as τ is exogenous. Consider the implications for the goods ratios Q/Z:

Proposition 5 In the Dixit-Stiglitz specification, the goods ratio Qj/Z does not depend on

n. In the random demand case if the distribution of the fashion shock is bounded or has

exponential like tails, then Qi/Z (approximately) equals the ratio of the expenditure shares

θ/ (1− θ) times the ratio of the productivity shocks A/B. But in the case that the preference
shocks have fat tails, the goods ratio Qi/Z → 0.

Proof of Proposition 5 Combining (53) and (54), and (50) and (51) yields for respectively

the Dixit-Stiglitz and random demand specifications

Qj

Z
=

θ

(1− θ) (1 + τ)

A

B
and

Qi

Z
=

θ

(1− θ) (1 + µn)

A

B
. (25)

Then use Table 2 to plug in the details for µn depending on the type of distribution. With

γ ≥ 0 and a unbounded, limn→∞ (Qi/Z) = limn→∞ (1/µn) = 0. �
Thus in the case that the preference shocks have fat tails and with numerous competitors,

the differentiated good becomes unimportant relative to the competitive good.

5.2.1 Another way to derive a Dixit-Stiglitz reduced form with endogenous elas-

ticity

The Hart model with Gumbel-distributed noise generates the familiar demand function from

Dixit-Stiglitz (1977), as the following proposition shows.15

Proposition 6 Let Xi be Gumbel distributed with parameter φ: F (x) = exp
(
−e−x/φ

)
.Then

in the Hart model, demand for good i equals

D (p1, ..., pn; i) = Γ (1− φψσ)
p
−(1+1/(φσ))
i(∑n

i=1 p
−1/(φσ)
j

)1−φψσ .

15Anderson et al (1992, pp. 85-90) derive this result for the case ψ = 0.
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This result is of independent interest. For example, it implies that our framework generates

a Dixit-Stiglitz demand functions with elasticity equal to φσ. When φσ is time-varying or

endogenous (see section 5.1), then the Dixit-Stiglitz demand elasticity will be time-varying or

endogenous as well.

5.3 Enriched Linear Random Utility (ELRU)

In this section we add two features, drawn from recent random demand models (see, for

example, Berry, Levinsohn and Pakes 1995), to the Perloff-Salop model: an outside option

good, and stochastic consumer price sensitivity. This enriches the Perloff-Salop model, while

keeping the Berry et al. (1995) extension within the scope of the paper. We dub this extension

the Enriched Linear Random Utility (ELRU). We show that the essential insights we obtain in

Section 4 carry over to this setting. As before, we go through the modeling assumptions, then

introduce the mathematical machinery before applying it to the equilibrium markup problem.

The proofs are in the online Appendix.

5.3.1 Model Setup: ELRU

There are n firms each producing a monopolistically competitive good, and a consumer who

chooses either to purchase exactly one unit of the good from one firm, or to take his outside

option. The consumer’s utility from consuming firm i’s good is

ui = −βpi +Xi, u0 = ε0,

where pi is the price of good i (set by firm i), β ≥ 0 is a "taste for money", ε0 ≥ 0 is the value

of the consumer’s outside option, and Xi is the random taste shock associated with good i.

Each of X1, ..., Xn are identically distributed and independent of each other and (β, ε0). The

ε0 may not be independent of β. Each Xi has CDF F . The joint distribution of (β, ε0) is

denoted by H(., .) and has a density h(., .); some times we use vector notation y = (β, ε0) and

will just write H(y) and h(y) respectively.

The demand function for good i at price p (given that all other goods are priced at p′) is

the probability that the consumer’s payoff for good i exceeds his payoff to all other goods, as
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well as the outside option:

D (p1, ..., pn; i) = P
(
−βpi +Xi ≥ max

{
max
j 6=i
{−βpj +Xj} , ε0

})
.

If we set ε0 = −∞ and β to be a constant, this simplifies to the Perloff-Salop model. Evaluation

of (2) gives the following markup expression for the symmetric equilibrium of the ELRUmodel:

µELRUn =
E [1− F (max {Mn−1, βp+ ε0})]
E [f (max {Mn−1, βp+ ε0}) β]

. (26)

where Mn−1 = maxj=1,...,n−1Xj is the maximum of n − 1 independent random variables Xj

with distribution F .

5.3.2 Equilibrium Markup: ELRU

We limit the calculation of equilibrium markups to the case where the distribution satisfies

γ = 0 and a < ∞; that is, to distributions that are weakly thinner than the exponential.
This restriction allows us to retain common distributions such as the Gumbel, Gaussian,

and Exponential; put another way, distributions that produce equilibrium markups that are

weakly decreasing with the degree n of competition. Specifically, suppose that the densities

f(x) are of the Rootzen (1987) type

f (x) ∼x→∞ κλφxφ+ν−1 exp
(
−λxφ

)
, κ > 0, λ > 0, φ ≥ 1, ν ∈ R (27)

It is a simple calculation to check that for this class γ = 0 and a = 0 whenever φ > 1. Note that

the classic tail expansion of the normal distribution 1−Φ (x) ∼ φ (x) /x fits the Rootzen class

(38) when we take φ = 2, λ = 1/2, κ = 1/
√

2π and a = −1. The main result of this section

is that if the joint distribution H (y) of β and ε0 has bounded support and if E [β]2 > V [β],

where V [.] is the variance operator, then equilibrium markups are asymptotically equal (up

to the factor E [β]) to the Perloff-Salop, Sattinger and Hart markups.

Theorem 3 Assume that f(x) is of the Rootzen type as defined in (27). Assume also that

the density function h (y) has bounded support and that E [β]2 > V [β]. Then the symmetric

equilibrium markup in the ELRU model is asymptotically

µELRUn ∼ 1/E[β]

φλ1/φ (lnn)1−1/φ
. (28)
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Note the similarity with (19) and (20). In each of the Hart, Perloff-Salop, and Sattinger

models, the marginal utility of money equals 1, which corresponds to the case β ≡ 1 in the

ELRU model.

5.4 Auctions

Consider an second-price auction with a single good and n bidders where each bidder i pri-

vately values the good at Xi, which is i.i.d. with CDF F . It is well-known that if F is strictly

increasing on (wl, wu), then the equilibrium outcome of this auction is that each bidder makes

a bid equal to his private valuation; the bidder with the highest valuation (Mn) wins and pays

the second-highest valuation (Sn). Thus the expected revenue in a second price auction equals

E [Sn], and the expected surplus for the winner in a second price auction equals E [Mn − Sn].

We can apply Theorem 1 and Lemma 1 to obtain asymptotic approximations for both of these

expressions.16 Since this is closely related to the results for limit pricing model, we state the

following without proof.

Proposition 7 Let F be well-behaved with tail index γ < 1, and assume that xf (x) is

[wl, wu)-integrable. Then in a second-price auction where valuations are i.i.d. as F , the

expected revenue to the seller, E [Sn], is

E [Sn] ∼n→∞ F
−1

(1/n) Γ (2− γ) if wu =∞,

E [Sn] = wu −
(
wu − F

−1
(1/n)

)
Γ (2− γ) + o

(
wu − F

−1
(1/n)

)
if wu <∞,

and the expected surplus for the winner of the auction is:

E [Mn − Sn] ∼n→∞
Γ (1− γ)

nf
(
F
−1

(1/n)
) . (29)

6 Conclusion and Conjectures

The choice of noise distributions in market models is often influenced by tractability concerns.

It is important to understand the consequences of these modeling choices and, when possible,

16Result (29) appeared in Caserta (2002, Prop. 4.1) in the case γ 6= 0. Caserta does not have the key
argument of the proof, with the integration by parts.
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to greatly expand the set of tractable models. With this challenge in mind, our paper makes

three sets of contributions.

First, we derive equilibrium markups for general noise distributions in various types of

monopolistically competitive markets.

Second, our results reveal a surprising degree of “detail-independence.” Specifically, the

behavior of price markups are asymptotically identical (up to a constant factor) for all models

that we study. Moreover, for the wide class of distributions with a zero extreme value tail

exponent — including the canonical case of Gaussian noise —we show that the elasticity of

markups to the number of firms is asymptotically zero. Hence, we have shown that in many

types of large markets, markups are relatively insensitive to the degree of competition.

Third, we show how to approximate a key integral that is useful for studying a wide range

of economic environments in which extreme outcomes determine the equilibrium allocation.

We conjecture that our results will extend to non-symmetric models (i.e., where firms

have different qualities). Using our paper, one can form the following conjecture.17 Take

distributions that are thin-tailed with zero extreme-value tail exponent (e.g. the Gaussian,

the exponential and the lognormal). With respect to the demand functions and markups, we

conjecture that models with arbitrary random noise (with zero tail exponent) behave asymp-

totically like models with logit noise, after a rescaling of the size of unit noise, by a factor

µn.18 This is true for the case of symmetric firms (as we have proven in this paper) and

is also likely to be true for the non-symmetric case. Proving this conjecture would offer a

vast generalization of existing results that focus on the logit case (e.g. Armstrong 2013), and

generally improve our understanding of the behavior of markets.

We also conjecture that our model will extend to models that do not have the property

of “independence of irrelevant alternatives.”For instance, if someone buys a global equities

17Building on the results in an earlier version of this paper, Li (2008) partially proves this conjecture for
the shape of the demand curve, which is Di,n ∼ e(qi−pi)/µn∑n

j=1 e
(qj−pj)/µn , when firms have non-symmetric (though not

too dispersed) prices and qualities, in a Perloff-Salop model where firm i yields utility qi − pi +Xi, where Xi

is a random variable which is not necessarily logit, e.g. it could be Gaussian. This is the well-known logit
expression, but it asymptotically applies for many other thin-tailed distributions (e.g., Gaussian, lognormal).
Our paper was the first to derive this result for markups with symmetric firms.
18For instance, consider a Gaussian Perloff-Salop model, where firm i offers a value Xi − pi and Xi ∼

N
(
0, σ2

)
. We conjecture that this model behaves like a logit Perloff-Salop model where (i) firm i offers a

surplus σ′X ′i − pi, (ii) X ′i follows the pure logit distribution (P (X ′i ≤ x) = e−e
−x
), (iii) σ′ := µGaussiann , where

µGaussiann ∼ σ/
√

2 lnn is the expression we derive in the paper. The behavior of the two models (Gaussian and
logit) will be the same, we conjecture, not only for the markup, but also for the shape of the demand function,
the profit function etc. —at least when firms are not too different. We could also refine the conjecture by
σ′ := µGaussiann /µLogitn = n−1

n µGaussiann .
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mutual fund, it is more likely that his second choice is another global equities fund. To

cover cases like this, one could assume that noise is correlated across firms. Intuitively, what

matters is the “effective”number of firms, ne, in a given submarket (e.g., global equities fund).

Then the markup is µne , and is characterized by our results. It would be interesting, though

mathematically challenging, to prove the following conjecture: as long as the “effective number

of firms in competition” in submarkets is above a constant fraction of the total number of

firms in competition, then our results go through, at last in the key case of thin-tailed noise

(extreme value theory tail exponent of 0).19

In conclusion, this paper uses extreme value theory to clarify the quantitative impact of

competition on prices in the symmetric-firms case. We anticipate that many of our results

will extend with minor variations to the nonsymmetric case.20

19For instance, if noise is Gaussian, and a submarket (e.g., global equities) has ne = n/5 mutual funds
rather than n mutual funds, then the markup is proportional to µn ∼ 1/

√
2 ln n

5 ∼ 1/
√

2 lnn. Somewhat
surprisingly the markup remains asymptotically the same in that case, as it does for other cases with thin
tails.
20Those minor economic variations will bring substantial additional mathematical challenges.

