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Ekaterina V. Karniouchina, Can Uslay, & Grigori Erenburg

Do Marketing Media Have Life
Cycles? The Case of Product

Placement in Movies
This article examines the economic worth of product placement in movies over a time span of 40 years
(1968–2007). The authors find an inverted U-shaped relationship between the year of the movie release and the
returns associated with product placements. In addition, a similar inverted U-shaped relationship characterizes the
economic worth of tie-in campaigns associated with product placements. These findings are consistent with the
habituation–tedium theory used to explain the inverted U-shaped pattern in response to novel advertisements and
suggest that the same mechanism could be influencing the response to an entire marketing medium. Overall, the
results reinforce the notion that marketers find it increasingly difficult to get their message across using traditional
media and underscore the need for the marketing industry to reinvent itself when new tactics lose their luster. The
authors conclude with a discussion of additional empirical regularities.
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F
or better (e.g., the Nokia 7110 in The Matrix [1999])
or worse (e.g., more than four dozen brands in The
Departed [2006]), product placement in the movies

has become a part of the contemporary marketing arsenal,
lending its power to offerings ranging from pregnancy tests
to luxury cars (Grover 2009). Gupta and Gould (1997, p.
37) define product placement as a marketing strategy that
“involves incorporating brands in movies in return for
money or for some promotional or other consideration.”
Industry sources boast that it can do wonders and signifi-
cantly boost sales of featured brands. For example, Ray-
Ban considered the lifespan of its Wayfarer model sun-
glasses to be almost over when it placed them in Risky
Business (1983). Before the release of the movie, the
declining sales were at approximately 18,000 units a year;
following the movie release, the annual sales of the revived
product jumped to 360,000 units. By 1989, following a

number of successive placements (e.g., Top Gun [1986]),
sales reached 4 million units (Sengrave 2004). Despite the
abundance of such success stories, the evidence for the tan-
gible benefits of product placement is mostly anecdotal, and
studies that empirically demonstrate its economic worth are
scant at best. Nevertheless, firms can take extreme measures
to establish strategic dominance in branded entertainment.
At the peak of the “cola wars” in the early 1980s, Coca-
Cola went as far as purchasing Columbia Pictures to control
the entertainment arena (Sengrave 2004).

Product placement originally fell under the umbrella of
covert marketing because viewers were often unaware of
the commercial persuasion effort. Many early marketing
research efforts concentrated on the subliminal and covert
nature of this marketing medium (Nebenzahl and Secunda
1993). However, as consumers have become more market-
ing savvy and the technique more prominent, it has shifted
closer to the realm of conventional marketing. At present,
the question remains whether this tactic is still as effective
as it was in the past; it is commonly believed that when
advertisers cross the line and overwhelm the audience with
blatant product placements, their efforts will backfire (Man-
dese 2006; Wei, Fischer, and Main 2008).

In this article, we adopt a longitudinal perspective and
examine the evolution of the effectiveness of product place-
ment in the movies over a 40-year time frame. First, we
provide a literature review that focuses on the history and
the suggested efficacy of this marketing medium. Second,
we introduce our conceptual framework and present our
hypotheses. Third, we discuss the data and methodologies
(event study and hierarchical linear modeling [HLM]).
Fourth, we present and discuss our findings. We conclude



with managerial implications, future research directions,
and limitations.

An Historical Perspective on
Product Placement

Although many researchers believe that product placement
was born when a little boy made an extraterrestrial friend by
laying a trail of Reese’s Pieces in E.T. (1982) (Newell,
Salmon, and Chang 2006), other sources are starkly divided
on its true origins. For example, Karrh, McKee, and Pardun
(2003) argue that product placement originated in the
1940s, while others suggest that this marketing medium can
be traced back to the end of nineteenth century, when Lever
Brothers’ Sunlight soap was placed in several films
(Newell, Salmon, and Chang 2006). However, most sources
agree that the practice emerged as a legitimate marketing
instrument in the mid-1970s and has been rapidly expand-
ing since that time. The biggest surge has arguably been
during first decade of the twenty-first century (La Ferle and
Edwards 2006). Product placement spending in the United
States grew at an annual rate of almost 34% to $2.9 billion
in 2007 and was projected to reach $5.6 billion in 2010 (PQ
Media 2008).

In the early stages of its development, product place-
ment was governed by ad hoc decisions and intuition (Ste-
ortz 1987). Branded placement was a casual process, in
which branded items were donated, loaned, or purchased at
a discount for particular scenes (DeLorme and Reid 1999).
However, in the new millennium, the process of placing
branded consumer products in feature films has gained
mass appeal, becoming orderly and institutional, with
clearly defined roles involving multiple parties and interme-
diaries (Karrh, McKee, and Pardun 2003). For example,
NextMedium has propelled itself as a leader in the product
placement arena by automating the process of product
placement in the movies, television shows, and video games
and even allowing product placement needs to be filled
using an auction-based platform (Schonfeld and Borzo
2006). With more than 80% of national marketers using
branded placement (Johannes 2006), the practice is cer-
tainly a part of today’s mainstream marketing arsenal.

Because of the proliferation of this marketing medium,
consumers are becoming aware of product placement tac-
tics and have started to show evidence of resistance to per-
suasion (Wei, Fischer, and Main 2008). In addition, in an
ironic twist, product placements have now created a clut-
tered environment, which marketers initially designed the
tactic to avoid. Furthermore, consumers and industry par-
ticipants are beginning to question whether the overabun-
dance of placements detracts from the viewing experience
and interferes with filmmakers’ creative vision (e.g., Writ-
ers Guild of America West 2005). Numerous Internet blogs
are devoted to dissecting and mocking placement-heavy
films (e.g., http://www.brandspotters.com). Multiple con-
sumer advocacy groups are calling on the Federal Trade
Commission and other government agencies to curb and/or
regulate product placement practices (e.g., Commercial
Alert 2003). This study provides an empirical examination
of the effectiveness of product placements. Thus, we forgo a
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detailed examination of related public policy issues, many
of which are covered elsewhere (see the special section on
covert marketing in the Spring 2008 issue of Journal of
Public Policy & Marketing).

Product Placement Efficacy
Researchers have traditionally attributed the efficacy of
product placement as a marketing medium to its ability to
cut through advertising clutter by relying on transference
mechanisms. Instead of competing against a plethora of
competitive advertisements in more traditional advertising
channels, product placement acts in a more unobtrusive way
by evoking the positive associations, aspirations, and sym-
bolic meanings connected with the underlying movie con-
tent (Russell 1998). Excitation transfer theory (Zillmann
1996) also suggests that the excitement associated with film
sequences can be transferred to other subsequently pre-
sented objects, including embedded products. Labeled by
the industry as “the anti-TiVo,” product placements are also
believed to be more effective in reaching the target audience
than traditional advertising spots because they are immune
to ad skipping (Schonfeld and Borzo 2006). Finally, product
placements might circumvent consumer resentment by blur-
ring the lines between commercial content and entertain-
ment, thereby providing “advertainment” (Kretchmer
2004).

Academic studies on the efficacy of product placement
to date have dealt with its economic value (Wiles and
Danielova 2009), the effects of execution-related factors
(e.g., Gupta and Lord 1998; Russell 2002), cross-cultural
differences in audience response (e.g., Gould, Gupta, and
Grabner-Kräuter 2000; Karrh, Frith, and Callison 2001;
Nebenzahl and Secunda 1993), and ethical concerns related
to its use (e.g., d’Astous and Seguin 1999; Gupta and Gould
1997; Nebenzahl and Secunda 1993; Wenner 2004). Table 1
summarizes the relevant literature on the efficacy of product
placements (also see DeLorme and Reid 1999). In this
study, we largely limit our inquiry to the first area—namely,
the economic worth of placements.

As listed in Table 1, there is an abundance of survey-
based and experimental studies devoted to product place-
ment. However, empirical work that has investigated the
impact of this marketing strategy on firm value is almost
nonexistent. In their conceptual framework, Balasubraman-
ian, Karrh, and Patwardhan (2006) propose three conative
outcomes of product placement (i.e., purchase intentions,
brand choice, and brand usage behavior). However, to mea-
sure the true efficacy of this marketing medium, we must
ensure that these factors ultimately translate into firm value.

