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Abstract 

Intramuscular electromyography (EMG) is commonly used to quantify activity in the 

trunk musculature. However, it is unclear if the discomfort or fear of pain associated with 

insertion of intramuscular EMG electrodes results in altered motor behavior. This study 

examined whether intramuscular EMG affects locomotor speed and trunk motion, and 

examined the anticipated and actual pain associated with electrode insertion in healthy 

individuals and individuals with a history of low back pain (LBP). Before and after 

insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, 

participants performed multiple repetitions of a walking turn at self-selected and 

controlled average speed. Low levels of anticipated and actual pain were reported in both 

groups. Self-selected locomotor speed was significantly increased following insertion of 

the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic 

motion decreased significantly post-insertion, but the extent of this change was the same 

in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar 

motion in all planes were not affected by the insertions. This study demonstrates that 

intramuscular EMG is an appropriate methodology to selectively quantify the activation 

patterns of the individual muscles in the paraspinal group, both in healthy individuals and 

individuals with a history of LBP.  

 

 

*Abstract



Introduction 

Intramuscular or fine-wire electromyography (EMG) is commonly used to 

quantify the activity of the trunk musculature during static or dynamic motor tasks. In 

particular, intramuscular EMG methodology is often employed in research investigating 

alterations in postural control of the trunk in individuals with low back pain (LBP) 5 

[MacDonald et al. 2009; Tsao et al. 2011; Hall et al. 2009]. Intramuscular EMG 

electrodes enable the measurement of activity in the deep muscles of the trunk that are 

not accessible to surface EMG electrodes. These include the internal oblique, transversus 

abdominis and the deep fibers of the lumbar multifidus [Beneck et al. 2013; MacDonald 

et al. 2009]. In the paraspinal muscle group, the use of intramuscular EMG also 10 

minimizes potentially confounding cross-talk from adjacent musculature that may have a 

different functional role [Lee et al. 2009].  

However, a potential disadvantage of intramuscular EMG is that the pain 

associated with the insertion of the electrodes may alter motor behavior [MacDonald et 

al. 2009]. For example, Young et al., [Young et al. 2004] demonstrated that in children 15 

with cerebral palsy, self-selected locomotor speed, cadence, and step length significantly 

decreased following insertion of intramuscular electrodes into the lower extremities. 

Similarly, Jacobson et al., [Jacobson & Gabel 1995] reported that after intramuscular 

electrode insertions into the vastus medialis and biceps femoris, two of their healthy adult 

subjects had an antalgic gait pattern during walking and running and two others required 20 

a break in testing due to anxiety. Despite the large number of studies utilizing this 

methodology, to date it has not been established whether inserting intramuscular EMG 

electrodes into the paraspinal muscles alters trunk control or locomotor kinematics. 
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It is clear however that in healthy individuals, experimentally induced pain in the 

paraspinals alters postural control of the trunk during standing and walking [Moseley et 25 

al. 2004; Lamoth et al. 2004; Arendt-Nielsen et al., 1995; Moe-Nilssen et al. 1999]. 

These changes in postural control during experimental pain are on the whole suggestive 

of a “guarding’ or splinting strategy to reduce motion in the painful area [Moe-Nilssen et 

al. 1999; Lamoth et al. 2004]. Trunk control is also affected by the anticipation of pain in 

the low back, even in the absence of actual pain itself [Moseley et al. 2004]. However, as 30 

studies that utilize intramuscular EMG in the trunk do not routinely quantify the level of 

pain associated with this methodology, it is unclear whether discomfort following 

insertion is of sufficient intensity or duration to elicit changes in motion in the trunk 

during motor activities after the electrode insertions. Individuals with a history of LBP 

may have a more pronounced response to the insertion of intramuscular electrodes than 35 

healthy individuals due to elevated fear avoidance behaviors or lowered pain thresholds 

[Imamura et al. 2013; Wand et al. 2011]. Therefore, it is also important to determine if 

the magnitude of any change in motion in response to electrode insertion is the same in 

healthy individuals and individuals with a history of LBP.  