31



Appendix: Proofs

First, to clarify notation: denote fn ∼ gn if fn/gn → 1, fn = o(gn) if fn/gn → 0 and

fn = O(gn) if there exists M > 0 and n′ ≥ 1 such that for all n ≥ n′, |fn| ≤ M |gn|. We start
by collecting some useful facts about regular variation, see Resnick (1987) or Bingham et al.

(1989).

Lemma 3 1. If g (t) ∈ RV 0
a , then the limit limt→0 g (xt) /g (t) = xa holds locally uniformly

(with respect to x) on (0,∞).

2. If limx→0 h(x)/s(x) = 1, limx→0 s (x) = 0 and g(x) ∈ RV 0
ρ , then g(h(x)) ∼ g(s(x)).

3. If g (t) ∈ RV 0
a and h (t) ∈ RV 0

b , then g (t)h (t) ∈ RV 0
a+b.

4. If g (t) ∈ RV 0
a , h (t) ∈ RV 0

b and limt→0 h (t) = 0, then g ◦ h (t) ∈ RV 0
ab.

5. If g (t) ∈ RV 0
a and non-decreasing, then g

−1 (t) ∈ RV 0
a−1 if limt→0 g (t) = 0.

6. Let U ∈ RV 0
ρ . If ρ > −1 (or ρ = −1 and

∫ x
0
U (t) dt < ∞), then

∫ x
0
U (t) dt ∈ RV 0

ρ+1

and

lim
x→0

xU (x)∫ x
0
U (t) dt

= ρ+ 1.

If ρ ≤ −1, then for x > 0,
∫ x
x
U (t) dt ∈ RV 0

ρ+1 and

lim
x→0

xU (x)∫ x
x
U (t) dt

= −ρ− 1.

7. If limt→∞ tj
′(t)/j(t) = ρ, then j ∈ RV ∞ρ . Similarly, if limt→0 tj

′(t)/j(t) = ρ, then

j ∈ RV 0
ρ .

8. If g ∈ RV ∞ρ and ε > 0, then g (t) = o (tρ+ε) and tρ−ε = o (g (t)) as t → ∞; and if
g ∈ RV 0

ρ and ε > 0, then g (t) = o (tρ−ε) and tρ+ε = o (g (t)) as t→ 0.

Proof See the online appendix. �

Our proof of Theorem 1 depends critically on the following result.
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Theorem 4 (Karamata’s Tauberian Theorem) Assume U : (0,∞) → [0,∞) is weakly in-

creasing, U(x) = 0 for x < 0, and assume
∫∞

0
e−sxdU (x) < ∞ for all suffi ciently large s.

With α ≥ 0, U(x) ∈ RV 0
α if and only if∫ ∞

0

e−sxdU (x) ∼s→∞ U (1/s) Γ (α + 1) .

For a proof, see Bingham et al. (1987, pp.38, Th. 1.7.1’) or Feller (1972, XIII.5, Th. 1)

for another version of Karamata’s Tauberian theorem.

Proof of Theorem 1 Assume for now that G (x) ≥ 0 for all x ∈ (wl, wu), and show later

that this assumption can be relaxed. Differentiation of P (Mn ≤ x) = F n (x) gives the density

of Mn: fn(x) = nf(x)F n−1(x). Using the change of variable x = F
−1

(t) and observing that

dF
−1

(t) /dt = −1/f
(
F
−1

(t)
)

E [G (Mn)] =

∫ wu

wl

G(x)nf(x)F n−1(x)dx

= n

∫ wu

wl

G(x)F n−1(x) (f(x)dx)

= n

∫ 1

0

G(F
−1

(t))[F (F
−1

(t))]n−1dt

= n

∫ 1

0

Ĝ (t) (1− t)n−1 dt.

We next use the change in variables x = − ln (1− t), so t = 1− e−x, dt = e−xdx, and so

E [G (Mn)] = n

∫ ∞
0

Ĝ
(
1− e−x

)
e−xe−n

′xdx

where n′ = n− 1.

Next, define h (x) = Ĝ (1− e−x) e−x, and µ(x) =
∫ x

0
h (y) dy. Since Ĝ is regularly varying

at zero with index ρ > −1, Lemma 3(8) implies that
∫ s

0

∣∣∣Ĝ (t)
∣∣∣ dt < ∞ for suffi ciently small

s. This, with the assumptions G (t) ≥ 0 and
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt < ∞ for all s ∈ (0, 1), ensure that

µ(x) =
∫ 1−e−x

0
Ĝ (t) dt is finite and non-decreasing on [0,∞). By Lemma 3(2), h (x) ∼x→0

33



Ĝ(x). So h ∈ RV 0
ρ , and by Lemma 3(6)

µ(x) =

∫ x

0

h (y) dy

∼x→0
1

1 + ρ
h(x)x

∼x→0
1

1 + ρ
Ĝ(x)x.

Therefore µ(x) ∈ RV 0
ρ+1.

Noting our assumption that ρ + 1 > 0, we can now apply Karamata’s Theorem 4 in

combination with the last expression to obtain∫ ∞
0

e−n
′xdµ (x) ∼n′→∞ µ (1/n′) Γ (2 + ρ)

∼n′→∞
1

1 + ρ
Ĝ (1/n′) (n′)

−1
Γ (2 + ρ)

∼n→∞ Ĝ (1/n)n−1Γ (1 + ρ) .

Thus

E [G (Mn)] = n

∫ ∞
0

e−n
′xdµ (x)

∼ nĜ (1/n)n−1Γ (1 + ρ) = G(F
−1

(1/n))Γ (1 + ρ)

holds when G (x) ≥ 0 for all x ∈ (wl, wu).

Now relax the assumption that G (x) ≥ 0 for all x ∈ (wl, wu). Choose t ∈ (0, 1) such that

G (t) > 0 for t ∈
[
0, t
]
. The assumption that G (·) is strictly positive in a left neighborhood

of wu ensures that such t exists. Thus we can write

E [G (Mn)] = n

∫ t

0

Ĝ (t) (1− t)n−1 dt+ n

∫ 1

t

Ĝ (t) (1− t)n−1 dt

Consider G̃ : (0, 1)→ R defined by

G̃ (t) ≡
{
Ĝ (t) : t ≤ t

0 : t > t
.
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It is easy to check that G̃ satisfies the conditions of the theorem and additionally is weakly

positive everywhere on (wl, wu). The argument above shows that as 1/n→ 0

n

∫ t

0

Ĝ (t) (1− t)n−1 dt = n

∫ 1

0

G̃ (t) (1− t)n−1 dt ∼ G̃ (1/n) Γ (1 + ρ) ∼ Ĝ (1/n) Γ (1 + ρ) .

(30)

To complete the proof we demonstrate that as n→∞

∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ = o

(∫ t

0

Ĝ (t) (1− t)n−1 dt

)
.

First, by (30) for n→∞

∫ t

0

Ĝ (t) (1− t)n−1 dt ∼ n−1Ĝ (1/n) Γ (1 + ρ) ∈ RV ∞−ρ−1.

Lemma 3(8) implies that
∫ t

0
Ĝ (t) (1− t)n−1 dt > n−ρ−1−ε for suffi ciently large n and given

some ε > 0. Also, ∣∣∣∣∫ 1

t

Ĝ (t) (1− t)n−1 dt

∣∣∣∣ ≤ ∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ (1− t)n−1 dt

≤
(
1− t

)n−1
∫ 1

t

∣∣∣Ĝ (t)
∣∣∣ dt

≤
(
1− t

)n−1
∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt.

By assumption
∫ 1

s

∣∣∣Ĝ (t)
∣∣∣ dt <∞ for all s ∈ (0, 1), therefore

∣∣∣∫ 1

t
Ĝ (t) (1− t)n−1 dt

∣∣∣∫ t
0
Ĝ (t) (1− t)n−1 dt

≤

(
1− t

)n−1 ∫ 1

0

∣∣∣Ĝ (t)
∣∣∣ dt

n−ρ−1−ε = o (1) as n→∞.

This completes the proof. �

Proof of Lemma 1 See the online appendix.

Proof of Theorem 2 The Perloff-Salop and Sattinger cases follow immediately from Propo-

sition 1; we will omit those calculations and focus on the Hart case. Applying Proposition 1
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to (11), we immediately infer that

µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(γ+2−ψa)
Γ(1−ψa)

under the conditions of the theorem. We will use the fact that anf (Un) ∼ 1, which holds

because

lim
n→∞

1

nf
(
F
−1

(1/n)
) = lim

x→wu

F (x)

f (x)
= a.

Consider first the case where a = 0. Then nf
(
F
−1

(1/n)
)
→∞, and the expression simplifies

to

µHartn

c
∼ 1

nf
(
F
−1

(1/n)
)[

ψ

nf
(
F
−1

(1/n)
) + Γ(γ+2−ψa)

Γ(1−ψa)

] ∼ 1

nf
(
F
−1

(1/n)
)

Γ (γ + 2)
.

Next, consider the case 0 < a <∞, which implies γ = 0. We have

µHartn

c
∼ 1

ψ + nf
(
F
−1

(1/n)
)

Γ(2−ψa)
Γ(1−ψa)

=
1

ψ + nf
(
F
−1

(1/n)
)

(1− ψa)

=
1

ψ
(

1− anf
(
F
−1

(1/n)
))

+ nf
(
F
−1

(1/n)
)

∼ 1

nf
(
F
−1

(1/n)
) =

1

nf
(
F
−1

(1/n)
)

Γ (2 + γ)

when γ = 0. �
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Online Appendix for “The Impact of Competition on Prices with
Numerous Firms”

January 16 2013

This online appendix discusses some additional issues. Section 7 contains details of the

Perloff-Salop, Sattinger, and Hart models. Section 8 contains proofs that are omitted from the

papers. Section 9 analyses the macroeconomic framework from Section 5.2 in greater detail.

Section 10 derives second-order conditions for equilibrium, for the Perloff-Salop, Sattinger and

Hart models.

7 Details of Monopolistic Competition Models

This section provides details for the derivation of the markup expressions for the four monop-

olistic competition models.

Perloff-Salop

Recall from (3) that in the Perloff-Salop model, the demand function for good i is the proba-

bility that difference between the demand shock and the price is maximized by good i:

D (p1, ..., pn; i) = P
(
Xi − pi ≥ max

j 6=i
Xj − pj

)
= EXi

[∏
j 6=i

P (x− pi ≥ Xj − pj | Xi = x)

]

= EXi

[∏
j 6=i

F (x− pi + pj)

]

=

∫ wu

wl

f (x)
∏
j 6=i

F (x− pi + pj) dx.

42



Using D (pi, p;n) to denote the demand for good i at price pi when all other firms set price p

and using D1 (pi, p;n) to denote ∂D (pi, p;n) /∂pi, we may calculate

D (pi, p;n) =

∫ wu

wl

f (x)F n−1 (x− pi + p) dx

D1 (pi, p;n) = − (n− 1)

∫ wu

wl

f (x) f (x− pi + p)F n−2 (x− pi + p) dx.

Note that in a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx = 1/n,

D1(p, p;n) = − (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx.