At present, the consensus is that, despite the large 
spectrum of research on product placement, the economic
value of a placement remains a pressing research question
(Balasubramanian, Karrh, and Patwardhan 2006). We are
aware of only one study that has attempted to evaluate the
effect of product placement in movies on firm value: In a
cross-sectional study, Wiles and Danielova (2009) investi-
gate price reactions for stocks of publicly traded companies
that placed their brands in the 24 most popular movies of
2002. Their daily event study indicates that product place-
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Study Dependent Variable Method Sample Findings

Wiles and
Danielova
(2009)

Stock price Event analysis 24 most popular
films, single
year, 126 

placements total

.89% abnormal return over the (–2, 0) event
window.

Cowley and 
Barron (2008)

Brand recall Survey 3532 French
DVD viewers

Brand recall is enhanced when the 
respondents like the director or the movie.

Wei, Fischer,
and Main
(2008)

Evaluations of
embedded brands

Experiment Three experi-
ments with 81,
108, and 209

college students

Activation negatively affects evaluations of
brands embedded in radio shows. Perceived
appropriateness and brand familiarity dimin-
ishes this negative effect, and activation with
high brand familiarity can even reverse it.

De Gregorio,
Sung, and
Jung (2007)

Attitude toward place-
ments

Survey 3340 
consumers

Most consumers are still positively disposed
toward product placement, do not see a need
for regulation, and have a tendency toward
neutrality regarding certain elements associ-
ated with the practice.

Lee and Faber
(2007)

Brand recall Experiment 155 college 
students

Brand recall is enhanced when the placement in
computer games is incongruent with the brand.

Balasubraman-
ian, Karrh, and
Patwardhan
(2006)

N.A. Conceptual N.A. Conative responses to product placements
include purchase intention, brand choice, and
brand usage behavior.

Karrh, McKee,
and Pardun
(2003)

Practitioners’ beliefs
regarding placements

Survey 28 ERMA 
members

Practitioners believe that the number of place-
ments will grow, leading to trade-offs between
creative and financial concerns. They also
strongly believe that product placements
increase product sales.

Russell (2002) Brand recall and atti-
tude toward brand

Experiment 5 ¥ 30 college
students

Memory improves when modality and plot 
connection are incongruent, but persuasion is
enhanced by congruency.

Gupta and
Gould (1997)

Attitude toward brand
placement

Survey 1012 college
students

A generally positive attitude exists toward
brand placement. The authors find that certain
categories (e.g., tobacco, guns) are less
acceptable.

Gupta and Lord
(1998)

Recall of placed
brands

Experiment 274 college 
students

Prominent product placements lead to greater
recall. Conventional advertising is a better
strategy if prominent placement is unattainable
or cost prohibitive.

Babin and Carder
(1996a)

Brand recognition Experiment 98 college 
students

Subjects correctly identified brands that were
present in or absent from the movie.

Babin and
Carder
(1996b)

Brand salience Experiment 108 college 
students

Salience is greater for placed brands but only
for approximately one quarter of the product
placements.

Baker and Craw-
ford (1996)

Attitude toward brand
placement

Survey 43 postgraduate
students

Most respondents had a neutral attitude
toward brand placement.

DeLorme, Reid,
and Zimmer
(1994)

Attitude toward brand
placement

Focus group 29 college 
students

Generally positive attitude toward placements.
Negative attitude toward overexposed brands.

Karrh (1994) Recall of placed
brands

Experiment 76 college 
students

Prominent product placements lead to greater
recall and recognition. The results are 
inconsistent across movies and brands.

Ong and Meri
(1994)

Recall of placed
brands, purchase

intentions for placed
brands

Experiment 75 moviegoers Generally positive attitude toward product
placements but poor unaided recall. No link
between recall of placement in movies and
increased purchase intentions.

Vollmers and
Mizerski
(1994)

Recall of placed
brands

Experiment 71 college 
students

96% of participants were aware of a brand
placement, and 93% of participants correctly
identified brands that had appeared in movies
they had viewed.

TABLE 1
Overview of Select Literature on Product Placement Efficacy

Notes: N.A. = not applicable.



ment in these movies resulted in .89% positive abnormal
return over the (–2, 0) movie release event window.1 Sur-
prisingly, the cumulative abnormal return (CAR) over the
(–2, 1) time window was not significant, indicating a possi-
ble price reversal that takes place immediately after the
movies’ release. Therefore, additional research on the effi-
cacy of such a heavily used marketing medium is war-
ranted. In this study, we examine both blockbuster and non-
blockbuster movies and extend this emerging research
stream with a longitudinal examination of the value of prod-
uct placements and related tie-in campaigns (i.e., concur-
rent advertisement campaigns marketers use to accentuate
the effect of placements).

Conceptual Framework
A possible explanation why so little research has been done
to estimate the financial worth of product placements is the
complex lagged effects of product placement on firms’ cash
flows. Moreover, other concurrent activities affect cash
flows and revenues, making it difficult to tease out the value
product placement adds specifically. We attempt to over-
come this problem by analyzing stock market reaction to
product placement.

30 / Journal of Marketing, May 2011

The efficient market theory (EMT) stipulates that stock
prices reflect available information regarding a firm’s future
cash flows (Fama 1970). According to this theory, once
information about the product placement is available to
investors, the resulting change in stock price should reflect
investors’ expectations of the total change in future cash flows
due to the product placement. Our conceptual framework
builds on the EMT, which posits that investors’ responses to
product placements are contingent on their expectations
regarding customer behavior (see Figure 1). By measuring
stock price reaction to the release of the movie in which the
company’s brand is featured, we estimate the incremental
value that the investors place on that product placement. We
introduce several factors related to the placements’ ability to
resonate with moviegoers, and produce the desired effect. In
addition, we introduce information-processing effects and
market-related controls because they can influence
investors’ willingness and ability to invest in brands that are
placed in feature films and our ability to detect abnormal
returns. Next, we discuss the conceptual framework and its
key factors in more detail.

Exposure and Awareness

For the markets to register a response to product place-
ments, consumers first must become aware of or at least
exposed to the placement. (Exposure would be sufficient if
we posit that placements act on a subliminal level.) There-
fore, our framework accounts for audience reach. In addi-
tion, it considers the possible effects of competitive clutter

FIGURE 1
Conceptual Framework

aFactors that may offer alternative explanations for time-related effects. See the “Robustness Checks” section for details.
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1In event studies, the defined event (in this case, the release of
the movie with a given placement) takes place at Time 0. There-
fore, (–2, 0) event window represents the time from two trading
days before the release date through the release date.



within the same movie because excessive product place-
ments can create consumer information overload (Malhotra,
Jain, and Lagakos 1982) and decrease the attention given to
each placement.

Srinivasan and Hanssens (2009) note that product inno-
vation has a greater impact on firm value when coupled
with greater advertising support. It is possible that product
placements that are tied to concurrent traditional advertising/
sales promotion campaigns also generate higher returns
because they can create more traction with consumers. To
control for this, we incorporate promotional tie-in cam-
paigns into the framework. The framework also recognizes
that the effectiveness of the tie-in campaigns can follow a
certain trajectory over time (e.g., an inverted U-shaped tra-
jectory suggested by the habituation–tedium theory that we
discuss subsequently) and be affected by additional drivers
such as A-list celebrity participation.

To account for the awareness of the movie before its
release, we incorporate adjusted production budget, which
research has found to be highly correlated with advertising
spending (Ravid and Basuroy 2004) because advertising
data are not available for the majority of time frame covered
by our study. Moreover, the framework includes brand
familiarity because it can influence the awareness and
acceptance of the placement effort.

Acceptance

In addition to exposure, consumers should also be receptive
to buying the products placed in the movies. More promi-
nent placements could be more memorable; at the same
time, consumers can show resistance to over-the-top mar-
keting efforts and exhibit general anticonsumption tenden-
cies in various settings (Cherrier 2009; Close and Zinkhan
2009). Some placements can be so overt (e.g., repeated
placements of the same brand within the film) that the cen-
trality of the brand/product to the plot can alert the viewers
to the placement effort and even cause resentment. There-
fore, we incorporate overtness of the placement in our
framework.