Turning during walking is a common locomotor perturbation. Walking turns can 40 

be performed in the direction either ipsilateral to or contralateral to the stance limb. In 

comparison with steady-state locomotion, ipsilateral walking turns are associated with 

greater postural demand [Taylor et al., 2005] and increased paraspinal muscle activation 

[Armour Smith & Kulig, unpublished data]. As a result, analysis of walking turns may 

provide greater insight into changes in locomotor kinematics in response to intramuscular 45 

EMG insertion than steady-state locomotion. Therefore, the primary purpose of this study 
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was to investigate if insertion of intramuscular EMG electrodes into the paraspinal 

musculature in healthy individuals and individuals with a history of recurrent low back 

pain resulted in reduced locomotor speed and reduced amplitude of trunk motion during 

ipsilateral walking turns. We hypothesized that there would be no difference in locomotor 50 

kinematics following electrode insertion. The secondary purpose of this study was to 

quantify the anticipated and actual amount of pain associated with insertion of 

intramuscular electrodes into the paraspinal muscles.  

Methods 

Participants 55 

Twenty-nine young adults between the ages of 22 and 31 years participated in the 

study (17 women, 12 men). Participants were recruited via word of mouth and study 

flyers. Control participants (CTRL) were individually matched to participants with 

recurrent LBP (RLBP) by age (± five years), height in m (± 10 %) weight in kg (± 10 %) 

and activity level in metabolic equivalents (METS, ± 15 %; Table 1). Physical activity 60 

level was quantified using the Physical Activity Scale [Aadahl & Jorgensen 2003]. One 

participant with a history of recurrent LBP did not complete the data collection due to a 

transient episode of vasovagal syncope in response to the intramuscular EMG insertion. 

Therefore only the remaining fourteen participants with a history of recurrent LBP were 

matched to control participants. The Institutional Review Board of the University of 65 

Southern California approved the procedures in the study. Participants gave written 

informed consent after a full explanation of the study procedures and the potential 

benefits and risks of participating.  
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Participants were included in the RLBP group if they were between 18 and 40 

years of age, had a history of more than one year of recurrent episodes of primarily 70 

unilateral LBP, reported at least two functionally limiting pain episodes of at least 24 

hours’ duration in the preceding year [Stanton et al. 2009], and were in symptom 

remission at the time of the data collection (defined as a score of less than 0.5/10 cm on a 

visual analogue scale (VAS) for current pain at the start of the data collection). 

Participants were eligible for inclusion in the control group if they could be individually 75 

matched to a participant in the RLBP group as previously described and did not have any 

history of LBP requiring modification of activity or medical care. Participants in both 

groups were excluded if they had a history of diabetes mellitus, rheumatic joint disease, 

any blood-clotting disorder or current anti-coagulant therapy, polyneuropathy, history of 

low back surgery, history of bilateral leg pain, spinal stenosis or scoliosis, spinal 80 

malignancy or infection, lumbar radiculopathy, current or previous musculoskeletal 

injury or surgery affecting locomotion, or were currently pregnant.  

Assessment of symptoms 

In the RLBP group, fear avoidance beliefs were quantified using the physical 

activity sub-scale of the Fear Avoidance Beliefs Questionnaire (FABQ) [George et al. 85 

2010]. All participants completed a baseline VAS for current pain, anchored at 0 with “no 

pain” and at 10 with “worst possible pain” [Carlsson, 1983]. At baseline, participants also 

completed a VAS for the amount of pain they anticipated feeling during the electrode 

insertions and the amount of pain that they anticipated feeling during the locomotor trials 

following the insertions [Al-Obaidi et al. 2003]. Immediately after the electrode 90 

insertions they completed a further VAS for the actual amount of pain they felt during the 
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insertions, and at the end of the data collection they completed a VAS for the actual 

amount of pain they felt during the locomotor trials that followed the insertions. 