It follows that

µPSn = − D(p, p;n)

D1(p, p;n)
=

1

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

To interpret the Perloff-Salop markup equation, use the notation Mn−1 (the largest of the

n− 1 noise realizations: Mn−1 ≡ maxj∈{1,...,n},j 6=iXj). Then, D (p, p;n) = P (Xi > Mn−1), so

D (p, p;n) = E
[
F (Mn−1)

]
. (31)

This formulation emphasizes that the demand for good i is driven by the properties of the

right-hand tail of the cumulative distribution function F̄ , as Mn−1 is likely to be large.

Sattinger

Under the utility specification (5), goods from the monopolistically competitive (MC) market

are perfect substitutes. The consumer optimizes by buying only one monopolistically com-

petitive good; the good i which maximizes eXi/pi. The consumer’s utility function is thus

Cobb-Douglas in the composite good and the chosen MC good; it is then easy to show that the

consumer spends fraction θ of his income on the chosen MC good. Without loss of generality,

normalize the consumer’s endowment y to equal 1/θ, so that the consumer always spends 1

unit of income on the MC good.

The demand function of firm i is the probability that the good i has a higher attraction-

price ratio than all other goods, multiplied by the purchased quantity 1/pi of the chosen good
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i; so

D (p1, ..., pn; i) =
1

pi
P
(
eXi

pi
= max

j=1,...,n

eXj

pj

)
=

1

pi
P
(
Xi − ln pi = max

j=1,...,n
Xj − ln pj

)
. (32)

We may rewrite this expression as

D (p1, ..., pn; i) =
1

pi

∫
f(x)

∏
j 6=i

F (x− ln pi + ln pj) dx.

Proceeding as in the case of the Perloff-Salop model, we get

D (pi, p;n) =
1

pi

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = − 1

p2
i

∫ wu

wl

f (x)F n−1 (x− ln pi + ln p) dx

− (n− 1)

p2
i

∫ wu

wl

f (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx

In a symmetric equilibrium

D(p, p;n) =

∫ wu

wl

f(x)F n−1(x) dx =
1

pn
,

D1(p, p;n) = − 1

p2

(
1

n
+ (n− 1)

∫ wu

wl

f 2(x)F n−2(x) dx

)
After some simple manipulations, it follows that the Sattinger markup in symmetric equilib-

rium is

µSattn = − D(p, p;n)

D1(pi, p;n)
=

c

n (n− 1)
∫ wu
wl

f 2(x)F n−2(x) dx
.

Hart

Recall that the consumer’s objective is to choose quantities to maximize:

max
i=1...n

max
Qi≥0

U =
ψ + 1

ψ

(
n∑
i=1

eXiQi

)ψ/(ψ+1)

−
n∑
i=1

piQi. (33)
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As in the Sattinger case, it is clear that because goods are perfect substitutes, the consumer

will purchase only from one firm, which we denote by i. The first-order condition of the

consumer’s problem is then

0 =
d

dQi

[
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

]
= eXiψ/(ψ+1)Q

−1/(ψ+1)
i − pi

which gives us the optimal quantity for the chosen good i: Qi = eXiψi /p1+ψ
i , and the total net

utility is:

Vi =
ψ + 1

ψ

(
eXiQi

)ψ/(ψ+1) − piQi

=

(
ψ + 1

ψ
− 1

)
piQi =

1

ψ
pie

Xiψ
i /p1+ψ

i =
1

ψ

(
eXii
pi

)ψ
The consumer chooses the good that maximizes his net utility, i.e. arg maxi

(
eXi/pi

)
. We may

then calculate the demand function for good i as

D(p1, ..., pn; i) = E

[
eψXi

p1+ψ
i

I{eXi/pi=maxj=1,...,n e
Xj /pj}

]
(34)

= E

[
eψXi

p1+ψ
i

I{Xi−ln pi=maxj=1,...,nXj−ln pj}

]
(35)

where I {·} is the indicator function. Writing out the expectation and differentiating gives

D (pi, p;n) =
1

p1+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx,

D1 (pi, p;n) = −1 + ψ

p2+ψ
i

∫ wu

wl

eψxf (x)F n−1 (x− ln pi + ln p) dx

− n− 1

p2+ψ
i

∫ wu

wl

eψxf (x) f (x− ln pi + ln p)F n−2 (x− ln pi + ln p) dx.

In a symmetric equilibrium

D(p, p;n) =
1

p1+ψ

∫ wu

wl

eψxf (x)F n−1 (x) dx

D1(p, p;n) = − 1

p2+ψ

(
(1 + ψ)

∫ wu

wl

eψxf (x)F n−1 (x) dx+ (n− 1)

∫ wu

wl

eψxf 2 (x)F n−2 (x) dx

)
.
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With some simple calculations, it follows that the Hart markup in symmetric equilibrium is

µHartn = − D(p, p;n)

D1(p, p;n)

= c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x)∫
eψxf (x)F n−1 (x) dx

)−1

.

8 Proofs Omitted from the Paper

Proof of Lemma 3

1. Follows upon inversion from Resnick (1987, Prop. 0.5).

2. This fact follows from the observation that for g(s(x))
g(h(x))

=
g(
s(x)
h(x)

h(x))

g(h(x))
∼
(
s(x)
h(x)

)ρ
→x→0 1

where we can take the limit as x → 0 because of Lemma 3(1). Going into more detail,

choose δ (·) such that limt→0 δ (t) = 0 and |s (t′) /h (t′)− 1| < δ (t) for t′ < t. Such

δ (·) exists by our assumptions on s and h. Choose ε (·, ·) such that limt→0 ε (t, δ) =

limδ→0 ε (t, δ) = 0 and |g (xt′) /g (t′)− xρ| < ε (t, δ) for x ∈ (1− δ, 1 + δ) and t′ < t.

Lemma 3(1) ensures that such ε (·, ·) exists. Then

|g (s (t′)) /g (h (t′))− 1| =
∣∣∣∣g( s (t′)

h (t′)
h (t′)

)
/g (h (t′))− 1

∣∣∣∣ < ε (h (t′) , δ (t)) + ρO (δ (t))

for t′ < t. Since the RHS goes to zero as t→ 0, the result follows.

3. Since limt→0
g(xt)
g(t)

= xa and limt→0
h(xt)
h(t)

= xb, we have limt→0
g(xt)h(xt)
g(t)h(t)

= xa+b.

4. Follows upon inversion from Resnick (1987, Prop. 0.8, iv).

5. Follows upon inversion from Resnick (1987, Prop. 0.8, v).

6. Both parts follow upon inversion from Resnick (1987, Th. 0.6, a).

7. Follows from Resnick (1987, Prop. 0.7) and by inversion.

8. Directly by Resnick (1987, Prop. 0.8, ii) and upon inversion. �

Proof of Lemma 1

46



1. Note that F
(
F
−1

(t)
)

= 1−t implies f
(
F
−1

(t)
)(

F
−1

(t)
)′

= −1. Let x = F
−1

(t) , j (t) =

f
(
F
−1

(t)
)
. Then tj′ (t) /j (t) = −tf ′

(
F
−1

(t)
)
/f 2

(
F
−1

(t)
)

= −F (x)f ′(x)/f 2 (x) =(
F/f

)′
(x) + 1, so limt→0 tj

′(t)/j(t) = limx→F−1(1)

(
F/f

)′
(x) + 1 = γ + 1 by Definition

1. Lemma 3(7) then implies the desired result.

2. Note that − d
dt
F
−1

(t) = 1/f
(
F
−1

(t)
)
∈ RV 0

−γ−1. So if wu < ∞ (which implies γ ≤ 0;

see Embrechts et al., 1997) then Lemma 3(6) implies

F
−1

(0)− F−1
(t) =

∫ t

0

1/f
(
F
−1

(s)
)
ds ∈ RV 0

−γ.

If wu =∞ (which implies γ ≥ 0) then Lemma 3(6) implies, for any choice of t > 0, that

F
−1

(t) ∼ F
−1

(t)− F−1 (
t
)

=

∫ t

t

1/f
(
F
−1

(s)
)
ds ∈ RV 0

−γ;

see also Embrechts et al. (1997, pp. 160).

3. We have
t d
dt
eF
−1

(t)

eF
−1

(t)
=

−t
f
(
F
−1

(t)
) =

−F (x)

f (x)
for x = F

−1
(t) .

Lemma 3(7) then implies the desired result. �

Proof of Proposition 2 First we treat the Perloff-Salop case. Treating n as continuous, we

have
n

µPSn

dµPSn
dn

= −
(

2n− 1

n− 1
+
n
∫
f 2 (x)F n−2 (x) logF (x) dx∫

f 2 (x)F n−2 (x) dx

)
.

Noting that − log (1− x) ∼ x ∈ RV 0
1 , applying Theorem 1 to G (x) ≡ f(x)

F (x)
logF (x), using

Lemma 3(3), we obtain∫
f 2(x)F n−2(x) logF (x)dx ∼ −n−2f (Un) Γ(3 + γ).

Together with Theorem 2, it follows that

n

µn

dµn
dn

= −

2−
n−2nf

(
F
−1

(1/n)
)

Γ(3 + γ)

n−2nf
(
F
−1

(1/n)
)

Γ(2 + γ)
+ o (1)

 = γ + o (1) .
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Note that this also proves our claim for the Sattinger case. Next we treat the Hart case.

Notationally, let

Jψ,n (k, l) =

∫
eψxfk (x)F n−k (x) (logF (x))l dx.

Then we have

µHartn = c

(
ψ + (n− 1)

∫
eψxf 2 (x)F n−2 (x) dx∫
eψxf (x)F n−1 (x) dx

)−1

, so

n

µHartn

dµHartn

dn
= −n

(
Jψ,n(2,0)

Jψ,n(1,0)
+ (n− 1)

Jψ,n(1,0)Jψ,n(2,1)−Jψ,n(2,0)Jψ,n(1,1)

Jψ,n(1,0)2

)
(
ψ + (n− 1)

Jψ,n(2,0)

Jψ,n(1,0)

) .

Again, using the methods from Proposition 1, we may show that

Jψ,n (k, l) ∼

 (−1)l n−l−1fk−1
(
F
−1

(1/n)
)
eψF

−1
(1/n)Γ ((γ + 1) (k − 1) + l + 1) : γ < 0

(−1)l n−l−1fk−1
(
F
−1

(1/n)
)
eψF

−1
(1/n)Γ (k + l − ψa) : γ = 0

.

In the case a = 0, we may then verify that

n

µHartn

dµHartn

dn
= −2Γ (γ + 2)− Γ (γ + 3)

Γ (γ + 2)
+ o (1) = γ + o (1) .

In the case 0 < a <∞ (which implies γ = 0; we do not consider γ > 0), we may verify that

lim
n→∞

n

µHartn

dµHartn

dn
= − (1− ψa) [(1− ψa)− (1− ψa)] = 0.�

Proof of Proposition 3 We first show a lemma that links differences between the two top

order statistics to the behavior of the top tail statistics, and hence allows us to apply our

general results.

Lemma 4 Call Mn and Sn, respectively, the largest and second largest realizations of n

i.i.d. random variables with CDF F and density f = F ′, and G a function such that∫
G (x) f (x) dx <∞, limx→F−1(0) G (x)F (x) = limx→F−1(1)G (x)F (x) = 0. Then:

E [G (Mn)−G (Sn)] = E
[
G′ (Mn)F (Mn)

f (Mn)

]
(36)
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Proof : Recall that the density of Mn is nf (x)F n−1 (x), and the density of Sn is

n (n− 1) f (x)F (x)F n−2 (x) .