Meanwhile, growing resentment of product placements
could give rise to negative time effects, and familiarity with
the medium and increased product placement expertise of
marketers could give rise to positive time effects. We also
include the actors’ star power in the framework because it
can influence the acceptance level of the placed brands if
the stars are perceived as endorsers. The degree of annoy-
ance might be greater when placements are embedded in
poor-quality films. In addition, we anticipate that certain
movies and movie genres are less suitable for product
placement. Consequently, our framework includes control
variables related to observed and unobserved movie hetero-
geneity. In addition, we include industry classification
because product placement activities might be more (less)
successful in generating value according to industry mem-
bership of the firms making the placements. Mundane,
industrial products might be less memorable, while con-
sumer goods might generate more buzz and excitement
through placement.
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Likelihood of Investor Action

It is understood that enhancing brand equity enhances the
firm’s market valuation (Srinivasan and Hanssens 2009).
However, the ability to connect the brand to its parent com-
pany is critical because failure to do so can restrict the flow
of funds to the firm. Finance literature has demonstrated
that there is significant confusion on the part of “noise
traders” (i.e., investors whose decisions to buy, sell, or hold
are not based on company’s fundamentals [Black 1985])
when it comes to the ticker symbol–company connection.
For example, Rashes (2001) reports on the comovement of
stocks with similar ticker symbols. There is significant cor-
relation between returns, volume, and volatility of these
ticker pairs at short frequencies. Furthermore, the impact of
product placement on a company’s stock price is likely to
be quicker and less noisy when there is a clear and straight-
forward connection between the featured brand and the par-
ent company. Therefore, we distinguish between the compa-
nies whose name and ticker symbols are closely tied to a
focal brand and the companies for which the immediate
connection between the brand and corresponding security is
more difficult to establish.

Our framework also incorporates other competing
options (i.e., other placements in the movie) because they
have the potential to decrease the resource flows to the focal
security and create additional clutter (as we described previ-
ously in the “Exposure and Awareness” section). In addi-
tion, brand familiarity (relevant to consumer response) can
also be relevant when it comes to investor action; for exam-
ple, the marketing literature has indicated that brands that
are less familiar to investors (and analysts) might be sys-
tematically undervalued (Srinivasan and Hanssens 2009). 

Market- and Stock-Related Characteristics

The framework incorporates traditional factors related to
market quality (e.g., market structure, liquidity, analyst cov-
erage). In addition, we control for variables that might
affect our ability to detect abnormal returns. A marketing
action’s impact is often difficult to measure because there
are many marketing activities that take place concurrently.
In the case of diversified companies, it is even more diffi-
cult because multiple brands in multiple industries are mar-
keted using different strategies, and multiple contaminating
events come into play, creating measurement noise. There-
fore, we control for the firms’ degree of diversification
because the increase in firms’ diversification over time (as
Rumelt [1974] notes) could influence our findings with
respect to time effects. Finally, market conditions might
moderate the strength of market response to product place-
ments; therefore, we consider business-cycle effects an
alternative explanation for time-related effects.

Hypotheses
There are several product placement intermediaries/marketing
research firms that use proprietary models to value branded
entertainment (e.g., Brand Advisors, Delivery Agent, IEG,



Image Impact, Intermedia Advertising Group, iTVX, Joyce
Julius & Associates, Millward Brown, NextMedium [Embed],
Nielsen IAG [Place*Values], Propaganda Entertainment
Marketing). However, because the models and methods that
these companies employ are proprietary, they are typically
not available for examination. In light of the limited evi-
dence from academic studies (Wiles and Danielova 2009)
and limited industry information, there is a need to examine
the overall economic worth of the product placement strat-
egy using a large sample. We begin by examining the gen-
eral connection between product placement and firm value.

H1: Product placements (in the movies) increase firm value.

In the case of product placement, initial stock price reac-
tion to product placement may be affected by noise trading;
naive investors are known to buy stocks that have appeared
in the news (Barber and Odean 2008), have been advertised
in periodicals (Jain and Wu 2000), and have even been men-
tioned in spam e-mails (Frieder and Zittrain 2007). How-
ever, noise trading is not based on fundamental information
regarding company’s value, so it does not have a permanent
effect on the market prices. If price run-ups associated with
product placements were a result of noise trading, the
resulting gains would be unsustainable, and stock prices
would quickly return to their original state. We address this
possibility in our second hypothesis:

H2: The increase in firm value in response to product place-
ment is persistent.

Because currently, there are few studies exploring spe-
cific theoretical underpinnings of product placement mar-
keting medium, we rely on theories relevant to the advertis-
ing domain to develop the next set of hypotheses. We
acknowledge that not all product placements are paid for
and/or have identifiable sponsors, which might exclude
them from the traditional advertising domain. However,
advertising literature seems relevant because most place-
ments tend to be paid for in some form (Balasubramanian,
Karrh, and Patwardhan 2006), and more important, these
theories have proved to be relevant in settings beyond tradi-
tional advertising (e.g., Karniouchina, Moore, and Cooney
2009).

Habituation–tedium theory (Sawyer 1981; Tellis 2004),
which is based on Berlyne’s (1970) two-factor model, sug-
gests a two-stage process that governs response to repeated
messages. The first stage (wear-in) is related to habituation,
and the second stage (wear-out) is connected to tedium.
When consumers are first exposed to novel advertising
stimuli, they experience tension. Repeated exposure reduces
the apprehension through habituation, which initially leads
to more positive response. However, as the number of expo-
sures exceeds a certain level, boredom and resentment set
in, and attitude toward the ad as well as response diminish;
the two forces lead to an inverted U-shaped relationship
between the number of exposures and ad response.

Numerous studies have explored the effects of repeat
exposure to advertising on consumer attitudes and purchase
intentions. Vakratsas and Ambler (1999) review the adver-
tising literature regarding repeat exposure and find dimin-
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ishing returns in short-term advertising effectiveness.2 That
is, after a certain point, additional advertising impressions
become ineffective. While there is some disagreement
regarding the intensity of consumer response to consecutive
advertising exposures (e.g., Little 1979; Simon and Arndt
1980; Tellis 2004), the majority opinion seems to lie with
the inverted U-shaped relationship between the number of
exposures and attitude formation, indicating wear-in and
wear-out effects consistent with habituation–tedium theory
(also see Appel 1971; Blair 2000).

What distinguishes our study from the aforementioned
work is that we extend the examination of the wear-in and
wear-out effects associated with repeat placements for indi-
vidual brands by considering the wear-in/out effects associ-
ated with the product placement marketing medium in gen-
eral and the tie-in campaigns used to enhance its
effectiveness. In addition to the underlying habituation–
tedium dynamics appearing on the consumer end, it is also
possible that marketers initially gained benefits from learn-
ing to place products more effectively and run and optimize
the tie-in campaigns. Industry sources suggest that Madison
Avenue is constantly “learning more about what not to do
with product placement than what … works best, especially
when it comes to research and testing on consumer reac-
tions to branded-entertainment deals” (Mandese 2006, p. 2).
Therefore, a combination of consumer habituation, industry
learning, and diminishing returns effects would suggest a
curvilinear relationship between product placement effec-
tiveness, concurrent tie-in campaigns, and time:

H3: The longitudinal effect of product placement on firm
value follows an inverted U-shaped relationship.

H4: The longitudinal effect of tie-in campaigns on firm value
follows an inverted U-shaped relationship. 

We are aware of only one other study that examines the
habituation–tedium dynamics when it comes to a novel
advertising form: Edwards and Gangadharbatla (2001)
examine the success of three-dimensional online product
presentations in an experimental setting. They find that for
study participants with limited prior exposure to this adver-
tising medium, the novelty of the advertisement interfered
with information processing and thus adversely affected
purchase intentions. This is consistent with the habituation
notion of the previously described two-step process; how-
ever, because of the novelty of the examined medium, the
aforementioned study was not able to examine the effect of
tedium (Schumann and Thorson 2007). The advantage of
analyzing the product placement medium is that we can
analyze this form of advertisement from the early stage in
its development through the point at which the tedium
dynamics have been established (Wei, Fischer, and Main
2008).