Experimental task 

 Each locomotor trial consisted of three laps of a walking circuit. The circuit 95 

required both straight locomotion and a series of walking turns (Figure 1). Participants 

performed the circuit both at a relaxed, self-selected speed (SELF) and at a controlled 

average speed of 1.5 m/s ± 5 % (FAST). Average speed was measured from the time 

taken to complete the standardized length of the circuit and was measured using 

photo-electric triggers. Participants executed an ipsilateral pivot turn in the same 100 

location in each repetition of the circuit. They stepped into an outlined 70 cm by 70 cm 

area with the foot ipsilateral to the turn direction and turned briskly 90° to the ipsilateral 

side (Figure 1a). The strategy used to perform the other walking turns in the circuit was 

not specified. Each participant practiced the circuit until they were consistently able to 

achieve the correct foot placement for the turn without looking down or breaking stride. 105 

At least seven successful trials of the circuit at each speed were collected for each 

participant, resulting in a total of at least 21 ipsilateral pivot turns in the defined turning 

area for analysis for each condition (Figure 1b). All participants walked the circuit in the 

direction contralateral to the side of their EMG instrumentation.  

Instrumentation 110 

Participants were first instrumented with motion-capture markers. Retro-reflective 

markers were attached to anatomical landmarks to define body segments and joint axes. 

Rigid kinematic models of the pelvis and the lumbar and thoracic regions of the 

spine were defined using individual markers bilaterally on the anterior superior 
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iliac spines, iliac crests, greater trochanters and on the L5/S1 disc space (pelvis), a 115 

rigid triad of markers affixed over the spinous process of L1 (lumbar spine) and a 

rigid triad of markers over the spinous process of T3 (thoracic spine) [Popovich & 

Kulig 2012]. Wireless force-sensitive resistor foot switches were also attached bilaterally 

to the sole of participants’ shoes under the lateral heel and the first metatarsophalangeal 

joint (TeleMyo DTS Telemetry, Noraxon USA Inc, Scottsdale, USA). Kinematic data 120 

were collected using an 11-camera digital motion capture system sampling at a frequency 

of 200 Hz (Qualisys AB, Gothenburg, Sweden). After instrumentation with the motion 

capture markers and footswitches, participants performed the first set of walking trials at 

both self-selected (pre-insertion SELF) and controlled speed (pre-insertion FAST). 

We then performed the fine-wire EMG insertions, leaving the motion capture 125 

markers in situ. Fine-wire intramuscular electrodes were inserted into the deep fibers of 

the lumbar multifidus at the level of L4, the longissimus thoracis pars lumborum at the 

level of L4, and the longissimus thoracis pars thoracis at the level of T10 using a 

previously described protocol with real-time ultrasound imaging guidance [Beneck et al. 

2013] (8 MHz linear transducer, SONOLINE Antares™, Siemens Medical Solutions Inc, 130 

USA; nickel chromium alloy wires, 50 um gauge, polyurethane/nylon coating, tips bent 

back 5 and 3 mm with 2 mm wire exposed, 25 gauge hypodermic needles). Electrodes 

were inserted into the predominant side of pain reported by participants with a history of 

RLBP and the same side for their matched control. The needle was immediately removed 

following the electrode insertion. Correct electrode placement was confirmed observing 135 

the contraction induced by light electrical stimulation using ultrasound imaging.  
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The electrodes were connected to wireless differential preamplifiers (TeleMyo 

DTS Telemetry, Noraxon USA Inc, Scottsdale, USA: baseline noise < 1 uV RMS, Input 

impedance > 100 Mohm, CMR > 100 dB, Input range +/- 3.5 mV, Base gain 400). The 

EMG and foot switch data were transmitted via a wireless receiver (TeleMyo DTS 140 

Telemetry, Noraxon USA Inc, Scottsdale, USA), digitally sampled at 3000 Hz at 16 bit 

resolution and synchronized with the kinematic data using photoelectric triggers 

(Qualisys Track Manager v2.6, Qualisys AB, Gothenburg, Sweden). Immediately after 

the fine-wire EMG insertions, participants walked freely around the laboratory to allow 

any residual soreness or anxiety to dissipate. They then performed a second set of 145 

walking circuit trials at both self-selected and controlled speed (post-insertion SELF and 

FAST respectively).  