So

E [G (Sn)] =

∫
n (n− 1)G (x) f (x)F (x)F n−2 (x) dx

= n
[
G (x)F (x)F n−1 (x)

]F−1(1)

F−1(0)
−
∫
n
(
G (x)F (x)

)′
F n−1 (x) dx

= 0 +

∫
nG (x) f (x)F n−1 (x) dx−

∫
n
G′ (x)F (x)

f (x)
f (x)F n−1 (x) dx

= E [G (Mn)]− E
[
G′ (Mn)F (Mn)

f (Mn)

]
�
From this lemma, the proof follows for G (x) = x. As f(F

−1
(t)) ∈ RV 0

1+γ, t/f(F
−1

(t)) ∈
RV 0
−γ, and we may apply Theorem 1 to obtain the desired result. �

Proof of Proposition 4 First, some notation: π ((p, σ) , (p∗, σ∗) ;n) denotes the profit func-

tion of a firm that chooses (p, σ) when the remaining n − 1 firms choose (p∗, σ∗). Also,

π (p, σ;n) denotes the profit function of a firm when all n firms choose (p, σ).

Perloff-Salop Case

Call σ∗ and p∗ the equilibrium choices of the other firms:

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))P
(
σX1 − p ≥ max

j 6=i
σ∗Xj − p∗

)
= (p− c (σ))P

(
σ

σ∗
Xi +

p∗ − p
σ∗

≥ max
j 6=i

Xj

)
= (p− c (σ))

∫
f (x)F n−1

(
σ

σ∗
x+

p∗ − p
σ∗

)
dx.

The first-order conditions for profit maximization are as follows. Differentiating with respect

to p yields

p− c (σ) =

∫
f (x)F n−1 (x) dx

1
σ

(n− 1)
∫
f 2 (x)F n−2 (x) dx
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and differentiating with respect to σ gives

c′ (σ)

∫
f (x)F n−1 (x) dx = (n− 1) (p− c (σ))

∫
xf 2 (x)F n−2 (x) dx

1

σ
.

Some manipulation reveals

c′ (σ) =

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

.

Now we consider two cases: wu <∞ and wu =∞. If wu <∞, then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=
n−1wuf

(
F
−1

(1/n)
)

Γ (γ + 2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
+ o (1) = wu + o (1) .

If wu =∞ then

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

∼
n−1F

−1
(1/n) f

(
F
−1

(1/n)
)

Γ (2)

n−1f
(
F
−1

(1/n)
)

Γ (γ + 2)
∼ F

−1
(1/n)

Γ (γ + 2)
.

Sattinger Case

We have

π ((p, σ) , (p∗, σ∗) ;n) =
p− c (σ)

p
P
(
eσXi

p
≥ max

j 6=i

eσ
∗Xj

p∗

)
=
p− c (σ)

p

∫
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c
′ (σ)

p

∫
f (x)F n−1 (x) dx+

p− c (σ)

σp
(n− 1)

∫
xf 2 (x)F n−2 (x) dx

and

0 = π1 (p, σ;n) =
c (σ)

p2

∫
f (x)F n−1 (x) dx− p− c (σ)

σp2
(n− 1)

∫
f 2 (x)F n−2 (x) dx
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Rearranging, we get
p− c (σ)

c (σ)
=

σ

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

and

c′ (σ) =

p−c(σ)
σp

(n− 1)
∫
xf 2 (x)F n−2 (x) dx∫

f (x)F n−1 (x) dx
,

so

c′ (σ)

c (σ)
=

∫
xf 2 (x)F n−2 (x) dx∫
f 2 (x)F n−2 (x) dx

=

 F
−1

(1/n) + o
(
F
−1

(1/n)
)

= wu + o (1) : wu <∞
F
−1

(1/n)+o
(
F
−1

(1/n)
)

Γ(γ+2)
: wu =∞

as calculated in the Perloff-Salop case.

Hart Case

We have

π ((p, σ) , (p∗, σ∗) ;n) = (p− c (σ))E

[
eψσXi

p1+ψ
I{

eσXi
p
≥maxj 6=i

e
σ∗Xj
p∗

}
]

= (p− c (σ))E
[
eψσXi

p1+ψ
I{ σ

σ∗Xi+
log p∗−log p

σ∗ =maxj 6=iXj}

]
= (p− c (σ))

∫
eψσx

p1+ψ
f (x)F n−1

(
σ

σ∗
x+

log p∗ − log p

σ∗

)
dx

so the first-order conditions for profit maximization become

0 = π2 (p, σ;n) = −c′ (σ)

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx+(p− c (σ))

{ ∫
ψx e

ψσx

p1+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
x e

ψσx

p1+ψ
f 2 (x)F n−2 (x) dx

}

and

0 = π1 (p, σ;n) =

∫
eψσx

p1+ψ
f (x)F n−1 (x) dx− (p− c (σ))

{
(1 + ψ)

∫
eψσx

p2+ψ
f (x)F n−1 (x) dx

+n−1
σ

∫
eψσx

p2+ψ
f 2 (x)F n−2 (x) dx

}

so
p− c (σ)

c (σ)
=

∫
eψσxf (x)F n−1 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

51



and

c′ (σ)

c (σ)
=
p− c (σ)

c (σ)

∫
ψxeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx∫

eψσxf (x)F n−1 (x) dx

=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

.

Now we consider two cases: wu < ∞ and wu = ∞. If wu < ∞, then (noting that a = 0 in

this case)

c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

=
ψn−1wue

σψwuΓ (1) + 1
σ
wue

σψwuf
(
F
−1

(1/n)
)

Γ (γ + k)

ψn−1eσψwuΓ (1) + 1
σ
eσψwuf

(
F
−1

(1/n)
)

Γ (γ + k)
+ o (1)

= wu + o (1) .

If wu =∞, then noting that γ = 0,

c′ (σ)

c (σ)
=
ψ
∫
xeψσxf (x)F n−1 (x) dx+ n−1

σ

∫
xeψσxf 2 (x)F n−2 (x) dx

ψ
∫
eψσxf (x)F n−1 (x) dx+ n−1

σ

∫
eψσxf 2 (x)F n−2 (x) dx

∼
ψn−1F

−1
(1/n) eσψF

−1
(1/n)Γ (1− ψa) + 1

σ
ψUnf

(
F
−1

(1/n)
)
eσψUnΓ (2− ψa)

ψn−1eσψF
−1

(1/n)Γ (1− ψa) + 1
σ
ψf (Un) eσψUnΓ (2 + γ − ψa)

= F
−1

(1/n) .

Proof of Proposition 6 First, note that the demand function under the Hart specification

is

E

[
eψσXi

p1+ψ
i

I{
eσ
∗Xi
pi
≥maxj 6=i

e
σ∗Xj
pj

}
]

=
1

p1+ψ
i

∫ wu

wl

eψσ
∗xf (x)

∏
j 6=i

F

(
x+

ln pi − ln pj
σ∗

)
dx.

We can then make the substitutions F (y) = exp
(
−e−y/φ

)
and f (x) = 1

φ
exp

(
−x
φ
− e−x/φ

)
to calculate
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D (p1, ..., pn;σ∗) =
1

p1+ψ
i

∫ wu

wl

eψσ
∗xf (x)

∏
j 6=i

F

(
x+

ln pi − ln pj
σ∗

)
dx

=
1

p1+ψ
i

∫ wu

wl

1

φ
eψσ

∗x exp

(
−x
φ
− e−x/φ

)
exp

(
−
∏
j 6=i

e
−
(
x+

ln pi−ln pj
σ∗

)
/φ

)
dx

=
1

φp1+ψ
i

∫ ∞
−∞

exp

(
x

(
σ∗ψ − 1

φ

)
−

n∑
j=1

(
pi
pj

)1/(φσ∗)

e−x/φ

)
dx

= Γ (1− φψσ∗) p
−(1+1/(φσ∗))
i(∑n

j=1 p
−1/(φσ∗)
j

)1−φψσ∗

where, for the last equality, we use the identity∫ ∞
−∞

exp
(
ax+ be−x

)
= baΓ (−a) .�

8.1 ELRU

We first present some results that we will use in the proof of Theorem 3, followed by the proof

of the Theorem itself.

Lemma 5 Under the assumptions of section 5.3

D (p, p) ∼n→∞
1

n
.

Proof of Lemma 5

Some notation: we use x ∨ y to denote max {x, y}. Note that Mn−1 is independent of

Q = w + βp and therefore

D(p, p) = P

{
Xi ≥

∨
j 6=i

Xj ∨Q
}

= EQ
[∫ ∞

q

F n−1(s)f(s)ds

]
=

1

n
− 1

n
EQ [F n(q)]

=
1

n
+ o(

1

n
).� (37)
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To obtain the partial derivative ∂D(pi, pj)/∂pi note that we can alternatively express

demand in a symmetric equilibrium in terms of the distribution of Xi

D(p, p) = P

{
Xi ≥

∨
j 6=i

Xj ∨Q
}

= 1− P {Xi ≤Mn−1 ∨Q}

= 1− EQEMn−1 [F (mn−1 ∨ q)] .

This facilitates the differentiation with respect pi at a symmetric equilibrium

∂D(pi, pj)

∂pi

∣∣∣∣
pi=pj=p

=
∂
{

1− Eβ,wEMn−1 [F (mn−1 ∨ w + βpi)]
}

∂pi

= −Eβ,wEMn−1 [f (mn−1 ∨ q)× β]

= −Eβ,w
[
β

∫ ∞
q

(n− 1) f(s)F n−2(s)f(s)ds

]
We like to use the Theorem 1. To this end we first need the asymptotic inverse of the

Rootzen distributions

F (x) = 1− F (x) ∼ κxν exp
(
−λxφ

)
, κ > 0, λ > 0, φ ≥ 1, ν ∈ R (38)

The asymptotic inverse of the upper tail of (38) is

F
−1

(y) ∼
(

1

λ

)1/φ
[

ln

(
κλ−ν/φ

y
×
[
ln

(
κλ−ν/φ

y

)]ν/φ)]1/φ

for y close to zero, see Li (2008).

Lemma 6 For the distribution with upper tail (38) it holds that f
(
F
−1

(y)
)
∈ RV 0

ρ with

ρ > −1.

Proof of Lemma 6
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Write shorthand A = κλ−ν/φ. Then, for y close to zero,

f
(
F
−1

(y)
)
∼ κλφ

(1

λ

)1/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)]1/φ
φ+ν−1

×

exp

−λ
(1

λ

)1/φ
[

ln

(
A

y
×
[
ln
A

y

]ν/φ)]1/φ
φ


= yλ1/φ

[
ln
A

y

]−ν/φ [
ln

(
A

y

[
ln
A

y

]ν/φ)](ν−1)/φ

φ ln

(
A

y

[
ln
A

y

]ν/φ)
.

Taking ratios shows

lim
y↓0

f
(
F
−1

(xy)
)

f
(
F
−1

(y)
) = lim

t→∞

f
(
F
−1

(x/t)
)

f
(
F
−1

(1/t)
) = x.

Hence, f
(
F
−1

(y)
)
∈ RV 0

1 , so that ρ > −1. �
Define the function G(s) from the Theorem 1 as the density f(s) from (27)

G(s) = κλφxφ+ν−1 exp
(
−λxφ

)
.

Thus G(x) is positive, moreover Ĝ(s) is integrable on (0, 1). Lastly, recall that q is bounded.

Lemma 7 Asymptotically

∂D(p, p)

∂pi
∼ −φλ1/φ 1

n
(lnn)1−1/φ E[β].

