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resource-use traits predict native vs. exotic plant success 

in carbon amended soils? 

Robert J. Steers,1'3 Jennifer L. Funk, and Edith B. Allen1 

Department of Botany and Plant Sciences, and Center for Conservation Biology, University of California, 
Riverside, California 92521 USA 

School of Earth and Environmental Sciences, Chapman University, Orange, California 92866 USA 

Abstract. Productivity in desert ecosystems is primarily limited by water followed by 

nitrogen availability. In the deserts of southern California, nitrogen additions have increased 

invasive annual plant abundance. Similar findings from other ecosystems have led to a general 

acceptance that invasive plants, especially annual grasses, are nitrophilous. Consequently, 
reductions of soil nitrogen via carbon amendments have been conducted by many researchers 

in a variety of ecosystems in order to disproportionately lower invasive species abundance, but 

with mixed success. Recent studies suggest that resource-use traits may predict the efficacy of 

such resource manipulations; however, this theory remains largely untested. We report 

findings from a carbon amendment experiment that utilized two levels of sucrose additions 

that were aimed at achieving soil carbon to nitrogen ratios of 50:1 and 100:1 in labile sources. 

Carbon amendments were applied once each year, for three years, corresponding with the first 

large precipitation event of each wet season. Plant functional traits measured on the three 

invasive and 11 native herbaceous species that were most common at the study site showed 

that exotic and native species did not differ in traits associated with nitrogen use. In fact, plant 
abundance measures such as density, cover, and biomass showed that carbon amendments 

were capable of decreasing both native and invasive species. We found that early-germinating 

species were the most impacted by decreased soil nitrogen resulting from amendments. 

Because invasive annuals typically germinate earlier and exhibit a rapid phenology compared 
to most natives, these species are expected to be more competitive than native annuals yet 
more susceptible to early-season carbon amendments. However, desert annual communities 

can exhibit high interannual variability in species composition and abundance. Therefore, the 

relative abundance of native and invasive species at the time of application is critical to the 

success of carbon amendments at our study site. For land management purposes, carbon 

amendments remain relatively impractical and may only be useful at small scales or in 

conjunction with other invasive species removal techniques. 

Key words: Bromus madritensis; California (USA); competition; Erodium cicutarium; functional 
traits; invasive plants; Mojave Desert; nitrophilous; phenology; postfire; restoration; Schismus barbatus. 

Introduction forests (Ostertag and Verville 2002, Funk 2008), coastal 

sage scrub (Padgett and Allen 1999), and desert 

ecosystems (Brooks 2003, Allen et al. 2009). Thus, a 

decrease in nitrogen availability should reduce exotic 

species dominance and may enhance the growth of 

native vegetation (Perry et al. 2010). 

Invasive species often thrive in resource-rich environ 

ments (Sher and Hyatt 1999, Davis et al. 2000, Daehler 

2003, Theoharides and Dukes 2007). Anthropogenic 

changes to the global nitrogen (N) cycle through 

agriculture and the combustion of fossil fuels 

(Vitousek et al. 1997, Townsend et al. 2010) therefore 

have enormous consequences for the establishment and 

persistence of invasive species. Nitrogen additions have 

been found to stimulate the growth of exotic species in a 

number of systems, including grasslands (Huenneke et 

al. 1990, Blicker et al. 2002, Gross et al. 2005), tropical 

One promising treatment for native annual restora 

tion is the use of a soil carbon amendment. Adding 
carbon (i.e., sugar or sawdust) to the soil stimulates 

microbial growth, which immobilizes nitrogen in the 

new microbial biomass (Jonasson et al. 1996, Zink and 

Allen 1998, Corbin and D'Antonio 2004). As a result, 

less nitrogen in the form of N03 and NH4 is available 

for plant uptake (Wilson and Gerry 1995, Alpert and 

Maron 2000). The duration and degree to which carbon 

amendments alter inorganic N pools varies dramatically 

depending on the type of carbon utilized, and based on 

ecosystem characteristics such as species composition, 

climate, soil properties, and other variables (reviewed in 

Alpert 2010, Perry et al. 2010). Several studies have 

Manuscript received 16 December 2009; revised 23 August 
2010; accepted 3 September 2010. Corresponding Editor: K. K. 
Treseder. 

3 Present address: National Park Service, San Francisco 

Bay Area Network, Inventory and Monitoring Program, 
Building 1063 Ft. Cronkhite, Sausalito, California 94965 
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found that N availability can return to pre-amendment 

levels within one year after carbon amendments cease 

(Alpert 2010). Ideally, a carbon amendment would be 

most effective if it promoted low-N species that generate 

plant soil feedbacks that further increase immobilization 

(Perry et al. 2010). 

nitrophilous than native species, and (2) N immobiliza 

tion has an asymmetric impact on the cover of invasive 

and native plant species, affecting nitrophilous invasive 

grasses disproportionately more than native annuals. 

Because species with lower N requirements or more 

efficient use of N should have higher percent cover in 

carbon addition treatments, N-use traits may provide a 

predictive means of evaluating the utility of resource 

manipulation as a restoration strategy. 

Carbon additions have been used to reduce exotic 

species dominance in grasslands and old fields (Reever 

Morghan and Seastedt 1999, Blumenthal et al. 2003, 

Corbin and D'Antonio 2004, Suding et al. 2004, Bleier 

and Jackson 2007, Sanders et al. 2007) and coastal 

shrublands (Zink and Allen 1998, Alpert and Maron 

2000, Cione et al. 2002). Fewer studies have examined 

the efficacy of carbon additions in desert systems. In the 

Chihuahuan and Mojave deserts, carbon additions have 

been effective at increasing soil microbial immobiliza 

tion of inorganic nitrogen from interspace and under 

story soils (Gallardo and Schlesinger 1995, Schaeffer et 

al. 2003). To our knowledge, no studies have applied 
carbon additions to control invasive annuals in these 

deserts. Because nitrogen is limiting to desert annual 

plants only behind water (Gutierrez and Whitford 

1987), carbon amendments show promise as a useful 

treatment for this purpose (Grantz et al. 1998). 