Data processing 

Between 15 and 21 turning trials were analyzed for each participant for each 

condition. Kinematic data were first processed using Visual3D™ software (C-Motion 150 

Inc., MD, USA) before being exported to MATLAB® (MathWorks, MA, USA) for 

further analysis. Marker trajectories were low-pass filtered with a 10 Hz recursive fourth 

order Butterworth filter [Angeloni et al., 1994]. The stride cycle of each ipsilateral 

pivot turn (Figure 1b) was determined using the voltage signals of the foot switches 

and confirmed with a visual check of the horizontal velocity of a motion capture 155 

marker positioned on the posterior heel. Local coordinate systems for each segment, 

relative to the global laboratory coordinate system, were determined from a 

standing calibration trial.  Segment and joint kinematics were then calculated across 

the turn stride cycle using Cardan angles and a rotation order of XYZ 
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(flexion/extension; abduction/adduction; axial rotation; Schache et al. 2002). The 160 

alignment of the lumbar and thoracic segments was normalized to the static standing trial 

to account for individual postural alignment [Popovich & Kulig 2012]. Average peak-to-

peak amplitude of angular lumbo-pelvic and thoraco-lumbar motion in all planes during 

the walking turns at the controlled speed (FAST) was calculated for each participant. 

Average self-selected walking speed during the walking circuit pre- and post-insertion 165 

was calculated for each participant from the time taken to complete each locomotor trial. 

Average duration of the turn stride cycle at the controlled speed was also determined in 

order to compare the speed that the turn was executed pre- and post-insertion. The 

ensemble average for the RLBP and CTRL groups for all variables was then calculated. 

Statistical analysis 170 

The dependent variables that were compared pre and post-intramuscular EMG 

electrode insertion were i) average self-selected walking speed (pre-and post-insertion 

SELF); ii) duration of the turn stride cycle at the controlled speed (pre- and post-insertion 

FAST); iii) amplitude of peak-to-peak lumbo-pelvic and thoraco-lumbar motion in all 

planes at controlled walking speed (pre- and post-insertion FAST). The extent of change 175 

in each variable from pre- to post-insertion was compared between the RLBP and CTRL 

groups using paired t-tests (parametric data) and Wilcoxon signed ranks tests (non-

parametric data). To correct for multiple comparisons a Bonferroni correction was 

used resulting in a level of significance set at αααα = 0.0063. Additionally, anticipated and 

actual pain during the insertions and during the post-insertion walking trials was 180 

compared using Wilcoxon signed rank tests.   

Inferential confidence intervals were used to determine whether the variables 
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were equivalent in the pre- and post-insertion conditions, or if there was a significant 

change in the variables from the pre- to post-insertion [Tryon 2001; Stegner et al. 1996]. 

This approach was used because equivalence between two conditions is not proven 185 

simply by a failure to reject the null hypothesis using a standard hypothesis-testing 

approach. Testing equivalence using an inferential confidence interval approach avoids 

the problem of the likelihood of being able to demonstrate equivalence actually becoming 

smaller as the study variance decreases [Stegner et al., 1996], and also defines a-priori an 

amount of change in the variable that is considered to be meaningful [Tryon 2001]. If the 190 

difference between the lower limit of the 95% confidence interval for the smaller of the 

pre- and post-insertion means and the upper limit of the 95% confidence interval for the 

larger of the two means falls within the pre-defined range of equivalence for that 

variable, no statistically significant or meaningful change in the variable has occurred 