Proof of Lemma 7
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By the main Theorem 1 at given values of β and w:

∂D(p, p)

∂pi

∣∣∣∣
w+βp=q

= − (n− 1) β

∫ ∞
q

f(s)F n−2(s)f(s)ds

= − (n− 1) β

∫ ∞
q

G(s)F n−2(s)f(s)ds

∼ −βG
(
F−1

(
1− 1

n− 1

))
Γ (2)

∼ −βφλ1/φ 1

n
(lnn)1−1/φ . (39)

By the boundedness assumption there exist w = inf(w), w = sup(w) and β = inf(β) and

β = sup(β). Let m = n− 1. Now

Eβ,w

[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
≥

Eβ,w
[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
≥

Eβ,w
[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
.

By (39) the inner integrals on the left and right are asymptotic to the same expression in n∫ ∞
w+βp

mFm−1(s)f 2(s)ds ∼
∫ ∞
w+βp

mFm−1(s)f 2(s)ds ∼ φλ1/φ 1

n
(lnn)1−1/φ .

Hence, the middle term is asymptotic to

Eβ,w
[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
∼ φλ1/φ 1

n
(lnn)1−1/φ Eβ,w [β] . (40)

Using this middle term on the left and proceeding analogously gives

Eβ,w
[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
≤ Eβ,w

[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
≤ Eβ,w

[
β

∫ ∞
0

mFm−1(s)f 2(s)ds

]
.
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By (39) and (40)∫ ∞
0

mFm−1(s)f 2(s)ds ∼
∫ ∞
w+βp

mFm−1(s)f 2(s)ds ∼ φλ1/φ 1

n
(lnn)1−1/φ .

So that the middle term is asymptotic to

Eβ,w
[
β

∫ ∞
w+βp

mFm−1(s)f 2(s)ds

]
∼ φλ1/φ 1

n
(lnn)1−1/φ Eβ,w [β] .

Thus, unconditionally

∂D(p, p)

∂pi
= −Eβ,w

[
β

∫ ∞
q

(n− 1) f(s)F n−2(s)f(s)ds

]
∼ −φλ1/φ 1

n
(lnn)1−1/φ E[β].�

Proof of Theorem 3.

First, note that both D(p, p;n) and −D1(p, p;n) are both decreasing in p1. LetM be large

and independent of n and p ∈ [c,M ]. Since D(c, c;n) and D(M,M ;n) are asymptotic to the

same function of n, see (37), it follows thatD(p, p;n) converges uniformly to the same function

of n on the interval [c,M ]. We can make an identical argument to show that D1(p, p;n) con-

verges uniformly on the interval [c,M ]. It then follows that −D(p, p;n)/D1(p, p;n) converges

uniformly to the asymptotic markup expression (which is a function of n) on [c,M ]

lim
n→∞

−D(p, p)/D1(p, p) ∼ φλ1/φ 1

n
(lnn)1−1/φ E[β]

uniformly on p ∈ [c,M ].

Let q (p, n) = p−c+D(p, p;n)/D1(p, p;n). Our equilibrium markup over p(n) is character-

ized by q(p(n), n) = 0. Clearly, q(c, n) < 0 for all n, while forM suffi ciently large q(M,n) > 0

and suffi ciently large n. It follows that a solution p (n) exists to q (p, n) = 0 in [c,M ] for

suffi ciently large n; so a solution p (n) exists. This solution satisfies

lim
n→∞

− D(p (n) , p (n))

D1(p (n) , p (n))
∼ φλ1/φ 1

n
(lnn)1−1/φ E[β],

as desired. �
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9 Details of Trade / Macro Framework

We start with the first order conditions for the RD specification. Utility (22) is to be maxi-

mized subject to the consumer budget constraint

wL+ Π(Q) = qZ +
1

n

n∑
i=1

piQi (41)

and where w is the wage rate and q, pi are the goods prices, while Π(Q) are the profits received

from the differentiated goods sector. The number n equals the number of goods for which

demand is strictly positive, i.e. n =
∑

i χQi>0. Suppose that

eXi

pi
≥ max

{
eXj

pj

}
, for j = 1, ..., n.

Optimality requires

Qj = 0, for j 6= i.

(1− θ)Z−θ
[
eXiQi

]θ − λq = 0,

θZ1−θ [eXiQi

]θ−1
eXi − λpi = 0,

−Lη + λw = 0

and

wL+ Π(Q) = qZ + piQi.

Manipulating these conditions yields by dividing the first two conditions

piQi =
θ

1− θqZ.

This together with the budget constraint implies

Z = (1− θ) wL+ Π(Q)

q
(42)

and

Qi = θ
wL+ Π(Q)

pi
. (43)
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Furthermore, from the first three first order conditions

q/w = (1− θ)Z−θ
[
eXiQi

]θ
L−η

= (1− θ)
(

1− θ
θ

pi
q
Qi

)−θ [
eXiQi

]θ
L−η

so that

L =

(
w

q1−θpθi
(1− θ)1−θ θθ

)1/η

e(θ/η)Xi .

The well known consumer first order conditions for the DS case imply the same demand

functions for Z and Qi as in (42) and (43) and are left to the reader. The only difference is

that in the DS case there is demand for all differentiated goods.

Use that in the symmetric equilibrium all prices for the differentiated goods will be equal

pi = p. Conditional on eXi/pi ≥ maxj
[
eXj/pj

]
, we get for both specifications

Qi = θ
wL+ Π(Q)

p
(44)

and

Z = (1− θ) wL+ Π(Q)

q
. (45)

These demand functions reflect the expenditure shares inherent to the Cobb-Douglas type

utility function. The first order conditions imply for the RD case

L =

(
(1− θ)1−θ θθ

w

q1−θpθi

)1/η

e(θ/η)Xi , (46)

whereas labor supply in the DS case reads

L =

(
(1− θ)1−θ θθ

w

q1−θpθ

)1/η

. (47)

On the supply side, the Ricardian technologies for the two types of goods are

Z = BN and Qi = ANi.

Here A and B are the labor productivity coeffi cients while N and Ni are the respective labor

demands. Perfect competition in the composite goods market implies that prices equal the
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per unit labor costs q = w/B.

The differentiated goods producer exploits his direct pricing power, but ignores his pricing

effect on the price index of the differentiated goods and the consumer income wL+Π(Q). For

the RD case, the markup is µn from (7), so that by (2) pi = (1 + µn)w/A and where c = w/A.

Substitute this and and q = w/B into (46) to determine the equilibrium labor supply as a

function of the markup factor conditional on the specific demand shock

L =
(
θθ (1− θ)1−θ AθB1−θ

)1/η
(

1

1 + µn

)θ/η
e(θ/η)Xi = ϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi , (48)

say, and where ϕ (A,B) is a composite of supply shocks A and B. Combine the differentiated

product sector profits (p− w/A)Qi with the demand Qi from (44) to get

Π(Q) =
θµn

1 + (1− θ)µn
wL (49)

Finally, combining (49) with (48) yields the unconditional per capita macro demand for the

differentiated good

Qi =
θ

1 + (1− θ)µn
Aϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi (50)

and

Qj = 0, ∀j 6= i

Similarly, the demand for the competitive good is

Z =
(1− θ) (1 + µn)

1 + (1− θ)µn
Bϕ (A,B)

(
1

1 + µn

)θ/η
e(θ/η)Xi . (51)

In the DS specification, the pricing power requires setting prices in proportion to unit

labor costs and the markup factor τ , so that pi = (1 + τ)w/A. Labor supply then follows

from (47)

L = ϕ (A,B)

(
1

1 + τ

)θ/η
. (52)
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Analogous to the RD case, the demand for the differentiated good is

Qj =
θ

1 + (1− θ) τ Aϕ (A,B)

(
1

1 + τ

)θ/η
, ∀j (53)

and for the competitive good

Z =
(1− θ) (1 + τ)

1 + (1− θ) τ Bϕ (A,B)

(
1

1 + τ

)θ/η
. (54)

To determine the price level, a simple quantity type relationM = wL suffi ces. This determines

wages w and prices pi, q in terms of the quantity of money M .

10 Second-Order Conditions for Profit Maximization

Recall that the profit function π (pi, p) for firm i when it sets price pi and all other firms set

price p is

π (pi, p) = (pi − c)D (pi, p)−K. (55)

So far, we have analyzed the first-order condition for profit maximization, π1 (p, p;n) = 0,

which is necessary but not suffi cient to ensure equilibrium. Anderson et al. (1992) show

(Prop. 6.5, p.171 and Prop. 6.9, p.184) that symmetric price equilibria exist in the Perloff-

Salop, Sattinger and Hart models when f is log-concave. Thus in these cases (55) defines the

unique symmetric price equilibrium. However, their results do not cover distributions where

f is not log-concave. We are unable to derive global conditions for existence of equilibrium

in these cases. Instead, we verify in this appendix that the markups we study satisfy the

second-order conditions for profit-maximization.

10.1 Perloff-Salop, Sattinger and Hart Models

The following three propositions show that the symmetric equilibrium markup expression (2)

which we use in our calculations also satisfies the second-order condition for profit maximiza-

tion, π11 (p, p;n) < 0. It is useful to note that, via simple calculations, the second order

condition is

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) < 0. (56)
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Proposition 8 Assume that F satisfies the conditions for Theorem 2, that f 3 (x) is [wl, wu)-

integrable, and that

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ < 0.64. Then the second-order condition for profit maximization

is satisfied in the symmetric equilibrium of the Perloff-Salop model.

Note that this covers all distributions with thin (−1 ≤ γ ≤ 0) and medium fat tails

(γ = 0), and all the heavy tailed distributions with a finite variance, i.e. γ ∈ (0, 1/2].

Proposition 9 Assume that F satisfies the conditions for Theorem 2, that f 3 (x) is [wl, wu)-

integrable, and that either γ > 0 or

−4Γ (γ + 2)2 + Γ (2γ + 3) < 0,

which holds for −1.45 < γ ≤ 0. Then the second-order condition for profit maximization is

satisfied in the symmetric equilibrium of the Sattinger model.

Proposition 10 Assume that the conditions for Theorem 2 are satisfied, and that eψxf 3 (x)

is [wl, wu)-integrable. Then the second-order condition for profit maximization is satisfied in

the symmetric equilibrium of the Hart model.