2The law of diminishing returns is an empirical regularity found in
many economic relationships. It stipulates that after a certain point,
with all other inputs held constant, the marginal benefit from adding
one more unit of input drops as that input increases (Samuelson and
Nordhaus 2001). This law has been applied in several advertising
contexts (Picard 1989). For example, Horsky and Simon (1983)
build a successful diffusion model that relies on two fundamental
properties of advertising: lagged effects and diminishing returns.



Data and Methods
In this study, we employ the Brand Hype Movie Mapper
data set. Brand Hype (University of Concordia) is an educa-
tional resource that includes a searchable movie/brand
placement data set starting with 1968. Our investigation is
based on the 1968–2007 time frame and uses 928 product
placement observations (linked to 159 films) that have suffi-
cient financial data for our analysis (for a list of the firms
making the product placements, see Table 2). The average
opening box office revenue in our sample is $18.3 million,
which is significantly lower than the $44.8 million average
Wiles and Danielova (2009) report. Therefore, the sample
used in this study represents a broader cross-section of
small and blockbuster films.

The Brand Hype data set was originally conceived as a
collaborative data set (as was IMDb at its early stage of
development). However, to date, the vast majority of data
collection effort has been carried out by a graduate research
assistant assigned to this project at the University of Con-
cordia. We excluded the few wiki-like entries (related to
foreign films, which the data set creators identified to us)
from our analysis. For financial information on companies
and their stock prices, we accessed the Center for Research
in Security Prices (CRSP) database for stock-related data,
the COMPUSTAT segments database for data needed to
compute diversification measures, and the I/B/E/S database
for data related to analyst coverage.

Event Study Model

Event studies that examine the impact of marketing actions
on firm value are becoming popular in marketing research
(e.g., Sood and Tellis 2004; Wiles and Danielova 2009). We
contribute to this emerging research tradition and employ
an event study methodology to detect market reaction to
product placements. We assume that the event (or movie
release) takes place at t = 0, and we use the estimation win-
dow preceding the event to estimate the normal or expected
return. To predict normal performance, we use the traditional
market model and the four-factor model that augments the
market model by adding several well-documented market
abnormalities (Carhart 1997; Fama and French 1996):

(1) Rit = ai + biRmt + siSMBt + hiHMLt + uiUMDt + eit, 

where

Rit = the return of stock i at time t,
Rmt = the monthly return on the CRSP equally

weighted index,
bi = a measure of stock i’s sensitivity to market

changes,
eit = generalized autoregressive conditional het-

eroskedasticity (GARCH) error term,
SMBi = average return on small minus average return

on large stock portfolios,
HMLt = average return on high minus average return

on low book-to-market stock portfolios, and
UMDt = average return on high minus average return

on low performing stock portfolios.

Using the four-factor model, we define abnormal
returns as follows:
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(2) ARit = Rit – (âi + b̂iRmt + ŝiSMBt + ĥ iHMLt + ûiUMDt),

where âi, b̂i, ŝi, ĥi, and ûi are GARCH (1, 1) estimates of ai,
bi, si, hi, and ui.

We used the GARCH (1, 1) estimation method (as
Bollerslev [1986] suggests) because it allows the condi-
tional variance to change as a function of both previously
realized residuals and past variances. Boehmer, Musumeci,
and Poulsen (1991) and Corhay and Rad (1996) provide
evidence that event-study regression models that account
for time-varying conditional variance properties and sto-
chastic parameters lead to more efficient estimators of
parameters and thus promote more robust conclusions than
traditional event-study methodologies.

Identifying the appropriate data interval to estimate
advertising effects is one of the most challenging questions
in marketing research (Tellis and Franses 2006). The task
becomes even more complicated when the objective is to
isolate the impact of product placement on the market value
of the firm. It is possible that information regarding product
placements affects the market before the movie release
(e.g., due to information leaked by industry insiders).
Therefore, we began by estimating abnormal returns 30
trading days (six weeks) before the release date. Next, we
extended this window because most movies collect the vast
majority of their revenues over a ten-week period (there are
sharp drop-off rates associated with this product category).
The resulting broad time window is (–30, 50). Our choice
of the time window that is broader than a few days around
the event date is consistent with the common practice
adopted in finance (e.g., MacKinlay 1997). Next, we
adjusted this window according to the empirical results. The
majority of the reaction takes place within a (–10, 16) event
window (see Figure 2); thus, we focused the rest of our
analysis on this time window, which roughly corresponds to
two business weeks before and three business weeks after
the movie release. We further verify the appropriateness of
the event window by examining pre– and post–event window
returns. Cumulative abnormal returns for various pre– and
post–event window time frames, such as (–30, –11), (–20,
–11), (17, 20), (17, 30), and (17, 50), are not significant.

We empirically control for event clustering and use 
statistical tests that account for autocorrelation and event-
induced volatility; that is, we use a standardized cross-
sectional test that is better suited than the conventional stan-
dard deviation test to deal with autocorrelation and event-
induced volatility. It is more powerful than the
Brown–Warner test (Brown and Warner 1985) but is equally
well specified (Boehmer, Musumeci, and Poulsen 1991).

Multilevel Mixed Coefficient Model (Hierarchical
Linear Modeling)

The drivers in our conceptual model relate to either a par-
ticular placement or a particular motion picture in which the
placement was embedded (Figure 1). In addition, the brand
placements we analyze in this study belong to different
industries. Multilevel models focus on the analysis of data
with such complex patterns of variance (i.e., nested struc-
tures; Luke 2004). Marketing researchers have been using
multilevel models increasingly because they can model
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TABLE 2
Firms with Product Placement in the Sample

Company Frequency Company Frequency Company Frequency

Coca-Cola Co. 75 ConAgra Foods Inc. 3 Del Monte Foods Co. 1
PepsiCo Inc 61 Costco Wholesale Corp. 3 Domino’s Pizza Inc. 1
General Motors Corp. 45 Dr Pepper Snapple Group 3 Donna Karan International Inc. 1
Anheuser-Busch Cos. Inc 34 Gannett Co. Inc. 3 Dow Jones & Co. Inc. 1
Procter & Gamble Co. 32 The Hershey Co. 3 Dunkin Donuts 1
Apple Computer Inc. 29 Intercontinental Hotels 3 DynCorp International Inc. 1
Daimlerchrysler AG 28 Molson Coors Brewing Co. 3 eBay Inc. 1
Sony Corp. 27 Philip Morris International Inc. 3 Energizer Holdings Inc. 1
Time Warner Inc 27 Polo Ralph Lauren Corp. 3 Ericsson L M Telephone Co. 1
Diageo plc 18 Reynolds American Inc. 3 Foot Locker Inc. 1
NIKE Inc. 18 Sears Holdings Corp. 3 GlaxoSmithKline PLC 1
The Walt Disney Co. 16 Wyeth 3 Groupe Danone 1
News Corp. 15 YUM! Brands Inc. 3 Gulf Oil Limited Partnership 1
McDonald’s Corp. 13 Bank of America Corp. 2 Halliburton Company 1
Unilever NV 13 Bristol-Myers Squibb Co. 2 H.J. Heinz Co. 1
Cadbury Schweppes GmbH 12 The British Petroleum Co. PLC 2 Holiday Cos. 1
General Mills Inc. 12 Cendant Corp. 2 Home Depot Inc. 1
Altria Group Inc 11 Chevron Corp. 2 Hanes Brands Inc. 1
Microsoft Corp. 11 Clorox Co. 2 Intel Corp. 1
FedEx Corp. 10 Compaq Computer Corp. 2 Estee Lauder Inc. 1
Kraft foods inc 10 Deere & Co. 2 Liz Claiborne Inc. 1
Matsushita Electric 10 The Dow Chemical Co. 2 Luxottica Group S.p.A. 1

Industrial Ltd.
Motorola Solutions Inc. 10 Federated Department 2 Marriott International Inc. 1