[Tryon 2001]. Conversely, if there is no overlap between the inferential 95% confidence 195 

intervals for the two means, there is a statistically significant difference in the variable 

from pre- to post-insertion at the p = 0.05 level. For this study, the range of equivalence 

was defined as ± the minimal detectable change (MDC) for each of the variables. MDC 

for self-selected walking speed was determined by having five healthy individuals 

perform two blocks of trials of the locomotor circuit at a self-selected speed, separated by 200 

a period of relaxation of approximately 15 minutes. MDC for the kinematic variables was 

determined by having four healthy individuals perform two blocks of trials of the 

locomotor circuit at the controlled speed. The two blocks of trials were separated by a 

period of approximately 15 minutes during which they performed a different sub-

maximal motor task (straight walking). Intra-class correlation coefficients (ICC3,1) and 205 
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the standard error of the measure (SEM) were calculated for each variable. MDC was 

then determined using the equation MDC = 1.96 � √2 � �	
 [King 2011]. All statistical 

analyses were performed using PASW Statistics (Version 18, IBM Corp., Armonk, NY).  

Results 

Average duration of symptoms in the RLBP group was 5.8 ± 4.2 years. At 210 

baseline, average current pain was 0.12 ± 0.24 cm in the participants with a history of 

RLBP and 0.0 cm in the healthy controls. Median ± inter-quartile range FABQ physical 

activity score in the RLBP group was 12.50 ± 6.7. 

Anticipated and actual pain  associated with EMG electrode insertion 

 The anticipated and actual pain VAS scores for EMG insertion and locomotor 215 

trials are shown in Table 2. There was no significant difference between groups for any 

of the VAS scores (Table 2).  

Effects of intramuscular EMG electrode insertion 

Due to problems with marker occlusion during the pre-insertion trials for one 

participant in the RLBP group, the data from this participant and the matched control 220 

participant were not included in data analysis, leaving a sample size of 26. There were no 

significant differences between the RLBP and CTRL groups in the extent of change in 

any of the variables in response to electrode insertion (SELF walking speed group 

comparison p = .369; FAST stride duration p = .260; FAST lumbo-pelvic motion sagittal 

plane p = .643, frontal plane p = .854, axial plane p = .276; FAST thoraco-lumbar motion 225 

sagittal plane p = .807, frontal plane p = .279, axial plane p = .237). Therefore the 

inferential confidence intervals were calculated using the pooled data from both groups.  
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The controlled speed was faster than the self-selected speed in all individuals 

except one CTRL participant. Self-selected walking speed significantly increased after 

the insertion of intramuscular EMG electrodes (mean ± standard deviation, pre-insertion 230 

SELF 1.l5 ± 0.14 m/s, post-insertion SELF 1.22 ± 0.12 m/s, Figure 3a). At the controlled 

speed, there was no difference in the duration of the stride cycle between pre- and post-

insertion (pre-insertion FAST 1.03 ± 0.05 s, post-insertion FAST 1.02 ± 0.06 s, Figure 

3b). 

In the sagittal plane, the peak-to-peak amplitude of lumbo-pelvic motion across 235 

the turn stride cycle decreased significantly from pre- to post-insertion (pre-insertion 

FAST 9.56 ± 2.30°, post-insertion FAST 8.45 ± 2.19°, Figure 4a). This decrease in the 

amplitude of sagittal lumbo-pelvic motion occurred in the majority of participants in both 

groups (CTRL n = 10, RLBP n = 10) and was due to reduced peak flexion in 7 

participants, reduced peak extension in 7 participants, and a reduction in both peak 240 

flexion and extension in 6 participants. There was no change in lumbo-pelvic frontal 

motion (pre-insertion FAST 5.77 ± 1.58°, post-insertion FAST 5.37 ± 1.32°) or lumbo-

pelvic axial motion (pre-insertion FAST 8.24 ± 1.75°, post-insertion FAST 8.85 ± 1.90°, 

Figure 4a). Thoraco-lumbar motion in all planes was equivalent pre and post-insertion 

(sagittal plane pre-insertion FAST 5.36 ± 1.04°, post-insertion FAST 4.86 ± 1.26°; frontal 245 

plane pre-insertion FAST 9.19 ± 2.40°, post-insertion FAST 9.75 ± 3.33°; axial plane 

pre-insertion FAST 17.62 ± 5.03°, post-insertion FAST 18.31 ± 4.94°, Figure 4b).  