Proof of Proposition 8

We use Un = F
−1

(1/n) as a shortcut notation in several of the proofs below. Note, from

Section 7 in this Appendix, that

D (pi, p) =

∫
f (x)F n−1 (x+ p− pi) dx and

D1 (pi, p) = − (n− 1)

∫
f (x) f (x+ p− pi)F n−2 (x+ p− pi) dx,

from which we may calculate

D11 (p, p) =
(n− 1) (n− 2)

2

∫
f 3 (x)F n−3 (x) dx+

n− 1

2
f 2 (x)F n−2 (x)

∣∣∣∣∞
−∞
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where the last term on the RHS vanishes. So, applying Proposition 1,

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

n (n− 1)
∫
f 2 (x)F n−2 (x) dx

= −2 (n− 1)

∫
f 2 (x)F n−2 (x) dx+

(n− 2)
∫
f 3 (x)F n−3 (x) dx

2n
∫
f 2 (x)F n−2 (x) dx

∼ −2f (Un) Γ (γ + 2) +
f (Un) Γ (2γ + 3)

2Γ (γ + 2)

=
f (Un)

2Γ (γ + 2)

(
−4Γ (γ + 2)2 + Γ (2γ + 3)

)
.

since we can easily verify numerically that −4Γ (γ + 2)2 + Γ (2γ + 3) < 0 for −1.45 < γ ≤ 0,

it follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0.64] .�

Proof of Proposition 9

Without loss of generality, let θy = 1. Then, from Section 7 in this Appendix,

D (pi, p) =
1

pi

∫
f (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2
i

∫
f (x)F n−1 (x+ ln p− ln pi) dx

− n− 1

p2
i

∫
f (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx,

from which we may calculate

D11 (p, p) =
2

p3

∫
f (x)F n−1 (x) dx+ 3

n− 1

p3

∫
f 2 (x)F n−2 (x) dx

+
(n− 1) (n− 2)

2p3

∫
f 3 (x)F n−3 (x) dx+

n− 1

2p3

[
f 2 (x)F n−2 (x)

]∞
−∞

where the last term on the RHS vanishes. We may then substitute our expressions for

D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (56) and apply Proposition 1. The asymptotic ex-
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pression simplifies to

π11 (p, p;n) = 2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n)

= − 2

p2

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)

+

(
2
∫
f (x)F n−1 (x) dx+ 3 (n− 1)

∫
f 2 (x)F n−2 (x) dx

+ (n−1)(n−2)
2

∫
f 3 (x)F n−3 (x) dx

)
p2n

(∫
f (x)F n−1 (x) dx+ (n− 1)

∫
f 2 (x)F n−2 (x) dx

)
=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

In the case nf (Un) = o (1), which implies γ ≥ 0 and f (wu) = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + 2+3nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)

=
p−2

n

(
− nf(Un)Γ(γ+2)

1+nf(Un)Γ(γ+2)

+o (nf (Un))

)
< 0.

In the case limn→∞ nf (Un) ∈ (0,∞), which implies γ = 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+ 1

2
(nf(wu))2+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (1 + nf (Un)) +

2 + 3nf (Un) + (nf (Un))2

1 + nf (Un)
+ o (nf (Un))

)

=
p−2

n
(−nf (Un) + o (nf (Un)))

< 0.
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In the case limn→∞ nf (Un) =∞, which implies γ ≤ 0, we get

π11 (p, p;n) =
p−2

n

(
−2 (1 + nf (Un) Γ (γ + 2)) + o (nf (Un))

+
2+3nf(Un)(Γ(γ+2))+ 1

2
(nf(Un))2Γ(2γ+3)+o(nf(Un))+o(nf(Un))2

(1+nf(Un)Γ(γ+2))+o(nf(Un))

)

=
p−2

n

(
−2 (nf (Un) Γ (γ + 2)) + o (nf (Un))

+
1
2

(nf(Un))2Γ(2γ+3)+o(nf(Un))2

nf(Un)Γ(γ+2)+o(nf(Un))

)

= p−2f (Un)

(
−2Γ (γ + 2) +

1

2

Γ (2γ + 3)

Γ (γ + 2)

)
;

since we can easily verify numerically that −2Γ (γ + 2) + 1
2

Γ(2γ+3)+1
Γ(γ+2)

< 0 for −1.45 < γ ≤ 0,

it follows that

π11 (p, p;n) < 0 for γ ∈ [−1.45, 0] .�

Proof of Proposition 10

Note that in the Hart case, we are restricted to γ ∈ [−1, 0]. We have, from Section 7 in

this Appendix,

D (pi, p) =
1

p1+ψ
i

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx and

D1 (pi, p) = − 1

p2+ψ
i

{
(1 + ψ)

∫
eψxf (x)F n−1 (x+ ln p− ln pi) dx

+ (n− 1)
∫
eψxf (x) f (x+ ln p− ln pi)F

n−2 (x+ ln p− ln pi) dx

}
,

from which we may calculate

D11 (p, p) =
1

p3+ψ


(1 + ψ) (2 + ψ)

∫
eψxf (x)F n−1 (x) dx

+3
(
1 + ψ

2

)
(n− 1)

∫
eψxf 2 (x)F n−2 (x) dx

+1
2

(n− 1) (n− 2)
∫
eψxf 3 (x)F n−3 (x) dx

 .

We may then substitute our expressions for D (p, p;n) , D1 (p, p;n) , D11 (p, p;n) into (56) and

apply Proposition 1. This gives us

2D1 (p, p;n)− D (p, p;n)

D1 (p, p;n)
D11 (p, p;n) =

eψUn

p2+ψ
i

(A+B) ,
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where

A ∼ −2 (1 + ψ) Γ (1− aψ)− 2nf (Un) Γ (γ + 2− aψ) , and

B ∼ Γ (1− aψ)


(1 + ψ) (2 + ψ) Γ (1− aψ)

+3
(
1 + ψ

2

)
nf (Un) Γ (γ + 2− aψ)

+1
2

(nf (Un))2 Γ (2γ + 3− aψ)


(1 + ψ) Γ (1− aψ) + nf (Un) Γ (γ + 2− aψ)

After some tedious but straightforward calculations: if a = 0, then nf (Un) →n→∞ ∞, and
the asymptotic expression simplifies to

π11 (p, p;n)

∼ eψUn

p2+ψ
i

nf (Un)

(
−2Γ (γ + 2) +

Γ (2γ + 3)

2Γ (γ + 2)

)
< 0 for γ ∈ [−1, 0]

Since we can verify that −2Γ (γ + 2) + Γ(2γ+3)
2Γ(γ+2)

< 0 for γ ∈ [−1, 0], our claim holds in the case

a = 0.

If 0 < a <∞, then γ = 0, nUn → 1/a and the asymptotic expression simplifies to

π11 (p, p;n) ∼ eψUn

p2+ψ
i

Γ (1− aψ)

−2 (1 + 1/a) +

{
(1 + ψ) (2 + ψ) + 3 (1 + ψ/2) (1/a− ψ)

+1
2

(2/a− ψ) (1/a− ψ)

}
1 + 1/a


= −e

ψUn

p2+ψ
i

Γ (1− aψ)

a
< 0.�

10.2 ELRU Model

Finally, we check the second order condition for the ELRU model in the case that the density

f(x) is of the Rootzen type (27).

Proposition 11 Assume that the conditions for Theorem 3 are satisfied. Suppose, moreover,

that the distribution for the “taste for money” is such that the variance is smaller than the

square of the mean, i.e. V [β] < E[β]2. Then the second-order condition for profit maximization
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is satisfied in the symmetric equilibrium of the ELRU model.

Proof of Proposition 11 First condition on β, w and hence q = βp+w having a fixed value.

Differentiation gives

∂2D(p, p)

∂p2
i

= −β2

∫ ∞
q

∂f(s)

∂s

[
(n− 1)F n−2(s)f(s)

]
ds

∼ −β2

∫ ∞
q

[
−κλ2φ2x2φ+ν−2 exp

(
−λxφ

)] [
(n− 1)F n−2(s)f(s)

]
ds.

Moreover, for s close to zero

f ′
(
F
−1

(s)
)
∼ −φ2λ2/φs

[
ln
A

s

]−a/φ [
ln

(
A

s

[
ln
A

s

]a/φ)]2+(ν−2)/φ

.

From this the regular variation at zero of f ′
(
F
−1

(y)
)
follows:

lim
y↓0

f ′
(
F
−1

(xy)
)

f ′
(
F
−1

(y)
) = lim

t→∞

f ′
(
F
−1

(x/t)
)

f ′
(
F
−1

(1/t)
)

= x lim
t→∞

[
ln At

x

]−ν/φ [
ln
(
At
x

[
ln At

x

]ν/φ)]2+(ν−2)/φ

[lnAt]−ν/φ
[
ln
(
At [lnAt]a/φ

)]2+(ν−2)/φ

= x.

Hence, f ′
(
F
−1

(y)
)
∈ RV 0

1 . So that by the main theorem at given values of β and w

∂2D(p, p)

∂p2
i

∼ −β2f ′
(
F
−1
(

1

n

))
∼ β2φ2λ2/φ 1

n
[lnA+ lnn]−ν/φ

{
lnA+ lnn+

ν

φ
ln (lnA+ lnn)

}2+(ν−2)/φ

∼ β2φ2λ2/φ 1

n
(lnn)2−2/φ .
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Subsequently apply the same sandwich arguments as were used in the proof to Lemma 7 and

integrate out over the random taste for money and outside option. This gives

∂2D(p, p)

∂p2
i

∼ φ2λ2/φ 1

n
(lnn)2−2/φ E[β2]

The second order condition becomes

2D1 −
D

D1

D11 ∼ −2φλ1/φ 1

n
(lnn)1−1/φ E[β]

+
1/n

φλ1/φ 1
n

(lnn)1−1/φ E[β]
φ2λ2/φ 1

n
(lnn)2−2/φ E[β2]

= −2φλ1/φ 1

n
(lnn)1−1/φ E[β] + φλ1/φ 1

n
(lnn)1−1/φ E[β2]

E[β]

= −φλ1/φ 1

n
(lnn)1−1/φ 1

E[β]

{
2E[β]2 − E[β2]

}
= −φλ1/φ 1

n
(lnn)1−1/φ E[β]2 − var[β]

E[β]
.

The SOC is satisfied if the variance of the taste for money is smaller than the square of mean.�

68



Economic Science Institute Working Papers 

2013 
 

13-06 Sheremeta, R. Overbidding and Heterogeneous Behavior in Contest Experiments. 

 

13-05 Deck, C. and Porter, D. Prediction Markets in the Laboratory. 

 

13-04 Corgnet, B., Hernán-Gonzalez, R., Kujal, P., and Porter, D. The Effect of Earned vs. 

House Money on Price Bubble Formation in Experimental Asset Markets. 

 

13-03 Sheremeta, R. and Zhang, J. Three-Player Trust Game with Insider Communication. 

 

13-02 McCarter, M. and Sheremeta, R. You Can’t Put Old Wine in New Bottles: The Effect of 

Newcomers on Coordination in Groups. 

 

13-01 Corgnet, B., Hernan-Gonzalez, R., and Rassenti, S. Peer Pressure and Moral Hazard in 

Teams: Experimental Evidence. 

 

2012 

12-31 Thomas, C. An Alternating-Offers Model of Multilateral Negotiations. 

12-30 Mago, S., Sheremeta, R. and Yates, A. Best-of-Three Contest Experiments: Strategic 

versus psychological momentum. 

12-29 Bigoni, M., Camera, G. and Casari, M. Strategies of Cooperation and Punishment among 

Students and Clerical Workers. 

12-28 Camera, G. and Kim, J. Buyer's Equilibrium with Capacity Constraints and Restricted 

Mobility: A recursive approach. 

12-27 Camera, G., Casari, M., and Bigoni, M. Binding Promises and Cooperation Among 

Strangers. 

12-26 Schniter, E., Shields, T. and Dickhaut, J. Ageism & Cooperation. 

12-25 Gjerstad, S. and Smith, V. Balance Sheet Crises: Causes, Consequences and Responses. 

12-24 Gómez-Miñambres, J., Corgnet, B. and Hernán-Gonzalez, R. Goal Setting and Monetary 

Incentives: When Large Stakes Are Not Enough. 

12-23 Clots-Figueras, I., Hernán González, R., and Kujal, P. Asymmetry and Deception in the 

Investment Game. 

http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/thomas-alternating-offer-model.pdf
https://cascade.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-the-best-of-three-contest-experiments.pdf
https://cascade.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-the-best-of-three-contest-experiments.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/minambres-corgnet-gonzalez-goal-setting-and-monetary-incentives.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/minambres-corgnet-gonzalez-goal-setting-and-monetary-incentives.pdf


12-22 Dechenaux, E., Kovenock, D. and Sheremeta, R. A Survey of Experimental Research on 

Contests, All-Pay Auctions and Tournaments. 