Stores Inc.
The New York Times Co. 10 Fortune Brands Inc. 2 Marvel Entertainment LLC. 1
Eastman Kodak Co. 9 Fuji Photo Film 2 The McClatchy Co. 1
Toyota Motor Corp. 9 Harrah’s Entertainment Inc. 2 Meredith Corp. 1
Viacom Inc. 9 Hewlett-Packard Co. 2 NTL Inc. 1
AOL Inc. 8 JPMorgan Chase & Co. 2 Palm Inc. 1
Nokia Corp. 8 Jones Apparel Group Inc. 2 Payless Shoesource Inc. 1
Starbucks Corp. 8 Krispy Kreme Doughnuts Inc. 2 Pearson PLC 1
Washington Post Co. 8 Eli Lilly & Co. 2 Red Hat Inc. 1
Campbell Soup Co. 7 Limited Brands Inc. 2 Reed Elsevier Group PLC 1
Adolph Coors Co. 7 Martha Stewart Living 2 Reuters Group PLC 1

Omnimedia Inc.
Dell Inc. 7 Morgan Stanley Dean 2 Revlon Inc. 1

Witter & Co.
General Electric Co. 7 Phillips-Van Heusen Corp. 2 Riviera Holdings Corp. 1
Google Inc. 7 Prentiss Properties Trust 2 Sara Lee Corp. 1
Johnson & Johnson 7 Prudential Financial Inc. 2 Sea Containers Ltd. 1
Pfizer Inc. 7 Sanyo Electric Co. Ltd. 2 Skechers U.S.A. Inc. 1
AMR Corp. 6 Schering Plough Products Corp. 2 Smith & Wesson Holding Corp. 1
Hasbro Inc. 6 Starwood Hotels & Resorts 2 Sprint Nextel Corp. 1

Worldwide Inc.
Koninklijke Philips 6 Target Corp. 2 Staples Inc. 1

Electronics NV
Mattel Inc. 6 VF Corp. 2 Sunoco Inc. 1
William Wrigley Jr. Co. 6 Wal-Mart Stores Inc. 2 The TJX Companies Inc. 1
AT&T Inc. 5 3M Co. 1 Talbots Inc. 1
Brown-Forman Corp. 5 Air France KLM 1 Telecom Italia S.p.A. 1
Church & Dwight Co. Inc. 5 Alcoa Inc. 1 Tiffany & Co. 1
Ford Motor Co. 5 Allied Domecq PLC 1 Tootsie Roll Industries Inc. 1
The Gap Inc. 5 Amazon.com Inc. 1 Toys “R” Us Inc. 1
International Business 5 Applebee’s International Inc 1 Tricon Global Restaurants Inc. 1

Machines Corp.
Tribune Company 5 BP PLC 1 UAL Corp. 1
Verizon Communications Inc. 5 Berkshire Hathaway Inc. 1 USA Network 1
American Express Co. 4 Borders Group Inc. 1 United Parcel Service Inc. 1
Goodyear Tire & Rubber Co. 4 Boyd Gaming Corp. 1 Vodafode Group PLC 1
Honda Motor Co. Ltd. 4 British American Tobacco 1 Warner Communications Inc. 1
Kellogg Co. 4 CBS Corp. 1 Warner-Lambert Co. 1
Kimberly-Clark Corp. 4 Canon Inc. 1 Whirlpool Corp. 1
Playboy Enterprises Inc. 4 Capital One Financial Corp. 1 Yahoo! Inc. 1
TDK Corp. 4 Cisco Systems Inc. 1
Colgate Palmolive Co. 3 CNH Global NV 1 Total 928



various multilevel market phenomena (e.g., Inman, Winer,
and Ferraro 2009).

Additional levels render the model more general and
often more useful because when a hierarchy exists, an
analysis of data aggregated from different levels may pro-
duce inaccurate and unreliable results (Kreft and De Leeuw
2002). For example, with nested structures, the assumption
of independent errors is violated (observations belonging to
the same higher-level unit tend to covary), rendering the tra-
ditional regression approaches that rely on this assumption
inadequate. In the context of this study, hierarchical linear
modeling (HLM) enables us to consider several levels of
analysis (i.e., the movie, industry, and placement levels) to
capture unobserved movie- and industry-level heterogeneity
and analyze cross-level interactions when it comes to time-
related effects. After aggregating abnormal returns and
assessing the significance of CARs across different periods,
we estimate an HLM that links the CARs to variables
reflected in our conceptual framework. We confine the dri-
vers to their respective levels (see Figure 3).

In the HLM model, the dependent variable is CAR over
the (–10, 16) time window. We modeled CAR as a function of
brand placement–related (Level 1), movie-related (Level 2),
and industry-related (Level 2) factors. We cross-classified the
model because at each level, one unit is simultaneously clas-
sified by two higher-level effects (i.e., movie and industry).

Tables 3 and 4 present the variables used and their
sources. Table 5 presents descriptive statistics for the
variables used in estimation.
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The Level 1 Model:

(3) CARijk = p0jk + p1jk(BRAND–TICKER MATCH)ijk

+ p2jk(TIE-IN CAMPAIGN)ijk 

+ p3jk(NUMBER OF OTHER BRANDS FROM 

SAME FIRM)ijk

+ p4jk(NUMBER OF APPEARANCES WITH 

MAIN CHARACTER)ijk + p5jk(TURNOVER)ijk

+ p6jk(NYSE)ijk + p7jk(NASDAQ)ijk

+ p8jk ln(ADJUSTED MARKET 

CAPITALIZATION)ijk

+ p9jk (BRAND CLUSTERING)ijk

+ p10jk(OVERALL CLUSTERING)ijk

+ p11jk(BRAND FAMILIARITY)ijk

+ p12jk(PLACEMENT INTENSITY)ijk + eijk,

where

CARijk = the cumulative abnormal return over the
(–10, 16) event window that pertains to
placement i in movie j in industry k,

p0jk = the intercept or average CAR for a prod-
uct placement in movie j industry k,

eijk ~ N(0, s2) = Level 1 within-the-cell random effect
measured by the deviation of CAR asso-

FIGURE 2
CARs to Product Placements (with Detail by Industry)
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ciated with placement i in movie j indus-
try k from the predicted outcome based
on the Level 1 descriptors.

The Level 2 model has two levels because it estimates
the impact of the characteristics of movie j and industry k
on the size of the CAR. The model incorporates an unob-
served movie- and industry-level heterogeneity, which we
model with random effects, and the observed movie hetero-
geneity, which we model with several fixed movie-level
variables. We incorporated potential curvilinear effects cen-
tral to our hypotheses by introducing YEAR and YEAR2
variables.

The Level 2 Model:

(4) p0jk = q0 + g01(YEAR)j + g02(YEAR2)j

+ g03(IMDB USER RATING)j

+ g04(TOTAL PLACEMENTS)j + g05(COMEDY)j

+ g06(CRIME)j + g07(ROMANCE)j + g08(DRAMA)j

+ g09(ACTION)j + g010(HORROR)j + g011(SCIFI)j

+ g012(THRILLER)j + g013(R-RATING)j

+ g014(ECONOMIC CONTRACTION)j

+ g015(STAR_NEXT)j + g016(CRITICS)j

+ g017ln(ADJUSTED BUDGET)j
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+ g018ln(ADJUSTED FIRST-WEEK GROSS)j

+ b00j + c00k,

where

q0 = the model intercept or E[p0jk] when all the non-
dummy explanatory variables are set to the
mean and all the dummy variables are set to 0;

b00j = the residual random effect associated with movie
j, ~N (0, tb00); and

c00k = residual random effect associated with industry
k, ~N (0, tc00).

Finally, we assume most Level 1 coefficients to be
fixed. However, we model the effectiveness of tie-in cam-
paigns and the time-related dynamics describing their effec-
tiveness by introducing cross-level interactions. The Level 1
coefficients are as follows:

p1jk = q1,

p2jk = q2 + g21YEAR + g22YEAR2 + g23STAR_NEXT,

p3jk = q3,

. .

. .

. .

p12jk = q12.

FIGURE 3
HLM Modeling Approach
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Movies

Level 2

Covariates:
Year, Year2

IMDb rating

Total number of placements

Genre (comedy, romance, drama, etc.)