In order for soil N manipulation to simultaneously 

exclude invasive species and promote native species, 
native and invasive species must differ in traits 

governing the use of N (Funk et al. 2008). Specifically, 

invasive species must have a higher N requirement and 

lower carbon assimilation per unit of N (nitrogen use 

efficiency, NUE). Many studies support the idea that 

invasive species are more nitrophilous than natives 

(Huenneke et al. 1990, Burke and Grime 1996, Davis 

et al. 2000, Daehler 2003, Suding et al. 2004, Gross et al. 

2005), and there has been much work showing that 

natives adapted to resource-poor environments display 

resource conservation traits, such as slow growth, low 

tissue nutrient content, and low rates of carbon 

assimilation and transpiration (Chapin 1980, Vitousek 

1982, Coley et al. 1985). These findings lead to the 

prediction that native species that require lower amounts 

of nitrogen should be less affected by carbon addition 

treatments than nitrophilous invasive species. However, 

few studies have utilized trait data from invasive and 

native species for the purpose of directing ecological 
restoration in invaded systems (Brudvig and Mabry 

2008, Wolters et al. 2008, Funk and McDaniel 2009), 

particularly with respect to resource-use traits. 

In this study, we lowered soil N availability via carbon 

amendments to assess the efficacy of this technique as a 

restoration tool in a desert ecosystem dominated by 

annual species. We also evaluated a number of plant 

traits pertaining to N acquisition and use by three 

dominant invasive species and 11 native species. Because 

previous work has shown that N additions in this system 
stimulate the growth of exotic species (Brooks 2003), we 

hypothesized that (1) native and invasive species have 

different N-use traits with invasive species being more 

We conducted our study in a southern California 

desert shrubland that has elevated soil nitrogen due to 

recent fire (Raison 1979) and exposure to anthropogenic 

nitrogen deposition (Fenn et al. 2003, Tonnesen et al. 

2007, Rao et al. 2009). Increasing soil nitrogen has been 

shown to promote exotic annual grasses over native 

desert forbs (Brooks 2003, Rao and Allen 2010). 

Therefore, decreasing soil nitrogen with carbon amend 

ments should significantly reduce short-lived nitrophi 

lous (nitrogen-loving) plants, such as exotic annual 

grasses, and consequently promote native desert species, 

which are thought to be adapted to low soil nitrogen 

(Brooks 2003). 

Methods 

The study site was located in burned creosote bush 

scrub at Big Morongo Canyon Preserve (BMCP) in 

Morongo Valley, San Bernardino County, California, 

USA. The area receives 5-10.5 kgha^-yr-1 of anthro 

pogenic N deposition according to modeled values 

(Tonnesen et al. 2007, Rao et al. 2009). This site burned 

in June 2005 in a lire that was primarily fueled by the 

invasive annual grass, Bromus madritensis ssp. rubens 

(red brome). BMCP is located on the western edge of the 

Little San Bernardino Mountains and is in a transitional 

zone between the Mojave Desert to the north and the 

Sonoran (Colorado) Desert to the south. The elevation 

is ~780 m. Soils are loamy and contain no carbonates 

(R. J. Steers, unpublished data). Average precipitation in 

the adjacent town of Morongo Valley is 19.6 cm with 

average snowfall of 8.4 cm. About 85% of average 

precipitation occurs from October through April 

(WRCC 2010). Precipitation in the 2004-2005 wet 

season, which preceded this study, was one of the 

highest on record. No data were available from the 

study site in Morongo Valley but from Palm Springs, 
~12 km to the south, winter precipitation (October 

through April) was 281% of normal (WRCC 2010). 

Precipitation during the experiment was 15.6, 1.2, and 

18.9 cm from October through April during the first 

three seasons (2005-2006, 2006-2007, and 2007-2008) 

following the fire in June 2005, based on a weather 

station at BMCP. No snowfall was recorded during this 

period and summer precipitation was scant (Fig. 1). 

In the first postfire wet season (2005-2006), precipi 

tation was slightly below average and irregularly 

distributed, with occasional long rain-free periods in 

December and January (Fig. 1). In the second season 

(2006-2007), little rain fell so that no annual plants 
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May 2007 

Fig. 1. Precipitation during the experiment in the Big Morongo Canyon Preserve, California, USA. The x-axis starts on 1 May 
2005 and stops on 30 April 2008. The date of the June fire is indicated (FIRE), as are the dates when carbon addition treatments (c) 
were applied coinciding with the first storm of each wet season, and the dates when soils were sampled (s) for microbial biomass 

and/or nutrients. 

germinated. In the third season (2007-2008), the amount 

of precipitation was average but it occurred almost 

entirely within December and January (Fig. 1). Exotic 

annual grasses were especially abundant in the first year 
of this study, possibly benefiting from the high rainfall 

of the preceding season. However, by the third year, 
exotic annual grasses were less abundant. Native 

annuals on the other hand, were less common in the 

first season but more abundant in the third season. For 

additional information about the study site and its 

climate see Steers and Allen (2009). 

Experimental design 

Twelve blocks were placed within the burned creosote 

bush scrub community using a stratified random 

sampling scheme. Each block contained three sampling 
units where a control and two carbon addition 

treatments were assigned using a randomized block 

design. Sample units were placed in areas with flat 

terrain (0-5°) that were mostly interspace (devoid of 

shrubs) before the fire to avoid heterogeneity due to 

fertile islands (Adams et al. 1970, Titus et al. 2002). Each 

sampling unit contained two plots; one was 1.5 X 1.5 m2 

and the other was 1.5 X 0.75 m2 (Fig. 2). Within each 

plot, a single 1 X 0.5 m2 quadrat (sampling frame) was 

placed inside, allowing for at least a 10-cm buffer with 

each plot edge. This quadrat was used to nondestruc 

tively sample vegetation cover by species and was 

permanently demarcated using wooden stakes placed 

on the outside of the quadrat. Within each 1 X 0.5 m2 

quadrat, an unmarked, relatively small quadrat (0.5 X 

0.25 m2) would be placed in the middle to nondestruc 

tively sample plant density by species each year. All 

other areas within the larger plot, but outside of the 1 X 

0.5 m quadrat and its buffer, were treated identically 

(same amount of carbon amendment) but sampled/ 
harvested destructively for plant biomass and soil 

throughout the experiment (Fig. 2). Any time plant 

biomass or soils were collected, the area destroyed was 

marked so that future sampling would avoid the 

disturbed area (Fig. 2). 