12-21 Rubin, J. and Sheremeta, R. Principal-Agent Settings with Random Shocks. 

12-20 Gómez-Miñambres, J. and Schniter, E. Menu-Dependent Emotions and Self-Control. 

12-19 Schniter, E., Sheremeta, R., and Sznycer, D. Building and Rebuilding Trust with Promises and 

Apologies. 

12-18 Shields, T. and Xin, B. Higher-order Beliefs in Simple Trading Models. 

12-17 Pfeiffer, G. and Shields, T. Performance-Based Compensation and Firm Value: Experimental 

evidence. 

12-16 Kimbrough, E. and Sheremeta, R. Why Can’t We Be Friends? Entitlements, bargaining, and 

conflict. 

12-15 Mago, S., Savikhin, A., and Sheremeta, R. Facing Your Opponents: Social identification and 

information feedback in contests. 

12-14 McCarter, M., Kopelman, S., Turk, T. and Ybarra, C. Too Many Cooks Spoil the Broth: How the 

tragedy of the anticommons emerges in organizations. 

12-13 Chowdhury, S., Sheremeta, R. and Turocy, T. Overdissipation and Convergence in Rent-seeking 

Experiments: Cost structure and prize allocation rules. 

12-12 Bodsky, R., Donato, D., James, K. and Porter, D. Experimental Evidence on the Properties of the 

California’s Cap and Trade Price Containment Reserve. 

12-11 Branas-Garza, P., Espin, A. and Exadaktylos, F. Students, Volunteers and Subjects: Experiments 

on social preferences. 

12-10 Klose, B. and Kovenock, D. Extremism Drives Out Moderation. 

12-09 Buchanan, J. and Wilson, B. An Experiment on Protecting Intellectual Property. 

12-08 Buchanan, J., Gjerstad, S. and Porter, D. Information Effects in Multi-Unit Dutch Auctions. 

12-07 Price, C. and Sheremeta, R. Endowment Origin, Demographic Effects and Individual Preferences 

in Contests. 

12-06 Magoa, S. and Sheremeta, R. Multi-Battle Contests: An experimental study. 

12-05 Sheremeta, R. and Shields, T. Do Liars Believe? Beliefs and Other-Regarding Preferences in 

Sender-Receiver Games. 

http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/buchanan-wilson-intellectualproperty.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/buchanan-gjerstad-porter-information-effects-multi-unit-dutch.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-endowment-origin.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-endowment-origin.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Multi-Battle-Contests.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Shields-Do-Liars-Believe.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Shields-Do-Liars-Believe.pdf


12-04 Sheremeta, R., Masters, W. and Cason. T. Winner-Take-All and Proportional-Prize Contests: 

Theory and experimental results. 

12-03 Buchanan, J., Gjerstad, S. and Smith, V. There’s No Place Like Home. 

12-02 Corgnet, B. and Rodriguez-Lara, I. Are you a Good Employee or Simply a Good Guy? Influence 

Costs and Contract Design. 

12-01 Kimbrough, E. and Sheremeta, R. Side-Payments and the Costs of Conflict. 

2011 

11-20 Cason, T., Savikhin, A. and Sheremeta, R. Behavioral Spillovers in Coordination Games. 

11-19 Munro, D. and Rassenti, S. Combinatorial Clock Auctions: Price direction and performance. 

11-18 Schniter, E., Sheremeta, R., and Sznycer, D. Restoring Damaged Trust with Promises, Atonement 

and Apology. 

11-17 Brañas-Garza, P., and Proestakis, A. Self-discrimination: A field experiment on obesity. 

11-16 Brañas-Garza, P., Bucheli, M., Paz Espinosa, M., and García-Muñoz, T. Moral Cleansing and 

Moral Licenses: Experimental evidence. 

11-15 Caginalp, G., Porter, D., and Hao, L. Asset Market Reactions to News: An experimental study. 

11-14 Benito, J., Branas-Garz, P., Penelope Hernandez, P., and Sanchis Llopis, J. Strategic Behavior in 

Schelling Dynamics: A new result and experimental evidence. 

11-13 Chui, M., Porter, D., Rassenti, S. and Smith, V. The Effect of Bidding Information in Ascending 

Auctions. 

11-12 Schniter, E., Sheremeta, R. and Shields, T. Conflicted Minds: Recalibrational emotions following 

trust-based interaction. 

11-11 Pedro Rey-Biel, P., Sheremeta, R. and Uler, N. (Bad) Luck or (Lack of) Effort?: Comparing social 

sharing norms between US and Europe. 

11-10 Deck, C., Porter, D., and Smith, V. Double Bubbles in Assets Markets with Multiple Generations. 

11-09 Kimbrough, E., Sheremeta, R., and Shields, T. Resolving Conflicts by a Random Device. 

11-08 Brañas-Garza, P., García-Muñoz, T., and Hernan, R. Cognitive effort in the Beauty Contest Game. 

11-07 Grether, D., Porter, D., and Shum, M. Intimidation or Impatience? Jump Bidding in On-line 

Ascending Automobile Auctions. 

11-06 Rietz, T., Schniter, E., Sheremeta, R., and Shields, T. Trust, Reciprocity and Rules. 

http://www.chapman.edu/ESI/wp/Sheremeta-Winner-Take-All.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Winner-Take-All.pdf
http://www.chapman.edu/ESI/wp/Mon-Policy-Fin-Crises.pdf
http://www.chapman.edu/ESI/wp/Corgnet_GoodEmployeeOrGoodGuy.pdf
http://www.chapman.edu/ESI/wp/Corgnet_GoodEmployeeOrGoodGuy.pdf
http://www.chapman.edu/ESI/wp/Sheremeta_Side-PaymentsCostsofConflict.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Behavioral-Spillover.pdf
http://www.chapman.edu/ESI/wp/Munro-Rassenti_CombinatorialClockAuctions.pdf
http://www.chapman.edu/ESI/wp/Schniter-Sheremeta_RestoringDamagedTrust.pdf
http://www.chapman.edu/ESI/wp/Schniter-Sheremeta_RestoringDamagedTrust.pdf
http://www.chapman.edu/ESI/wp/Branas-Garza_Obesity.pdf
http://www.chapman.edu/ESI/wp/Branas-Garza_MoralCleansingandLicences.pdf
http://www.chapman.edu/ESI/wp/Branas-Garza_MoralCleansingandLicences.pdf
http://www.chapman.edu/ESI/wp/Porter_AssetMarketReactionsToNews.pdf
http://www.chapman.edu/ESI/wp/Branas-Garza_StrategicBehaviorSchellingDynamics.pdf
http://www.chapman.edu/ESI/wp/Branas-Garza_StrategicBehaviorSchellingDynamics.pdf
http://www.chapman.edu/ESI/wp/Porter-Rassenti-Smith_EffectofBiddingInformationAscendingAuctions.pdf
http://www.chapman.edu/ESI/wp/Porter-Rassenti-Smith_EffectofBiddingInformationAscendingAuctions.pdf
http://www.chapman.edu/ESI/wp/Schniter-Sheremeta-Shields_ConflictedMinds.pdf
http://www.chapman.edu/ESI/wp/Schniter-Sheremeta-Shields_ConflictedMinds.pdf
http://www.chapman.edu/ESI/wp/Sheremeta_BadLuckorLackofEffort.pdf
http://www.chapman.edu/ESI/wp/Sheremeta_BadLuckorLackofEffort.pdf
http://www.chapman.edu/ESI/wp/Deck-Porter-Smith_DoubleBubbles.pdf
http://www.chapman.edu/ESI/wp/Sherementa-Shields_ResolvingConflictsbyRandomDevice.pdf
http://www.chapman.edu/ESI/wp/Hernan-CognitiveEffortBeautyContestGame.pdf
http://www.chapman.edu/ESI/wp/Porter-Grether_IntimidationorImpatienceJumpBidding.pdf
http://www.chapman.edu/ESI/wp/Porter-Grether_IntimidationorImpatienceJumpBidding.pdf
http://www.chapman.edu/ESI/wp/Schniter-Sheremeta-Shields_TrustReciprocityandRules.pdf


11-05 Corgnet, B., Hernan-Gonzalez, R., and Rassenti, S. Real Effort, Real Leisure and Real-time 

Supervision: Incentives and peer pressure in virtual organizations. 

11-04 Corgnet, B. and Hernán-González R. Don’t Ask Me If You Will Not Listen: The dilemma of 

participative decision making. 

11-03 Rietz, T., Sheremeta, R., Shields, T., and Smith, V. Transparency, Efficiency and the Distribution 

of Economic Welfare in Pass-Through Investment Trust Games. 

11-02 Corgnet, B., Kujal, P. and Porter, D. The Effect of Reliability, Content and Timing of Public 

Announcements on Asset Trading Behavior. 

11-01 Corgnet, B., Kujal, P. and Porter, D. Reaction to Public Information in Markets: How much does 

ambiguity matter? 

2010 

10-23 Sheremeta, R. Perfect-Substitutes, Best-Shot, and Weakest-Link Contests between Groups. 

10-22 Mago, S., Sheremeta, R., and Yates, A. Best-of-Three Contests: Experimental evidence. 

10-21 Kimbrough, E. and Sheremeta, R. Make Him an Offer He Can't Refuse: Avoiding conflicts through 

side payments. 

10-20 Savikhim, A. and Sheremeta, R. Visibility of Contributions and Cost of Inflation: An experiment 

on public goods. 

10-19 Sheremeta, R. and Shields, T. Do Investors Trust or Simply Gamble? 

10-18 Deck, C.  and Sheremeta, R. Fight or Flight? Defending Against Sequential Attacks in the Game of 

Siege. 

10-17 Deck, C., Lin, S. and Porter, D. Affecting Policy by Manipulating Prediction Markets:  

Experimental evidence. 

10-16 Deck, C. and Kimbrough, E. Can Markets Save Lives? An Experimental Investigation of a Market 

for Organ Donations. 

10-15 Deck, C., Lee, J. and Reyes, J. Personality and the Consistency of Risk Taking Behavior:  

Experimental evidence.  

10-14 Deck, C. and Nikiforakis, N. Perfect and Imperfect Real-Time Monitoring in a Minimum-Effort 

Game. 

10-13 Deck, C. and Gu, J. Price Increasing Competition? Experimental Evidence. 