Economic contraction (business cycle)

MPAA rating (R-rating)

Stars, critics, budgets

Adjusted first week gross

Level 1

Covariates:
Brand–ticker match

Tie-in campaigns <Factors: Year, Year2, Stars>

Number of other brands from the same firm

Number of appearances with main character

Turnover, stock exchange, market cap

Clustering, familiarity, placement intensity

Additional Control Variables:
Sales-based Herfindahl index

Analyst coverage

Industries

Placements

CAR
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Variable Description Rationale for Inclusion Source
Relationship to Con-
ceptual Framework

CARijk CAR for firm that owns brand i (in
industry k) that appeared in movie j
over a (–10, 16) event window.

Dependent variable,
widely accepted measure
of economic worth.

EVENTUS Measureable outcome

BRAND–TICKER
MATCH ijk

Dummy variable that takes a value
of 1 if a brand can be easily mapped
to its owner (i.e., brand name search
on Yahoo! Finance produces the
ticker of the parent company).

Noise traders have been
shown to be confused by
stock tickers. The variable
also indirectly controls for
company diversification.

Yahoo!
Finance

Likelihood of action:
ability to connect 

company and brand

TIE-IN CAMPAIGN ijk Dummy variable that takes a value
of 1 for placements with concurrent
tie-in campaigns Based on detailed
review of news archives (±one
month of the movie release date).

Measuring impact of tie-
ins and existence of
time-related effects after
additional time-related
variables are added (H4). 

LexisNexis
search for
brand and
movie title.

Exposure and 
awareness

NUMBER OF OTHER
BRANDS FROM
SAME FIRMijk

Total number of brands belonging
to the same company i in movie j.
Mean centered.

Competitive clutter; 
competing investment
options.

Brand Hype Exposure and 
awareness/likelihood

of action

NUMBER OF
APPEARANCES
WITH MAIN 
CHARACTERijk

Number of times the brand
appeared with the main character
throughout the film. Mean centered.

Proxy for placement
overtness.

Brand Hype Acceptance

TURNOVER ijk Daily share trading volume of com-
pany’s stock divided by the number
of shares outstanding (averaged
over 30 days before event window).

Control variable, 
captures trading intensity
and liquidity.

CRSP Market, stock, 
and company 
characteristics

NYSEijk Dummy variable that takes a value
of 1 if the stock is traded on the
New York Stock Exchange. AMEX
serves as a base category.

Control variable for stock
exchange.

CRSP Market, stock, 
and company 
characteristics

NASDAQijk Dummy variable that takes a value
of 1 if the stock is traded on the
NASDAQ. AMEX serves as a base
category.

Control variable for stock
exchange.

CRSP Market, stock, 
and company 
characteristics

ADJUSTED MARKET
CAPITALIZATIONijk

Regressions included a customary
ln transformation of this variable
instead of its raw value. Mean 
centered.

Control variable for com-
pany characteristics.

CRSP Market, stock, 
and company 
characteristics

BRAND CLUS-
TERINGijk

Number of product placements of
the same company within two
weeks before and two weeks after
the focal movie release.

Control variable for
placement intensity and
measurement noise.

Brand Hype Market, stock, 
and company 
characteristics

OVERALL CLUS-
TERINGijk

Number of all product placements
within two weeks before and two
weeks after the focal movie
release.

Control variable for 
number of competing
options.

Brand Hype Likelihood of
action/market, stock,

and company 
characteristics

BRAND 
FAMILIARITYijk

Number of Wall Street Journal
mentions during the year 
preceding the release of the film.
Mean centered.

Control variable for
brand familiarity; affects
exposure, awareness,
and persuasiveness of
brand communication.

Wall Street
Journal

Exposure and 
awareness/likelihood

of action

PLACEMENT INTEN-
SITYijk

Number of previous placements
divided by time from the first 
placement. Mean centered.

Control variable; 
measures overall 
intensity of placements
for focal brand.

Brand Hype Exposure and 
awareness/market,
stock, and company

characteristics

DIVERSIFICATIONjjk Sales-based Herfindahl index. 
Control variable, not in final model.

Alternate explanation for
change in effectiveness
over time.

COMPU-
STAT

Market, stock, 
and company 
characteristics

ANALYST COVER-
AGEjjk

Number of analysts covering stock
in a given year. Not in final model.

Alternate explanation for
change in effectiveness
over time.

I/B/E/S Market, stock, 
and company 
characteristics

TABLE 3
Level 1 Variables
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Variable Description Rationale for Inclusion Source
Relationship to Con-
ceptual Framework

YEAR j, 
YEAR SQUARED j

Year of release for movie j. Mean
centered.

Habituation–tedium dynam-
ics, testing H3 and H4.

IMDb Acceptance

IMDB RATING j IMDb user rating for movie j. Mean
centered.

Captures movie quality and
likability.

IMDb Acceptance

TOTAL 
PLACEMENTSj

Total number of brand placements
in movie j (Brand Hype data set).
Mean centered.

Competitive clutter. Number
of competing investment
options.

Brand
Hype

Exposure and 
awareness/likelihood

of action

COMEDYj Dummy variable taking a value of 1
if movie j is a comedy.

Some genres could be more/
less suitable to serve as a
backdrop for placements.

IMDb Acceptance

CRIMEj Dummy variable taking a value of 
1 if movie j falls under the crime
category.

See preceding item. IMDb Acceptance

ROMANCEj Dummy variable taking a value of 1
if movie j falls under the romance
category.

See preceding item. IMDb Acceptance

DRAMAj Dummy variable taking a value of 1
if movie j is a drama.

See preceding item. IMDb Acceptance

ACTIONj Dummy variable taking a value of 1
if movie j falls under the action
category.

See preceding item. IMDb Acceptance

HORRORj Dummy variable taking a value of 1
if movie j falls under the horror
category.

See preceding item. IMDb Acceptance

SCIFIj Dummy variable taking a value of 
1 if movie j falls under the science
fiction category.

See preceding item. IMDb Acceptance

THRILLERj Dummy variable taking a value of 1
if movie j falls under the thriller
category.

See preceding item. IMDb Acceptance

R-RATINGj Dummy variable taking a value of 1
if the movie j received an R rating
from the MPAA.

Violence, bad language, and
so on could interfere with
information processing
(Wiles and Danielova 2009).

IMDb Acceptance

ECONOMIC 
CONTRACTIONj

Dummy variable taking a value of 1
when economy is in recession.

Business cycles influence
consumer response to
advertisements and 
consequently investors’
desire to invest.

NBER Market, stock, 
and company 
characteristics

STAR NEXTj Dummy variable taking a value of 1
if a major star involved in the film
had a blockbuster within three
years before movie’s release

Star power can make place-
ments more visible and
memorable.

IMDb Acceptance

CRITICSj Composite score on 1–100 scale. Movie’s critical acclaim is
known to be negatively
associated with placement
effectiveness (Wiles and
Danielova 2009).

Meta-
Critic,
Rotten

Tomatoes

Acceptance

ADJUSTED BUDGETj Production budget adjusted for
inflation using historical movie ticket
prices. Natural log-transformed,
mean centered.

Captures movie’s 
pre-release visibility.

IMDb,
industry
sources,
MPAA

Exposure and 
awareness

ADJUSTED FIRST-
WEEK GROSSj

Opening week numbers from Inter-
net Movie Database (imdb.com),
adjusted for inflation using historical
movie ticket prices. Natural log-
transformed, mean centered.

Captures audience reach. IMDb,
MPAA

Exposure and 
awareness

TABLE 4
Level 2 Variables

Notes: Genre variables are not mutually exclusive. Non-R-rated movies serve as the base category. MPAA = Motion Picture Association of
America, and NBER = National Bureau of Economic Research.



All nondummy variables are mean centered. We used a full
maximum likelihood approach (as Raudenbush 1993 out-
lines) to estimate the mixed model that combines both lev-
els with the specified cross-level interactions (see the
Appendix).

Discussion of Findings

Event Study Results

Figure 2 presents the CAR results. They reveal a gradual
stock price buildup that begins approximately ten days
before the movie release and continues for approximately
three business weeks (i.e., 16 days) after the release date,
followed by price stabilization. Over the price buildup
period (i.e., the [–10, 16] event window), the stocks gain
.75% on average (see Table 6). The returns to product place-
ments in the movies are positive and significant. Therefore,
H1 is supported.