Sucrose was chosen as the carbon amendment because 

it is labile and rapidly available to soil microbes (Shaban 
et al. 1998, Magill and Aber 2000). Furthermore, desert 

systems are characterized as being highly pulsed, where 

biological processes are tightly coupled to precipitation 
events (Noy-Meir 1973, Vishnevetsky and Steinberger 

1997, James et al. 2006). Thus, the labile nature of 

sucrose is ideal for use in this system. Another reason 

why we chose sucrose was because it does not add 

persistent organic matter to desert soils. Organic matter 

and decomposition rates are both low in arid ecosystems 

(Nash and Whitford 1995, Murphy et al. 1998) so using 
a more recalcitrant carbon amendment, like sawdust or 

mulch, could alter soil properties in an undesirable way. 
Two sucrose levels were used to achieve a soil carbon 

to nitrogen ratio of 50:1 (carbon) and 100:1 (high 

carbon) based on labile sources of C and N (N03~ and 

o 

1.5 m 1.5 m 

Fig. 2. Schematic of a sampling unit. Each sampling unit 
contained two plots where the same treatment was applied to 
the entire area. In the large plot (1.5 X 1.5 m ), half of the space 
(black) was used to harvest soil and plant biomass. The other 
half of the large plot in addition to the smaller plot (0.75 X 1.5 

m2) were used to nondestructively sample plant cover in 0.5 X 1 
m2 quadrats (diagonal-hatch rectangle) and plant density in 
0.25 X 0.5 m2 quadrats (gray rectangle). White spaces around 
the larger quadrat represent buffer areas. 
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Table 1. Bulk density, inorganic nitrogen, and the calculated 
carbon amounts that were applied to plots in the Big 
Morongo Canyon Preserve, California, USA. 

added to result in an addition of 230 g of carbon, given 
that 42% of sucrose is carbon by mass. Bulk density, 

inorganic nitrogen, and the calculated carbon amounts 

that were applied to 100:1 and 50:1 large plots for each 

year are listed in Table 1. 

Year Bulk density Inorganic Carbon applied 
applied (g/cm3) nitrogen (ppm) (g C/2.25 m2) 

Carbon high (100:1 labile C:N) 
2005 1.27 16.1 547.6 
2006 1.51 9.4 381 
2007 1.36 6.7 242.6 

Carbon low (50:1 labile C:N) 
2005 1.27 16.1 273.8 
2006 1.63 9.2 200.8 
2007 1.43 8.2 157.4 

Note: Data are summer dry season bulk density and 

inorganic nitrogen (N03~ plus NH4+) and the corresponding 
amount of sucrose applied at the beginning of each wet season 

(see Fig. 1 for dates) to achieve "labile" C:N ratios of 100:1 

(carbon high) and 50:1 (carbon low) for large plots (150 cm 

height X 150 cm width x 5 cm depth). 

NH4+). Hence, this is a "labile C:N" approach and was 

not meant to actually achieve C:N ratios of 50:1 and 

100:1 based on soil total C and total N. Also, any labile 

C pools in the soil were not taken into consideration 

when calculating the amount of sucrose to add. 

However, we assumed that labile C pools would be very 
low considering that soil OM is —0.4% in unburned 

shrub interspaces (E. B. Allen, unpublished data). 

The amount of sucrose needed to achieve the two 

treatment ratios was calculated based on the atomic 

mass of inorganic N, in the form of N03" and NH4+ 
that was measured from the soil during the end of the 

summer dry season in 2005. Before the first postfire wet 

season started, soil samples were taken up to a 5 cm 

depth in control plots. Three soil cores were pooled per 

sample and six samples were taken, one for every odd 

block. Soil cores had a diameter of 2.5 cm. Three larger 
cores with a diameter of 5 cm were also taken up to 5 cm 

depth to determine soil bulk density. For bulk density, 
three blocks were chosen randomly, and only one core 

per control plot per block was sampled. Sampling was 

done at the end of each summer dry season and samples 
were taken to University of California-Riverside for 

N03~ and NH4+ analyses on a Technicon Autoanalyzer 
II continuous flow analyzer (Technicon Instruments, 

Tarrytown, New York, USA). 
Based on bulk density, the amount of inorganic 

nitrogen (NC>3~ plus NH4+) present in the control soils 

was determined by volume. Then, the amount of sucrose 

needed to achieve labile 50:1 and 100:1 carbon to 

nitrogen ratios was determined based on the amount of 

inorganic nitrogen found per volume of soil and the 

atomic mass of C in sucrose. For example, to calculate 

the amount of carbon required to produce a labile 100:1 

carbon to nitrogen ratio in the upper 5 cm of soil in a 

150 X 150 cm plot with soil bulk density at 1.27g/cm3 

(142 875 g of soil) and inorganic nitrogen levels at 16.1 

ppm (2.3 g of inorganic nitrogen), 547.6 g of sucrose was 

For the second and third wet seasons, the same 

procedure was performed except soils were collected 

from both the 50:1 and 100:1 plots because inorganic N 

in the treatment plots had diverged from control levels. 