Discussion 

This study is the first to directly investigate if insertion of intramuscular EMG 

electrodes into the paraspinal muscles results in reductions in walking speed or amplitude 250 
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of trunk motion. Unexpectedly, self-selected locomotor speed increased following the 

insertions. There was a significant decrease in the amplitude of lumbo-pelvic motion 

in the sagittal plane in response to electrode insertions. However, the amplitude of 

lumbo-pelvic motion in frontal and axial planes, and thoraco-lumbar motion in all 

planes, was not affected by intramuscular EMG. The levels of anticipated and actual 255 

pain associated with electrode insertion were low in both groups. 

Inferential confidence interval testing demonstrated that the amplitude of sagittal 

plane motion in the lumbar spine when walking at the controlled speed was significantly 

smaller following insertion of the EMG electrodes. Although the absolute value of the 

decrease in this motion was small (an average reduction of peak-to-peak amplitude of 260 

1.11°) it exceeded the minimal detectable change calculated for this task under these 

experimental conditions. There were different sources of reduced peak-to-peak amplitude 

in individual participants, with some demonstrating reduced peak flexion, others 

demonstrating reduced peak extension, and some demonstrating a reduction in both peak 

flexion and extension. As the duration of the turn at the controlled speed was not affected 265 

by electrode insertion, it is likely that the reduction in sagittal plane motion was due to 

subject-specific changes in paraspinal agonist and antagonist activity. The fact that 

changes in locomotor kinematics were evident in sagittal lumbo-pelvic motion but not in 

thoraco-lumbar motion may be due to the greater number of insertions performed in the 

lumbar region.  270 

Importantly, this study demonstrated that although there were small changes in 

sagittal lumbar motion in response to electrode insertion, these changes were the same in 

individuals with a history of recurrent LBP as in healthy individuals. In addition, the 
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individuals in this study with a history of recurrent LBP did not demonstrate elevated 

anticipation of pain or actual pain in comparison with healthy individuals. This is despite 275 

the fact that persistent LBP is associated with altered cortical processing of painful and 

non-painful sensory stimuli [Wand et al. 2011], central and peripheral sensitization, and 

reduced pain pressure threshold, particularly in the area of symptoms [Imamura et al. 

2013]. The lack of group difference in anticipated and actual pain intensity in the present 

study may be due to the fact that the individuals with a history of LBP were 280 

asymptomatic at the time of the data collection and had relatively low levels of fear 

avoidance [Calley et al. 2010].  

Self-selected locomotor speed increased following insertion of the intramuscular 

electrodes. Two previous studies investigating the effect of electrode insertions in the 

lower limbs on locomotor speed have demonstrated both significantly decreased and 285 

unaltered self-selected speed following insertion [Young et al. 2004; Krzak et al. 2013]. 

However, since both of these studies investigated children with cerebral palsy they are 

likely not representative of the response in adults without neurological disorders. As LBP 

is normally associated with reduced rather than increased self-selected locomotor speed 

[Selles et al. 2001; Lamoth et al. 2006] it is probable that the increase in average self-290 

selected speed evident in this study was a result of an order effect rather than actual or 

anticipated discomfort in the insertion area. Prior to the second set of self-selected speed 

trials, the participants had experienced performing the walking circuit at a speed that was 

faster than their comfortable walking pace. This may have resulted in an after-effect 

during the post-insertion self-selected speed trials. 295 
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Numerous studies have demonstrated changes in motor behavior in response to 

acute experimental pain [Farina et al. 2004; Graven-Nielsen & Arendt-Nielsen 2008; 