In addition to CARs, Figure 2 presents event window
results for the top four industries represented in our sample.
Although there is some noise due to reduced sample size,
there is a clear pattern of positive abnormal returns in our
event window. There is variation in the magnitude of CARs

Product Placement in Movies / 39

across industries (from .26% for media and entertainment to
1.56% for electronics); however, the overall pattern of
CARs is consistent: All four industries experience positive
abnormal returns during the event window.

In line with recent marketing research, the documented
price pattern (Figure 2) suggests that investors’ new infor-
mation processing takes time; delayed stock market
response to marketing-related information may be a more
common phenomenon than previously believed (Kim-
brough and McAlister 2009; Srinivasan and Hanssens
2009). For example, Pauwels et al. (2004) find that it takes
six weeks in the automobile sector to absorb new product
introductions. This finding is also consistent with traditional
finance literature that notes that it takes time for the infor-
mation to be fully reflected in stock prices (Kyle 1985).

Although stock prices can be driven by informed trad-
ing, they can also be affected by uninformed noise trading.
If the latter is the case, stock price reaction would only be
temporary, and the change in stock prices would not be a
good measure of the value of product placement. Figure 2
indicates that when prices peak three business weeks after
the event date, they stay on a new level for at least three
more weeks. We also note the potential presence of noise
trading, which results in a minor price adjustment in the

TABLE 5
Descriptive Statistics

N M SD Minimum Maximum

Level 1 Variable
CAR 928 .75 9.48 –45.75 46.16
BRAND–TICKER MATCH 928 .55 .50 .00 1.00
TIE–IN CAMPAIGN 928 .02 .13 .00 1.00
NUMBER OF BRANDS FROM 928 1.36 .67 1.00 5.00

THE SAME COMPANY
NUMBER OF APPEARANCES 928 1.35 2.07 .00 42.00

WITH MAIN CHARACTER
TURNOVER 928 .01 .01 .00 .24
NYSE 928 .89 .32 .00 1.00
NASDAQ 928 .11 .31 .00 1.00
LN (ADJUSTED MARKET CAP) 928 23.51 1.80 14.37 26.92
BRAND CLUSTERING 928 1.53 .91 1.00 6.00
OVERALL CLUSTERING 928 18.20 14.29 1.00 62.00
BRAND FAMILIARITY 928 1.77 .85 .00 4.54
PLACEMENT INTENSITY 928 .00 .00 .00 .06

Level 2 Variable
YEAR 159 2001.52 7.29 1968.00 2007.00
YEAR2 159 4,006,143.00 29,034.10 3,873,024.00 4,028,049.00
IMDB USER RATING 159 7.02 .98 2.40 8.80
TOTAL PLACEMENTS IN FILM 159 5.84 5.08 1.00 41.00
COMEDY 159 .30 .46 .00 1.00
CRIME 159 .16 .37 .00 1.00
ROMANCE 159 .13 .34 .00 1.00
DRAMA 159 .54 .50 .00 1.00
ACTION 159 .19 .40 .00 1.00
HORROR 159 .05 .22 .00 1.00
SCIFI 159 .09 .28 .00 1.00
THRILLER 159 .22 .42 .00 1.00
R-RATING 159 .47 .50 .00 1.00
ECONOMIC CONTRACTION 159 .06 .24 .00 1.00
STAR NEXT 159 .47 .50 .00 1.00
CRITICS 159 67.74 18.57 17.00 98.00
LN (ADJUSTED BUDGET) 159 15.40 1.12 11.07 17.29
LN (ADJUSTED FIRST-WEEK GROSS) 159 15.49 2.20 8.54 18.63



post event window. However, when we examine (17, 30)
event window, the CARs are not significant, indicating that
there is no noticeable price drift in the longer run. This sup-
ports H2 and our position that the observed price changes
indicate the informed nature of the revised estimates of a
company’s value around the event.

Multilevel Mixed Coefficient Model Results

The HLM results indicate significant differences in CARs
for brands placed in different films. The variance component
associated with the random film effect is significant (p <
.01). The fixed effects component of the model produces a
significant, positive coefficient for the YEAR and a signifi-
cant, negative coefficient for the YEAR2 variable. This lon-
gitudinal pattern of abnormal returns provides support for
H3, indicating a curvilinear, inverted U-shaped relationship
between time and CAR. We estimate that the effectiveness
of product placement peaked in the late 1980s (i.e., 1988)
and has been declining since then.3 Additional analysis
reveals that the mean market response to placements from
the 2005–2007 time frame is actually negative (i.e., –.014%)
and significantly different (p = .01) from the 1.4% response
associated with the rest of the sample. These results indicate
that product placement may now be overstaying its wel-
come. The medium that was once considered new, fresh,
and capable of sliding under the radar of the average con-
sumer at present may create “a healthy dose of resentment
… for its commercial intrusion into entertainment that [the
consumer] has already paid for” (Yglesias 2009). Alterna-
tively, or in conjunction, the decline in return over time dur-
ing the later time periods could also be potentially
explained by the soaring costs of placements.4 Detailed
examination of the efficacy of recent product placements
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seems warranted to justify continued adoption of this mar-
keting practice.

We find a similar return trajectory for tie-in campaigns.
The economic worth of those campaigns seems to have
peaked in 2000, suggesting that this relatively new tactic may
also have gone through the prime of its economic worth.
Even though the coefficient associated with tie-in campaigns
(intercept) is negative (p < .05), we must also consider the
time-related interactions related to tie-ins. The model coef-
ficient for YEAR interaction is positive and significant, and
the coefficient for YEAR2 is negative and significant. The
combination of these coefficients results in an inverted U-
shaped relationship. Therefore, H4 is also supported.

Other Significant Findings

The variable (NUMBER OF APPEARANCES WITH
MAIN CHARACTER) has a significant negative coeffi-
cient. (An alternative measure of overtness using time on
screen with the main character generated qualitatively the
same results.) There is anecdotal evidence suggesting that
blatant product placements can be detrimental. For exam-
ple, FedEx drew criticism for the relentless abundance of
FedEx references in the movie Cast Away (2000) (Friedman
2004). Our result is consistent with the literature that sug-
gests that “in your face,” overt placements may not be as
effective as their more subtle counterparts.

Table 7 presents the complete results for the mixed-
coefficient model. The coefficient of the BRAND TICKER
MATCH variable is marginally significant and positive,
which implies that part of the stock price movement may be
attributable to the involvement of naïve individual traders.5
This finding does not persist during the validation check on
a subsample of the data corresponding to the later time
period (for a detailed discussion, see the “Robustness Tests”
section), indicating that that naive traders may have gotten
better at identifying parent companies over time. This is
plausible because finance portals are making increasingly
sophisticated search tools available to individual investors.
Even if naive investors drive some of the response, their
involvement does not undermine the support found for H2.
Moreover, the presence of uninformed trading may actually

TABLE 6
CARs and Significance Tests for Fama–French-Momentum Time-Series Model, Equally Weighted Index,

GARCH (1, 1) Estimation

Positive: Portfolio Cross-Sectional Generalized

Days N Mean CAR Negative CDA t Error t Sign Z

(–2, 0) 928 .04% 452:476 .266 .325 –.006
(–10, +16) 928 .75% 498:430** 1.867* 2.404** 3.015**
(+17, +30) 928 –.29% 439:489 –1.369 –1.628 –.860

*p < .05.
**p < .01.
Notes: CDA = crude dependence adjustment.

3We mean-centered time-related variables. The coefficients for
YEAR and YEAR2 are 56.81 and –.0143, respectively. Therefore,
the following function needs to be maximized: 56.81 ¥ (X – X) ¥
–.0143 ¥ (X2 – X2). First-order conditions indicate that the func-
tion is maximized when X = 1987.82, or roughly in 1988.

4The investors may also have gotten better at anticipating the
impact of product placements, and their expectations may already
be priced in the stock valuations during later periods. A simple
check conducted by splitting the sample into time-related cate-
gories and extending the event window revealed that this is not
likely to be the case. Similarly, Wiles and Danielova (2009) find
no evidence that preannounced placements generated lower
returns than regular placements. Indeed, preannounced placements
were associated with higher returns in their sample.