The same plots were treated three years in a row to 

achieve 50:1 and 100:1 labile C:N ratios in the upper 5 

cm of soil at the beginning of each wet season. Sucrose 

was applied once a year in carbon addition plots during 
or within 24 hours of the first major precipitation event 

of each wet season. In the second wet season (2006 

2007), the first storm was weaker than predicted and 

supplemental water had to be added to dissolve the 

sugar into the soil, but the same amount of water was 

applied to both carbon amendment treatments and to 

the control plots. However, further storms this season 

were all weak and no annual plants ever germinated. 
Soil measures and amounts of sucrose applied in 

treatments were based on conditions in the top 5 cm 

of soil. This was done because about 90-95% of 

propagules are found within this depth (Young and 

Evans 1975, Guo et al. 1998), many annual species 
cannot germinate from depths >1 to 2.5 cm (Freas and 

Kemp 1983, Pake and Venable 1996), and the goal was 

to reduce soil nitrogen when annuals were germinating 
and in an early stage of development because the impact 
to invasive grasses would be greater at this time rather 

than at a later phenological stage (Beckstead and 

Augspurger 2004). 

Soil and vegetation sampling 

Following the first rainstorm of each wet season, 

additional soil sampling was carried out once a month to 

once every two months (see Fig. 1) until peak flowering 
in spring to document soil and microbial responses to 

the carbon amendments. When soil was sampled after 

the treatments were implemented during the first 

rainstorm of the first season (2005-2006), no significant 
differences in N03_, NH4+, and microbial biomass N 

were found when comparing even vs. odd blocks; thus 

future soil sampling sessions were reduced to only collect 

soils from alternating even and odd blocks. Soil 

sampling consisted of collecting three to four cores at 

5 cm depth per plot that were pooled into one sample for 

analyses. Soils collected during these sampling cam 

paigns were measured for N03~, NH4+, and microbial 

biomass N on a Technicon Autoanalyzer II continuous 

flow analyzer using a K2S04 extraction solution as 

described in Sirulnik et al. (2007). In the second season, 

precipitation was very low and no plants germinated. 

Thus, soils were only sampled in April, coinciding with 

the typical period when most native annual plants are in 

full bloom at the study site. 
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Throughout the first and third seasons, plant cover 

was regularly measured from the control treatment from 

one of the two plots per block. In the second season, no 

vegetation sampling was performed because no plants 

germinated. For the first and the third seasons, the first 

sampling date occurred five days after the first storm in 

October and December, respectively, and sampling 
continued in the same plots monthly (excluding 

March) until peak flowering, which was in April for 

both seasons. These data were used to track changes in 

invasive grass, invasive forb, and native annual cover 

throughout each growing season. For the purposes of 

this study, peak flowering is defined as the approxi 

mately two to three week period in the spring where the 

highest number of native annual species are in bloom. 

Photosynthetic capacity (A, |imol-m~2-s_1), transpira 
tion rates (E, mol-m~2-s_1), stomatal conductance (gs, 

mol-m~2-s-1), and chlorophyll fluorescence were mea 

sured with a LI-6400 portable photosynthesis system 
with a fluorescence chamber (LI-COR, Lincoln, 

Nebraska, USA). All measures were conducted at 

saturating light levels (1900 (xmol photonm~2-s_1), at 

400 (J.L/L C02 and under ambient conditions of 

humidity (40-60%) and temperature (26-28°C). The 

effective quantum yield of PSII (<I>PSII) was calculated 

as (Fm> 
— 

Fs)/Fm>, where Fs is the fluorescence yield of a 

light-adapted leaf and Fm< is the maximal fluorescence 

during a saturating light flash. Water use efficiency 

(WUE) was calculated as the ratio of photosynthesis to 

transpiration at 1900 |j.mol photon-m~2 s~'. 

At peak flowering in April of both the first and third 

seasons, several other vegetation parameters were 

measured but from all three treatments and in all plots. 
Within plots, a 0.5-m2 (100 X 50 cm2) quadrat was used 

to collect percent cover by species. In the middle of this 

quadrat, a 0.125-m2 (50 X 25 cm2) quadrat was placed to 

measure density by species (Fig. 2). Plant cover and 

density were measured from the same permanently 
marked areas year after year. Biomass was also collected 

using a 0.125-m2 quadrat but these samples were 

harvested outside of the 0.5-m2 quadrat in an area 

designated for destructive sampling. Biomass was only 
collected for three species, the most dominant exotic 

annual grass (Schismus barbatus), exotic annual forb 

{Erodium cicutarium), and native annual forb 

{Chaenactis fremontii). Biomass was never collected 

from areas that had been previously clipped for biomass 

or disturbed by soil sampling. Reported biomass values 

were scaled up to grams per square meter following 
methods used in Steers and Allen (2009). 

Trait measurements 

In February 2008, we measured physiological and 

morphological traits on 11 native (see Appendix A) and 

three invasive species (Bromus madritensis, Schismus 

barbatus, Erodium cicutarium) just outside of the 

sampled plots (n = 5-10 individuals per species). We 

examined physiological (photosynthetic rate, quantum 

yield, stomatal conductance, water use efficiency, 

photosynthetic nitrogen use efficiency, leaf N content) 
and morphological (leaf mass per area, leaf thickness, 
ratio of root to shoot biomass) traits that capture species 
differences in the acquisition and use of water and 

nitrogen. The selected traits were chosen based on (1) 
their relevance to plant fitness across a soil nitrogen 

gradient in this arid system (e.g., Chapin 1980, Gulmon 

and Chu 1981, Reich et al. 1989, Aerts and Chapin 2000, 

Schwinning and Ehleringer 2001, Westoby et al. 2002) 

and (2) practicalities in their collection and measurement 

(e.g., hydraulic traits could not be easily measured on 

these short-statUred annuals with small leaves). 

Sampling in February allowed us to survey traits near 

peak plant biomass, just before flowering. 

Following physiological measurements, we measured 

leaf thickness with digital calipers. Leaves were then 

collected, scanned to determine leaf area, dried at 65°C 

for 3 d, and weighed to determine leaf mass per area 

(LMA, g/m2). Leaves were ground to pass a 40 mesh 

screen and were analyzed for leaf N content with an 

elemental analyzer (CE Instruments Flash EA 1112; CE 

Elantech, Lakewood, New Jersey, USA). Photosynthetic 

nitrogen use efficiency (PNUE) was calculated as the 

ratio of photosynthesis to leaf N. All physiological and 

morphological measurements were conducted on recent 

ly mature leaves. 