Hodges et al. 2003; Arendt-Nielsen et al. 1995]. In this present study however, 

participants reported levels of pain both during the insertion of the EMG electrodes and 

during the locomotor trials after the insertions that were less than the pain typically 300 

induced during experimental pain protocols [Moseley et al. 2004; Ervilha et al. 2005 

Farina et al. 2004; Arendt-Nielsen et al. 1995]. The median VAS value during locomotor 

trials in this study was also less than the pain reported by participants during fast and 

slow walking following insertion of intramuscular electrodes into the gluteal muscles 

[Semciw et al. 2013]. The lower levels of pain experienced in this present study during 305 

walking may be a result of the slightly lower level of activity in the paraspinal muscles 

during walking in comparison with the gluteals [Saunders et al. 2005; Callaghan et al. 

1999; Perry & Burnfield 2010].  

Fear of pain and anxiety about future pain may also result in altered movement 

strategies and limitation in motor activities [Pincus et al. 2006]. Fear of pain has been 310 

demonstrated to be more correlated with guarded movement patterns than actual pain 

intensity [Vlaeyen & Linton 2000] and anticipation of pain is highly associated with 

deficits in locomotor speed in individuals with back pain [Al-Obaidi et al. 2003]. 

However, participants in this study demonstrated low levels of anticipated pain for both 

the insertion of the electrodes and the locomotor trials following insertion of electrodes. 315 

The VAS scores for anticipated pain were lower than those previously demonstrated 

during induction of experimental low back pain in healthy subjects [Moseley et al. 2004] 

or during fast walking in individuals with LBP [Al-Obaidi et al. 2003]. Individuals who 
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were eligible to take part in this study were given a full explanation of the intramuscular 

EMG procedures prior to volunteering to participate. Therefore, it is likely that 320 

individuals with elevated fear of needles or intramuscular EMG methodology, who may 

have experienced greater anticipated pain, chose not to participate.  Future studies 

utilizing intramuscular EMG may benefit from utilizing similar measures of 

anticipated and actual pain in order to monitor if their participants may be at 

greater risk of demonstrated fear-related changes in movement behavior.   325 

It is important to note that this study investigated the effect of intramuscular EMG 

during a sub-maximal task. During both steady-state locomotion and walking turns the 

function of the paraspinal musculature is postural rather than propulsive, and paraspinal 

activity remains below 20 % of the amplitude of maximum voluntary contraction in these 

muscles [Saunders et al. 2005]. Therefore, it is possible that a larger effect might be 330 

evident during a motor activity that requires a greater level of paraspinal activity or a 

greater range of motion, particularly in the sagittal plane. It should also be noted that in 

this study, three electrode insertions were performed on each participant. This number of 

insertions is consistent with previous studies utilizing intramuscular EMG methodology 

to investigate trunk control [MacDonald et al. 2009; Beneck et al. 2013]. However, more 335 

significant effects may also be evident in response to a larger number of electrode 

insertions. In three participants, one of the electrode insertions was repeated due to the 

electrode wires being dislodged during removal of the inserting needle (n = 2) and poor 

electrode placement (n = 1). Electrode re-insertion did not have a systematic effect on 

actual pain experienced during the insertions and locomotor trials, or on locomotor 340 

kinematics in these three individuals.  
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 The findings from this study indicate that other than a small but systematic 

change in sagittal plane lumbo-pelvic motion, trunk motion is not affected by 

insertion of intramuscular EMG electrodes Therefore this is an appropriate method 

for investigating trunk postural control in both individuals with a history of LBP 345 

and healthy controls. Future research is needed to clarify if insertion of 

intramuscular EMG electrodes results in more limited sagittal plane motion in 

motor tasks that require greater amplitude of motion or higher levels of paraspinal 

activity than the walking turn in the present study.  