10-12 Kovenock, D., Roberson, B., and Sheremeta, R. The Attack and Defense of Weakest-Link 

Networks. 

http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/corgnet-hernan-rassenti-real-effort-real-leisure.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/corgnet-hernan-rassenti-real-effort-real-leisure.pdf
http://www.chapman.edu/ESI/wp/Corgnet-Hernan_DontAskMeIfYouWillNotListen.pdf
http://www.chapman.edu/ESI/wp/Corgnet-Hernan_DontAskMeIfYouWillNotListen.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-endowment-origin.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/sheremeta-endowment-origin.pdf
http://www.chapman.edu/ESI/wp/Porter-PublicAnnouncements.pdf
http://www.chapman.edu/ESI/wp/Porter-PublicAnnouncements.pdf
http://www.chapman.edu/ESI/wp/Porter-GoodNewsBadNews.pdf
http://www.chapman.edu/ESI/wp/Porter-GoodNewsBadNews.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Perfect-Substitutes.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-The_Best_of_Three.pdf
http://www.personeel.unimaas.nl/E-Kimbrough/
http://www.chapman.edu/ESI/wp/Kimbrough-Sheremeta-MakeHimAnOffer.pdf
http://www.chapman.edu/ESI/wp/Kimbrough-Sheremeta-MakeHimAnOffer.pdf
http://www.chapman.edu/ESI/wp/Savikhin-Sheremeta-VisibilityofContributions.pdf
http://www.chapman.edu/ESI/wp/Savikhin-Sheremeta-VisibilityofContributions.pdf
http://www.chapman.edu/ESI/wp/Sheremeta-Shields-DoInvestorsTrust.pdf
http://www.chapman.edu/ESI/wp/FightorFlight-Deck-Sherermeta.pdf
http://www.chapman.edu/ESI/wp/FightorFlight-Deck-Sherermeta.pdf
http://www.chapman.edu/ESI/wp/Porter_AffectingPolicyManipulatingPredictionMarkets.pdf
http://www.chapman.edu/ESI/wp/Porter_AffectingPolicyManipulatingPredictionMarkets.pdf
http://www.personeel.unimaas.nl/E-Kimbrough/
http://www.chapman.edu/ESI/wp/Deck-Kimbrough_CanMarketsSaveLives.pdf
http://www.chapman.edu/ESI/wp/Deck-Kimbrough_CanMarketsSaveLives.pdf
http://www.chapman.edu/ESI/wp/Deck_PersonalityConsistencyRiskTaking.pdf
http://www.chapman.edu/ESI/wp/Deck_PersonalityConsistencyRiskTaking.pdf
http://www.chapman.edu/ESI/wp/Deck_Real-TimeMonitoringMinimum-EffortGame.pdf
http://www.chapman.edu/ESI/wp/Deck_Real-TimeMonitoringMinimum-EffortGame.pdf
http://www.chapman.edu/ESI/wp/PriceIncreasingCompetition-Deck.pdf
http://www.chapman.edu/ESI/wp/Weakest%20Link%20Blotto-Sheremeta.pdf
http://www.chapman.edu/ESI/wp/Weakest%20Link%20Blotto-Sheremeta.pdf


10-11 Wilson, B., Jaworski, T., Schurter, K. and Smyth, A. An Experimental Economic History of 

Whalers’ Rules of Capture. 

10-10 DeScioli, P. and Wilson, B. Mine and Thine: The territorial foundations of human property. 

10-09 Cason, T., Masters, W. and Sheremeta, R. Entry into Winner-Take-All and Proportional-Prize 

Contests: An experimental study. 

10-08 Savikhin, A. and Sheremeta, R. Simultaneous Decision-Making in Competitive and Cooperative 

Environments. 

10-07 Chowdhury, S. and Sheremeta, R. A generalized Tullock contest. 

10-06 Chowdhury, S. and Sheremeta, R. The Equivalence of Contests. 

10-05 Shields, T. Do Analysts Tell the Truth? Do Shareholders Listen? An Experimental Study of 

Analysts' Forecasts and Shareholder Reaction. 

10-04 Lin, S. and Rassenti, S. Are Under- and Over-reaction the Same Matter? A Price Inertia based 

Account. 

10-03 Lin, S. Gradual Information Diffusion and Asset Price Momentum. 

10-02 Gjerstad, S. and Smith, V. Household Expenditure Cycles and Economic Cycles, 1920 – 2010. 

10-01 Dickhaut, J., Lin, S., Porter, D. and Smith, V. Durability, Re-trading and Market Performance. 

2009 

09-11 Hazlett, T., Porter, D., and Smith, V. Radio Spectrum and the Disruptive Clarity OF Ronald Coase. 

09-10 Sheremeta, R. Expenditures and Information Disclosure in Two-Stage Political Contests. 

09-09 Sheremeta, R. and Zhang, J. Can Groups Solve the Problem of Over-Bidding in Contests? 

09-08 Sheremeta, R. and Zhang, J. Multi-Level Trust Game with "Insider" Communication. 

09-07 Price, C. and Sheremeta, R. Endowment Effects in Contests. 

09-06 Cason, T., Savikhin, A. and Sheremeta, R. Cooperation Spillovers in Coordination Games. 

09-05 Sheremeta, R. Contest Design: An experimental investigation. 

09-04 Sheremeta, R. Experimental Comparison of Multi-Stage and One-Stage Contests. 

09-03 Smith, A., Skarbek, D., and Wilson, B. Anarchy, Groups, and Conflict: An experiment on the 

emergence of protective associations. 

http://www.chapman.edu/ESI/wp/Wilson_Whaling.pdf
http://www.chapman.edu/ESI/wp/Wilson_Whaling.pdf
http://www.chapman.edu/ESI/wp/Wilson_FoundationsProperty.pdf
http://www.krannert.purdue.edu/faculty/cason/
http://www.agecon.purdue.edu/staff/masters/
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/Winner-Take-AllContests-Sheremeta.pdf
http://www.chapman.edu/ESI/wp/Winner-Take-AllContests-Sheremeta.pdf
http://home.uchicago.edu/~savikhin/
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/SimultaneousDecision-Making-Sheremeta.pdf
http://www.chapman.edu/ESI/wp/SimultaneousDecision-Making-Sheremeta.pdf
http://www.chapman.edu/http:/www.uea.ac.uk/eco/people/All+People/Academic/smodakchowdhuryakchowdhury
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/GeneralizedTullockContest-Sheremeta.pdf
http://www.chapman.edu/http:/www.uea.ac.uk/eco/people/All+People/Academic/smodakchowdhuryakchowdhury
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/EquivalenceOfContests-Sheremeta.pdf
http://www.chapman.edu/ESI/wp/AnalystsTruthShareholdersListen.pdf
http://www.chapman.edu/ESI/wp/AnalystsTruthShareholdersListen.pdf
http://www.chapman.edu/ESI/wp/UnderreactionOverreaction.pdf
http://www.chapman.edu/ESI/wp/UnderreactionOverreaction.pdf
http://www.chapman.edu/ESI/wp/InformationDiffusionAssetPriceMomentum.pdf
http://www.chapman.edu/ESI/wp/Recessions_1929_2007.pdf
http://www.chapman.edu/ESI/wp/Dickhaut-Lin-Porter-Smith_durability.pdf
http://www.chapman.edu/ESI/wp/Porter-Smith-Hazlett-RadioSpectrum.pdf
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/PoliticalContests-Sheremeta.pdf
http://sites.google.com/site/romansheremeta/
http://univmail.cis.mcmaster.ca/~jjzhang/
http://www.chapman.edu/ESI/wp/Over-BiddingInContests-Sheremeta.pdf
http://sites.google.com/site/romansheremeta/
http://univmail.cis.mcmaster.ca/~jjzhang/
http://www.chapman.edu/ESI/wp/Multi-LevelTrustGame-Sheremeta.pdf
http://web.usi.edu/crprice/
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/EndowmentEffectsInContests-Sheremeta.pdf
http://www.krannert.purdue.edu/faculty/cason/
http://home.uchicago.edu/~savikhin/
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/CooperationSpilloversCoordinationGames-Sheremeta.pdf
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/ContestDesignExperimentalInvestigation-Sheremeta.pdf
http://sites.google.com/site/romansheremeta/
http://www.chapman.edu/ESI/wp/ComparisonOfContests-Sheremeta.pdf
http://www.chapman.edu/ESI/www.chapman.edu/ESI/wp/Wilson_AnarchyGroupsandConflict.pdf
http://www.chapman.edu/ESI/www.chapman.edu/ESI/wp/Wilson_AnarchyGroupsandConflict.pdf


09-02 Jaworski, T. and Wilson, B. Go West Young Man: Self-selection and endogenous property rights. 

09-01 Gjerstad, S. Housing Market Price Tier Movements in an Expansion and Collapse. 

2008 

08-09 Dickhaut, J., Houser, D., Aimone, J., Tila, D. and Johnson, C. High Stakes Behavior with Low 

Payoffs: Inducing preferences with Holt-Laury gambles. 

08-08 Stecher, J., Shields, T. and Dickhaut, J. Generating Ambiguity in the Laboratory. 

08-07 Stecher, J., Lunawat, R., Pronin, K. and Dickhaut, J. Decision Making and Trade without 

Probabilities.  

08-06 Dickhaut, J., Lungu, O., Smith, V., Xin, B. and Rustichini, A. A Neuronal Mechanism of Choice. 

08-05 Anctil, R., Dickhaut, J., Johnson, K., and Kanodia, C. Does Information Transparency 

Decrease Coordination Failure? 

08-04 Tila, D. and Porter, D. Group Prediction in Information Markets With and Without Trading 

Information and Price Manipulation Incentives. 

08-03 Thomas, C. and Wilson, B. Horizontal Product Differentiation in Auctions and Multilateral 

Negotiations.            

08-02 Oprea, R., Wilson, B. and Zillante, A. War of Attrition: Evidence from a laboratory experiment on 

market exit. 

08-01 Oprea, R., Porter, D., Hibbert, C., Hanson, R. and Tila, D. Can Manipulators Mislead Prediction 

Market Observers? 

http://www.chapman.edu/ESI/wp/Jaworski-Wilson_Gowestyoungman.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/Gjerstad_HPI_Tiers_2009_01.pdf
http://www.chapman.edu/ESI/wp/Dickhaut_InducingPreferences.pdf
http://www.chapman.edu/ESI/wp/Dickhaut_InducingPreferences.pdf
http://www.nhh.no/Default.aspx?ID=677
http://www.chapman.edu/ESI/wp/AmbiguityWP0410.pdf
http://www.nhh.no/Default.aspx?ID=677
http://www.brain.umn.edu/bios/Ovidiu_L.htm
http://www.rotman.utoronto.ca/facbios/viewFac.asp?facultyID=bxin
http://hhei.umn.edu/profile.php?UID=rusti001
http://www.chapman.edu/http:/www.csom.umn.edu/faculty-research/ckanodia/Chandra_S_Kanodia.aspx
http://www.chapman.edu/ESI/wp/Dickhaut_InfoTransparencyDecreaseCoordinationFailure.pdf
http://www.chapman.edu/ESI/wp/Dickhaut_InfoTransparencyDecreaseCoordinationFailure.pdf
http://www.ices-gmu.org/people.php/79208.html?menuid=
http://www.chapman.edu/ESI/wp/Porter_GroupPredictionInformationMarkets.pdf
http://www.chapman.edu/ESI/wp/Porter_GroupPredictionInformationMarkets.pdf
http://people.clemson.edu/~cjt/
http://www.chapman.edu/ESI/wp/Wilson_HorizontalDiff.pdf
http://www.chapman.edu/ESI/wp/Wilson_HorizontalDiff.pdf
http://people.ucsc.edu/~roprea/
http://www.belkcollege.uncc.edu/azillant/
http://www.chapman.edu/ESI/wp/WarofAttrition.pdf
http://www.chapman.edu/ESI/wp/WarofAttrition.pdf
http://people.ucsc.edu/~roprea/
http://hanson.gmu.edu/
http://www.ices-gmu.org/people.php/79208.html?menuid=
http://www.chapman.edu/ESI/wp/CanManipulatorsMisleadMarketObservers.pdf
http://www.chapman.edu/ESI/wp/CanManipulatorsMisleadMarketObservers.pdf

	The Impact of Competition on Prices with Numerous Firms
	Recommended Citation

	The Impact of Competition on Prices with Numerous Firms
	Comments

	tmp.1422673047.pdf.lO85H