All plants were harvested and separated into 

above- and belowground biomass. To minimize fine 

root loss, roots were carefully separated from soil and 

washed. All material was dried and weighed to 

determine the ratio of root to shoot biomass (R:S). 

Data analysis 

Soil data included nitrate, ammonium, and microbial 

biomass N. Vegetation data included cover and density 

by species, native annual plant species richness, and 

biomass measures for the most abundant invasive grass, 
invasive forb, and native annual plant. Cover and 

density data from the two quadrats per sampling unit 

were averaged so that n = 12 for all vegetation analyses. 
Soil samples were taken on even or odd plots at each 

sampling time so n = 6 for all soil analyses. Soil and 

vegetative response to treatments were statistically 

analyzed using one-way ANOVA with least significant 
difference (LSD) tests. Data were transformed using 
arcsine square-root(x) for cover, square-root(x + 0.5) 
for density and species richness, and logio(x + 1) for 

biomass and soil nutrients when they would improve 

normality based on goodness-of-fit tests. 

Pearson product-moment correlation coefficients were 

generated to evaluate the linear association between 

traits and log-transformed percent cover across treat 

ments. Differences in trait values across species were 

analyzed with ANOVA, and post hoc comparisons were 

analyzed by Tukey's honestly significant difference. 

Following Moran (2003), sequential Bonferroni correc 

tions for multiple statistical tests were not conducted. A 

This content downloaded from 206.211.139.204 on Fri, 20 Feb 2015 18:37:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1216 ROBERT J. STEERS ET AL. Ecological Applications 
Vol. 21, No. 4 

Control -» Carbon (50:1) -o Carbon high (100:1) 

= A) Microbial biomass N 
8 1201 

J? 100 
O) 80 

i« 

& 
40 

o 20 

B) Extractable inorganic nitrate 

C) Extractable inorganic ammonium 

2005 2006 2007 2008 

Fig. 3. (A) Soil microbial biomass N, (B) nitrate-N, and 

(C) ammonium-N for all three treatments (control, and labile 
C:N ratios of 50:1 and 100:1) throughout the experiment; values 
are mean ± SE. See Fig. 1 to correspond sampling times with 

precipitation, carbon addition dates, and season. Asterisks 
indicate significant differences between treatments per sample 
time based on ANOVA. Differences in letters between 
treatments within the same sampling time indicate significant 
differences based on LSD tests. For some sample times, 
ANOVA was not significant at a = 0.05, while the LSD test was. 

* P < 0.05. 

descriptive multivariate analysis was conducted on 

standardized trait values using principal components 

analysis (PCA). Trait data that violated the ANOVA 

assumptions of normality and homogeneity of variance 

were Box-Cox transformed. All statistical analyses were 

performed using JMP 8 (SAS Institute, Cary, North 

Carolina, USA). 

Results 

Soils 

In general, soil microbial biomass appeared to 

respond to rainfall, where growth was stimulated by 

precipitation, specifically the first large storm event after 

the hot, dry summer, and subsequently contracted, 

especially in dry periods (Figs. 1 and 3). Between 

treatments, soil microbial biomass in 100:1 carbon 

amended soils usually differed significantly from the 

control. In general, microbial biomass in 50:1 carbon 

amended soils paralleled the 100:1 treatment but differed 

from the control less frequently. However, this was not 

always the case and at two points during the first season, 

the carbon amendments differed more from each other 

while microbial biomass in control plots was in-between 

the two carbon amendments. At other times, the 50:1 

carbon amended soils were more different from the 

control than the 100:1 amended soils, and sometimes, 

there were no statistical differences, such as at the end of 

the third season (Fig. 3). As expected, five days after the 

first rainstorm of 2005-2006, microbial biomass in 

creased greatly in the 100:1 carbon treatment. 

Consequently, nitrate (N03~) and ammonium (NH4+) 

were both significantly lower than the control at this 

time (Fig. 3). Invasive annual grass cover was also 

significantly lower in 100:1 treated plots compared to 

control plots at this early-sampling time, and continued 

to remain lower throughout the rest of the first wet 

season (R. J. Steers, unpublished data). 

In general, soil microbial biomass was elevated in 

carbon amended treatments immediately following the 

first rain of each season (not measured in second season 

[2006-2007]). However, when this parameter was 

measured at other times during each year, microbial 

biomass was usually lower than the control (Fig. 3), 

which might be due to contractions during dry periods. 

For example, besides a small storm that produced <1 

mm of precipitation in December of 2005, there was a 

72-d period with no precipitation following the first rain 

of the 2005-2006 wet season (Fig. 1). This drought 

period seemed to affect soil microbial N in the 100:1 and 

50:1 treatments more than in the control. For example, 
soil microbial N in the 100:1 treatment dropped greatly 

and persisted at a lower level than the control, often 

significantly lower for most of the wet season following 

this drought (Fig. 3). 
As expected, soil N03~ and NH4+ concentration were 

lower in both carbon amended treatments compared to 

the control (Fig. 3). This pattern was especially evident 

during the first season but was also apparent in the 

beginning of the third season. Soil N03~ and NH4+ 

concentration were typically lower in the carbon high 

(100:1) compared to the carbon (50:1) treatment, but not 

always. Most importantly, the carbon high treatment 

was effective at reducing both N03" and NH4+ at the 

beginning of the two growing seasons when precipita 

tion was great enough for annual plants to germinate. 

Changes to total C and N due to carbon amendments 

were never detected during this study, with values in 

control plots of 0.7% ± 0.03% total soil C (mean ± SE) 

and 0.1% ± 0.00% total N (R. J. Steers, unpublished 

data). 

Vegetation 

In the first postfire wet season (2005-2006), invasive 

grasses (mostly Schismus barbatus) germinated immedi 
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carbon amended plots (50:1 and 100:1) compared to 

control at the end of the first season (Table 2, Fig. 5). 
Carbon amended plots did not alter invasive forb cover, 

density, or biomass in the first season nor native annual 

plant richness, cover, and biomass (Table 2, Fig. 5). 