 350 
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Table 1 

Participant demographics (median ± inter-quartile range) 

 CTRL
a 

RLBP
a
 p 

Age (years) 24.5 ± 1.75 26.5 ± 4.75 .068 

Height (m) 1.73 ± 0.05 1.73 ± 0.09 .664 

Mass (kg) 66.68 ± 14.97 67.70 ± 23.42 .152 

PAS score (MET-time) 47.60 ± 5.00 48.20 ± 7.55 .470 

       a
n = 14 

 

Table 1



Table 2 

Visual analogue scores for anticipated and actual pain associated with intramuscular 

EMG electrode insertion (Median ± inter-quartile range, n = 28) 

  CTRL RLBP p 

Anticipated pain 

 during insertions* 1.35 ± 2.43 1.90 ± 1.63 .730 

 during locomotor trials* 0.60 ± 0.78 0.50 ± 0.35 .937 

Actual pain    

 during insertions* 2.45 ± 2.65 1.90 ± 2.38 .753 

 during locomotor trials* 0.45 ± 0.70 0.50 ± 0.70 .779 

* VAS scale scores in cm 

 

Table 2



Figure 1. a) Schematic of the walking circuit, with the turning area for the ipsilateral 

pivot turn indicated. Circuit set up for participant instrumented on the left side and 

therefore turning towards the right.  b) Stride cycle of an ipsilateral pivot turn to the right. 

Figure 2. Axial ultrasound image (left) and schematic (right) demonstrating insertion of 

intramuscular EMG electrode into the deep fibers of the lumbar multifidus muscle (SP = 

spinous process, H = hypodermic needle). 

Figure 3.Average a) self-selected locomotor speed, and b) stride duration at controlled 

speed pre- and post-insertion. Pooled groups, n = 26, error bars = 95% confidence 

interval, shaded areas = range of equivalence (± minimal detectable change, MDC). 

Figure 4. Peak-to-peak amplitude of a) lumbo-pelvic motion, and b) thoraco-lumbar 

motion at the controlled speed pre- and post-insertion.  Pooled groups, n = 26, error bars 

= 95% confidence interval, shaded areas = range of equivalence (± minimal detectable 

change, MDC). 
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Lines 111-113: A figure or precise description of the markers on the upper arm, forearm, hand, thigh, 

shank, and foot are required (with citation(s) is needed). Why describe procedures for kinematics data 

collection from these markers in the methods when the results from these are not reported (with the 

exception of the foot marker)? 

A full body marker set was utilized as part of a larger study and for completeness this was reflected in the 

text. However, as only the trunk and pelvis markers were utilized in this study the authors agree that this 

is confusing and therefore the reference to the other markers comprising the full body marker set has 

been removed. The heel marker that was only used to double-check the locomotor events is described in 

the data processing section (line 156). 

 

 

Lines 177-180: If a correction for multiple t-test comparisons was used, which method was applied? 

Otherwise why was a correction not applied? 

A Bonferroni correction has now been made to the t-test comparisons between groups. This is detailed in 

the statistical analysis section, line 177.The correction does not alter the results, as they were already all 

non-significant and demonstrate no difference in the extent of change in any of the variables between 

groups.  

 

Results 

Which values are reported in the results - those for the t-tests or for the Wilcoxon signed ranks tests? 

The variables which did not follow a normal distribution were the change in thoraco-lumbar sagittal 

plane and frontal plane data. Therefore Wilcoxon signed ranks tests were used for those group 

comparisons. T-tests were used for all of the other group comparisons. 

 

Line 155-156: please include a citation for using a 10 Hz recursive fourth order Butterworth filter for 

these data. 

Optimal cut-off frequency for the filter was determined by examination of the frequency content of the 

data and was in agreement with the findings from Angeloni et al., (1994). This citation has been added to 

the text. 

 

 

Yours sincerely 

Jo Armour Smith, PhD, PT 

Kornelia Kulig, PhD, PT, FAPTA 


	Does Insertion of Intramuscular Electromyographic Electrodes Alter Motor Behavior During Locomotion?
	Recommended Citation

	Does Insertion of Intramuscular Electromyographic Electrodes Alter Motor Behavior During Locomotion?
	Comments
	Creative Commons License
	Copyright


	tmp.1459794408.pdf.btCcD