However, because the carbon amendments decreased 

invasive annual grasses, especially in the high carbon 

(100:1) treatment, the relative cover of native annuals 

was greater than in the control treatment (Fig. 6). 

Likewise, where treatments had reduced invasive grass 

abundance, cover of bare ground increased greatly 

(Table 2). 
Unlike the first season, in the third postfire wet season 

(2007-2008) native annuals germinated first and invasive 

forbs were also relatively abundant at an early point. 
Other differences in species specific abundance across 

treatments were also noticeable in this season compared 
to the first (Appendix B). In the third season, invasive 

grasses did not dominate until about half-way through 
the season (Fig. 4). Consequently, invasive and native 

species in treatments responded differently than in the 

first season. As expected, invasive grass cover, density, 
and biomass were again lower in carbon amended plots 

compared to control. However, several measures of 

invasive forb and native annual abundance were also 

lower in carbon amended soils (Table 2, Fig. 5). Unlike 

the first season, invasive forb cover was lower in the 

100:1 amended plots compared to control (Fig. 5) and 

invasive forb biomass was lower in both carbon 

amended plots compared to control (Table 2). Native 

annual plants were also negatively affected by the 

carbon amendments in the third season. Native richness, 

cover, density, and biomass were all lower in both 

carbon amended plots compared to control (Table 2, 

Fig. 5). Because carbon amendments reduced all plant 

groups in the third season (Fig. 5), relative cover and 

Fig. 4. Line graphs portray the absolute cover (mean ± 

SE) of invasive grass, invasive forb, and native annuals from 
control plots throughout the first (2005-2006) and third (2007 
2008) wet seasons. Pie charts above points represent the average 
relative cover of each of the three annual plant categories at 

respective sampling times. 

ately following the first precipitation event and were 

more abundant than invasive forbs and native annuals 

during the entire season (Fig. 4). As expected, invasive 

grass cover, density, and biomass were lower in both 

Table 2. Average vegetation and soil parameters by treatment (control, and labile C:N ratios of 50:1 and 100:1) and year 
measured at the end of each wet season (April). 

Parameter 

Control Carbon (50:1) High carbon (100:1) 

2006 2008 2006 2008 2006 2008 

Native richness (no. spp./0.5 m2) 3.5 5.9a 3.8 4.2b 3.1 4.7ab 
Density (no./m2) 

Invasive grass 1628a 3179" 1405ab 1764b 969B I600b 
Invasive forb 4 44 5.6 32.8 4.8 26.4 
Native 41.6ab 232 80.8a 123.2 19.2b 89.6 

Relative density (%) 
Invasive grass 96 91.6 91.1 90.6 97 92.7 
Invasive forb 0.3 1.5 0.6 2.3 0.5 1.6 
Native 3.8 7 8.3 7.2 2.6 5.7 

Biomass (g/m2) 
Schismus 125.5a 118a 24 B 

23.5b 19.28 13.6b 
Erodium 4.3 14.la 5.6 2.4b 7.3 1.9b 
Chaenactis 18.5 74.2a 21.9 10.9b 15 11.9b 

Bare ground cover (%) 29.5A 25.3a 54.3® 73.6b 60.9B 75.8b 

Notes: Different superscript letters indicate significant differences between treatments within years, based on LSD tests. 
Uppercase superscripts are used for 2006, and lowercase for 2008. 
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Fig. 5. Absolute cover (mean + SE) of annual vegetation: 
invasive grass, invasive forb, and native annuals at end of the 
wet season (April) by treatment in the (A) first and (B) third 

year. If significant differences between treatments for each 

species group exist, they are indicated by different letters. 
Differences were determined based on ANOVA and LSD tests 
at a = 0.05. 

relative density of invasive annual grasses, forbs, and 

native annuals were not different between treatments 

(Table 2, Fig. 6). 

Trait data 

A PCA was conducted using traits that reflect water 

and nitrogen use (Fig. 7). Axis 1 separated species based 

on carbon assimilation (A, OPSII, PNUE). Axis 2 was 

associated with water use (R:S, WUE). Overall, the two 

axes explained 57.8% of the variance among species. The 

three invasive species (Bromus madritensis ssp. rubens, 

Schismus barbatus, Erodium cicutarium) had lower 

photosynthetic function than many native species (Fig. 

7). Relative to all other species, S. barbatus had thin 

leaves, low LMA, and low leaf N content (Appendix A). 

Bromus madritensis had relatively low leaf N content 

and very low PNUE (Appendix A). 

Few traits significantly correlated with percent cover 

(Table 3). In 2006 and 2008, the efficiency of 

Photosystem II (<t>PSII), a measure of light-use efficien 

cy, was negatively correlated with percent cover in most 

treatments. In 2006, LMA was negatively correlated 

with percent cover in the control treatment. When S. 

barbatus, which had the highest percent cover in both 

the first and third seasons, was excluded from the 

analysis, WUE was strongly correlated with percent 

cover in all three treatments in both years (data not 

shown). Nitrogen-use traits (leaf N content, PNUE) did 

not correlate with percent cover in any treatment, even 

when S. barbatus was removed from the analysis. 

In the first season (2005-2006), plant species that were 

less adversely affected by carbon amendments (positive 

or small decrease in percent cover in the 50:1 treatment 

relative to control) had high LMA and WUE (Fig. 8). In 

the third season (2007-2008), species with high leaf N 

content displayed smaller reductions in percent cover in 

the 50:1 treatment relative to the control (Fig. 8); 

however, this pattern was driven by the legume Lupinus 

bicolor. 

Discussion 

Do traits predict the success of resource manipulation? 

We hypothesized that carbon amendments would 

reduce invader biomass based on previous work that 

demonstrated invasive species are more nitrophilous 

than native species. In contrast, two of the three invasive 

species examined (Bromus madritensis, Schismus barba 

tus) had low N content. This suggests that they did not 

require large amounts of N, or were less sensitive to 

changes in N availability, which supports results from 

another study of B. madritensis (DeFalco et al. 2003). 

Thus, our second hypothesis that carbon amendments 

will disproportionately decrease the performance of 

exotic annual grasses does not follow. Nevertheless, 

compared to Erodium cicutarium and native forbs, we 

did observe a large relative decrease in exotic annual 

grass cover, density, and biomass in response to carbon 

CH Invasive grass 
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Fig. 6. Relative cover (mean + SE) of annual vegetation: 
invasive grass, invasive forb, and native annuals at the end of 
the wet season (April) by treatment in the (A) first and (B) third 

year. If significant differences between treatments for each 

species group exist, they are indicated by different letters. 
Differences were determined based on ANOVA and LSD tests 
at a = 0.05. 
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Fig. 7. PCA results for functional traits from three invasive 
and 11 native species. Carbon assimilation (/lmax, <J>PSII, 
PNUE) and water use (R:S, WUE) traits accounted for 
38.6% and 19.2%, respectively, of the variation among species; 
<J>PSII is the effective quantum yield of Photosystem II, WUE is 
water use efficiency, and PNUE is photosynthetic nitrogen use 

efficiency. The three invasive species clustered together primar 
ily based on low photosynthetic function, but Bromus 
madritensis (brma) and Schismus barbatus (scba) had low R:S 
and moderately low WUE. Other species abbreviations are as 
follows: Dichelostemma capitatum (dica), Chaenactis fremontii 
(chfr), Erodium cicutarium (erci), Pectocarya linearis (peli), 
Camissonia pallida (capa), Lupinus bicolor (lubi), Lepidium 
lasiocarpum (lela), Lotus strigosus (lost), Camissonia californica 
(caca), Salvia columbariae (saco), Calyptridium monandrum 

(camo), and Cliorizanthe brevicornu (chbr). 

amendments in the first season. In the third season, 

exotic annual grasses were again impacted, but so were 

all other species groups. Therefore, traits other than N 

use such as WUE and germination timing may 
determine the success of desert annuals in resource 

manipulation contexts. 

While S. barbatus was adversely affected by carbon 

amendments, some plant species were not as severely 

impacted by this manipulation. In the first season, 

species with high LMA and WUE had higher percent 
cover in 50:1 plots relative to control plots. Plant species 

occurring in arid regions can increase WUE by investing 

more resources in the photosynthetic machinery located 

in the mesophyll cells to draw down intercellular C02 

concentrations and reduce transpiration loss (Westoby 

et al. 2002). Larger amounts of mesophyll tissue and 

photosynthetic enzymes can result in increased LMA 

and N, respectively (Wright and Westoby 2002). The 

positive association of LMA and WUE with the change 

in percent cover between the control and 50:1 treatment 

suggests that water-use traits contributed to plant 

success in the 50:1 carbon treatment. However, in the 

third season, species with high leaf N content were less 

adversely affected by carbon amendments (i.e., lower 

cover in 50:1 plots relative to control plots). This was 

driven primarily by high percent cover of the legume L. 

bicolor in the 50:1 carbon treatment. When L. bicolor is 

excluded from the analysis, our data support the idea 

that traits associated with water use, as opposed to N 

use, strongly influence plant performance in this system. 

Table 3. Pearson's correlation coefficients (r) for the relationships between plant traits and percent cover at the species level in 
three treatments (control and labile C:N ratios of 50:1 and 100:1) in 2006 and 2008. 

Trait 

2006 2008 

Control 50 C:N 100 C:N Control 50 C:N 100 C:N 

Leaf thickness -0.24 -0.25 -0.16 -0.09 -0.07 -0.06 
LMA -0.52* -0.42 -0.37 -0.35 -0.34 -0.32 
Root : shoot ratio -0.10 -0.09 -0.09 -0.20 -0.24 -0.24 

Photosynthetic rate -0.42 -0.43 -0.38 -0.23 —0.19 -0.17 
Stomatal conductance -0.32 -0.36 -0.38 -0.21 -0.40 -0.41 
(PPSII -0.53* -0.58* -0.58* -0.43 -0.57* -0.55* 
WUE 0.00 0.11 0.17 0.28 0.38 0.37 
Leaf N (mass) -0.28 -0.30 -0.29 -0.23 -0.25 -0.29 
Leaf N (area) -0.38 -0.39 -0.42 -0.40 -0.37 -0.40 
PNUE -0.18 -0.20 -0.13 0.01 0.01 0.04 

Notes: LMA is leaf mass per area, OPSII is the effective quantum yield of Photosystem II, WUE is water use efficiency, and 
PNUE is photosynthetic nitrogen use efficiency. We sampled 14 species. Significant correlations are indicated. 

* P < 0.05. 

Overall, these trait data suggest that carbon amend 

ments will not disproportionately impact invasive 

annuals since they do not have higher N requirements. 

Because many native annuals require high leaf N 

content to maintain high WUE, carbon amendment 

treatments should adversely affect native annuals, and 

this was evident in the third season when native annuals 

emerged first. For example, Chaenactis biomass and 

density declined in both 50:1 and 100:1 treatments 

during the third season. Thus, our data suggest that the 

most effective restoration strategy may be to manipulate 
water availability, although we are aware of no such 

large-scale water manipulation treatments. However, 

desert precipitation displays high interannual variation 

(Hereford et al. 2006), and this may help native annual 
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Fig. 8. Correlations between traits and change in percent cover of species between the low carbon-addition (50:1) treatment 
and the control at the end of the (A) first and (B) third seasons. For the first season, LMA (leaf mass per area) and WUE were 
correlated with change in percent cover while in the third season, leaf N content on an area and mass basis were correlated. The 
outliers Schismus barbalus (scba) and Lupinus bicolor (lubi) are noted in the figure. Pearson's correlation coefficients (r) for the 

relationships are provided (P < 0.05). 

persistence (Levine and Rees 2004) as invasive 

die back in dry years (Salo 2004, Minnich 2008). 

Efficacy of carbon amendment 

In the first and third wet seasons, carbon amendments 

reduced exotic annual grasses as hypothesized. 

However, native annuals were also affected by carbon 

amendments in the third season, which we did not 

expect a priori. Also, Erodium cicutarium, the only exotic 

annual forb, was also impacted in the third season only 

(see Plate 1 and Appendix C). Besides physiological 

differences, there may be other factors that can explain 

why carbon amended soils worked as predicted in the 

first season but not in the third. In the first season, 

invasive annual grasses, especially Schismus barbatus, 

were abundant immediately following the first rains. 

Consequently, invasive grasses were disproportionately 

impacted by the carbon amendments. In the third 

season, instead of invasive grasses dominating the early 

stages of the herbaceous community, native annuals 
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Plate 1. Small-sized annual forbs, like the exotic species Erodium cicutarium (redstem filaree) shown here, were especially 
characteristic of sucrose-amended soils in 2008. A color version of this photo is available in Appendix C. Photo credit: R. J. Steers. 

were the first species to germinate and were especially 

abundant. Erodium cicutarium was also relatively 

common early in the third season. Consequently, native 

annuals and E. cicutarium were highly impacted by the 

carbon amendment treatments this season. Therefore, 

carbon amendments that lower inorganic soil N can 

negatively impact both invasive and native species of 

this desert environment. Whichever species group is 

more impacted will largely depend on which one is 

relatively more abundant when N is immobilized 

(Corbin and D'Antonio 2004). Similarly, N additions 

have been shown to increase both invasive grasses and 

native annuals, depending on which species group is 

more abundant (Allen et al. 2009). Because this 

treatment was focused on impacting species at germina 

tion and early stages of development, our results may 

have differed had we applied the amendments later in 

the season. 

In accordance with other desert studies (Gallardo and 

Schlesinger 1995, Schaeffer et al. 2003), labile carbon 

amendments (i.e., sucrose) effectively lowered inorganic 

pools of N at our study site, at least during the 

beginning of the wet season following application. At 

the beginning of the first season, microbial biomass was 

elevated in carbon amended plots while soil inorganic 

nitrogen was low, which was the expected response 

(Zink and Allen 1998, Alpert and Maron 2000). 

Although after this point, microbial biomass dropped 

and was often significantly lower than the control 

throughout the experiment, while inorganic nitrogen in 

carbon amended plots was also lower for much of the 

remaining study period, at least for the 100:1 treatment. 

This unexpected disconnect between microbial biomass 

N and inorganic N has not been noted elsewhere to our 

knowledge. However, Bleier and Jackson (2007) found a 

disconnect between inorganic N supply and plant 

response while utilizing sawdust and sucrose amend 

ments. In our study, it is possible that a large amount of 

microbial biomass lysed during the dry period that 

immediately followed the first rainstorm of the 2006 

season (Van Gestel et al. 1992), while inorganic nitrogen 

was kept low possibly from nitrification and/or from 

leaching below 5 cm depth once the rains resumed. In 

the third season, the carbon high (100:1) treatment was 

only effective at lowering inorganic nitrogen at the 

beginning of the season. Among all treatments, as 
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inorganic nitrogen became less abundant during the 

third season, the low sample size may have been 

inadequate to detect meaningful differences in soil 

parameters between treatments. In summary, despite a 

short duration of nitrogen immobilization in amended 

soils, when synchronized with the first rainstorm of the 

growing season, carbon amendments were capable of 

reducing exotic annual grass abundance throughout an 

entire growing season but also had nontarget effects 

when natives germinated early. 

Conclusion 

There are several drawbacks of using carbon amend 

ments to control invasive grasses in desert ecosystems. 

First, the effect of sucrose is not long-lasting (Reever 

Morghan and Seastedt 1999, Alpert 2010), and invasive 

grasses are expected to regain dominance once the 

carbon amendment is mineralized. Second, the cost of 

applying sucrose over large areas may be prohibitive 

(Alpert and Maron 2000). Third, high interannual 

variability in rainfall and species composition of annual 

plants in desert ecosystems (Freas and Kemp 1983, 

Philippi 1993, Pake and Venable 1996) can make early 
season applications a waste of effort due to lack of 

rainfall (e.g., second season) or counterproductive when 

native annuals germinate early and are negatively 

impacted (e.g., third season). Among these drawbacks 

are a number of other pitfalls (reviewed in Alpert 2010 

and Perry et al. 2010). However, some of the negative 
attributes of carbon amendments could be overcome by 

developing an understanding for how much carbon to 

apply, understanding timing of application, and by 

incorporating knowledge of plant species traits. 

While most of the annual species in this study appear 
to be impacted by low N conditions, the early 

germination and rapid phenology that is typically 
exhibited by invasive annuals in this system makes them 

especially susceptible to carbon additions at the begin 

ning of the growing season. With respect to N 

manipulation, N-use traits such as those measured in 

this study do not correlate with the success of species in 

this desert system because both invasives and natives 

differ little in this regard. We observed that when exotic 

annuals are more abundant early in the season they are 

highly impacted by low soil N, and when native annuals 

are more abundant early in the season then they are 

highly impacted. However, invasive grasses have lower 

water use efficiency and consequently, would be more 

susceptible to drought, which is supported by field 

observations (Salo 2004, Minnich 2008; see Results). 
While large-scale water manipulations that reduce 

invasive grasses are not feasible, early-season carbon 

amendments do have the potential to be successful 

under ideal conditions. Nevertheless, carbon amend 

ments are not expected to perform as well as other 

contemporary invasive species control methods like 

herbicides. For example, the grass-specific herbicide 

Fusilade II not only kills both invasive annual grasses 

(Schismus spp. and Bromus madritensis) and forbs (E. 

cicutarium), it also significantly increases native annual 

abundance and species richness (Steers and Allen 2009), 
which the early-season carbon amendments were never 

able to do in this study. For this reason and those 

mentioned previously, carbon amendments remain a 

relatively less optimal tool for invasive annual species 
control in desert environments. However, in situations 

where invasive species differ strongly in N-use traits 

compared to desired species, use of carbon amendments 

may be very successful. 
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