5Conceivably, the stock prices of diversified conglomerates are
not affected as much as the stock prices of smaller companies
(whose brand ticker matches tend to be greater). However, the first
explanation seems more plausible because controlling for diversi-
fication does not change this finding.



attract informed traders (Kyle 1985). In turn, informed trad-
ing facilitates permanent market price adjustment to the
new information, which we observe in our sample (i.e.,
prices do not retreat to preplacement levels).

Differences Across Movies and Industries

The results indicate that our sample has significant movie and
industry specific heterogeneity (p < .01). The implication is
that picking appropriate films for placement is a relevant
managerial concern. Further examination of the industry-
related random effects revealed additional dynamics associ-
ated with industry differences.6 We analyzed empirical
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Bayes (EB) residuals associated with random industry coef-
ficients in our mixed effects model, which are indicative of
the size of the random effects associated with individual
industries (Raudenbush and Bryk 2002). Figure 4 presents
the sizes of EB residuals compared with posterior variance
of the estimates.

Two industries are characterized by large positive residu-
als and low posterior variance: electronics and automotive
placements enjoy .8% and .2% higher returns, respectively,
when compared with other placements. At the same time,
other popular placements, such as those for soft and alco-
holic drinks, media and entertainment, and food processing,
do not enjoy similar advantages. Alcoholic beverages lag
almost half a percentage point behind average placements.
Although it is possible that some of the alcohol-related
placements do not present the product in a positive light, the
examination of our sample offers another explanation. The
vast majority of placements are for inexpensive domestic

6In addition to examining random industry effects, we incorpo-
rated various industry classification schemes into our analysis. For
example, we examined delineation of products along the consumer–
industrial goods continuum and introduced fixed effects for conve-
nience, shopping, specialty, and unsought product categories.
These additional analyses did not produce any significant findings.

TABLE 7
HLM Results for Fixed Effects and Cross-Level Interactions

Fixed Effect Coefficient Estimates SE T-statistic p-Value

INTERCEPT q0 –2.678 5.046 –.531 .595
BRAND–TICKER MATCH q1 1.1770 .696 1.691 .091
TIE-IN CAMPAIGN q2 –14.60705 6.579 –2.220 .027
NUMBER OF BRANDS FROM q3 –.31327 .512 –.611 .541

SAME COMPANY
NUMBER OF APPEARENCES q4 –.42066 .172 –2.441 .015

WITH MAIN CHARACTER
TURNOVER q5 .245953 .333 .738 .461
NYSE q6 3.82948 3.835 .999 .319
NASDAQ q7 3.94559 3.991 .989 .324
LN (ADJUSTED MARKET CAP) q8 .09953 .157 .633 .527
BRAND CLUSTERING q9 –.3989 .370 –1.076 .283
OVERALL CLUSTERING q10 .0320 .042 .758 .449
BRAND FAMILIARITY q11 –31.808 81.358 –.391 .696
BRAND PLACEMENT INTENSITY q12 3.8295 3.835 .999 .319
YEAR g01 56.812 23.604 2.407 .016
YEAR SQUARED g02 –.0143 .006 –2.410 .016
IMDB USER RATING g03 .4813 .685 .703 .482
TOTAL PLACEMENTS IN FILM g04 .0279 .073 .380 .704
COMEDY g05 .0137 1.100 .012 .990
CRIME g06 .4279 1.041 .411 .681
ROMANCE g07 –3.7764 1.174 –3.217 .002
DRAMA g08 –1.6223 .873 –1.858 .063
ACTION g09 .5220 1.300 .402 .687
HORROR g010 –3.2309 2.436 –1.326 .185
SCIFI g011 –1.1287 1.593 –.709 .479
THRILLER g012 –1.8059 1.155 –1.564 .118
R-RATING g013 .7506 .921 .815 .415
ECONOMIC CONTRACTION g 014 –.9145 1.672 –.547 .584
STAR NEXT g015 –.1709 .853 –.200 .842
CRITICS g016 –.0583 .033 –1.762 .078
LN (ADJUSTED BUDGET) g017 –.2212 .489 –.452 .651
LN (ADJUSTED FIRST-WEEK GROSS) g018 .0149 .222 .067 .947
(YEAR) ¥ (TIE-IN CAMPAIGN) ij g21 1754.614 671.336 2.614 .009
(YEAR2) j ¥ (TIE-IN CAMPAIGN) ij g22 –.438623 .168 –2.614 .009
(STAR_NEXT) j(TIE-IN CAMPAIGN) ij g23 7.355332 6.530 1.126 .261

Variance

Random Effect Coefficient SD Component v2 p-Value

Movie b00 1.71 2.94 190.44 .003
Industry c00 .69 .48 31.52 .000

Notes: Results significant at 90% level and higher are in bold.



beer, a relatively mundane product category. We also note
that, across the board, the “unexciting” product categories
(e.g., food processing; telecom; retail, which captures retail
“super-chains” and large box stores) have lower returns.

Our results also indicate that placements in movies with
higher critical scores may be associated with lower CARs.
In addition, drama placements are associated with margin-
ally lower abnormal returns, while romance placements are
associated with significantly lower CARs. These findings
suggest that movies that require deep emotional involve-
ment on the viewer’s part and/or heavily rely on story lines
and convincing character portrayal may not be good candi-
dates for product placements. In such environments, place-
ments could be viewed as disruptive or risky or may be sim-
ply overlooked because of their incongruence with the films. 

Resonance between advertisement-induced emotions
and consumers’ incidental emotions facilitates message pro-
cessing (Petty and Wegener 1998). Drama and romance
movies may provoke emotional states that are incongruent
with emotional states provoked by placements for cars, soft
drinks, and other commonly placed categories. Another
explanation for the lack of success for placements in these
genres is emotional and cognitive overload. Dramas are
usually more cognitively demanding, and romance films
tend to send the viewers on an emotional roller coaster,
leaving little room for processing secondary information.
Furthermore, overload of negative emotions may drive
people to shut down and avoid processing the message
(Agrawal, Menon, and Aaker 2007).

Robustness Checks

We performed numerous robustness checks to reinforce the
validity of our findings. First, we alternated the model
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specification used to estimate the dependent variable for our
mixed-coefficient model. We used market and three- and
four-factor market models and alternative estimation proce-
dures (GARCH and ordinary least squares) to compute
CARs in our event study. All the models and estimation
procedures produced similar results.

We also examined the robustness of our HLM model.
First, we employed the jackknifing procedure and made
predictions for every observation while leaving that obser-
vation out of the estimation procedure. Next, we observed
the correlation of these predictions and actual CARs, the
correlation of .35 was significant (p < .001). We also fol-
lowed Cooil, Winer, and Rados (1987) and calculated the
cross-validatory (or predictive) R-square for the model,
which is equal to .12. These estimates suggest modest pre-
dictive power but compare favorably against extant stock
market return-based marketing studies (e.g., Sood and Tellis
2009; Sorescu, Shankar, and Kushwah 2007).

Next, we examined CARs in different industries and
within individual brands to determine whether our generaliza-
tions regarding the curvilinear trends hold in individual
brands and product categories. Specifically, we observed
the top four product categories and the three most fre-
quently placed brands (in categories in which we had
enough data to examine trends). We found evidence of an
inverted U-shaped relationship between CARs and time for
each of the three most frequently placed brands (Coca-Cola,
PepsiCo, and General Motors). In all three cases, the qua-
dratic trend line produced the best fit with the quadratic
terms that have a negative coefficient (R-square ranged
from .03 to .19). We also examined individual industries
with the largest number of placements and again found evi-
dence of an inverted U-shaped relationship (see Table 8).

We also used our conceptual framework to consider
alternative explanations for the existence of time-related
effects. In particular, we considered degree of company
diversification (for estimation details, see Comment and
Jarrell 1995) and intensity of analyst coverage, measured by
the average number of analysts covering a particular stock
in a given calendar year. The resulting model (unreported)
revealed insignificant coefficients for these control
variables.

We also examined market response to three movie
groups (small, average, and blockbuster films) by conduct-
ing separate event studies for three tertiles based on
adjusted opening week movie revenue. (Tertiles based on
total gross revenue results provided qualitatively the same

FIGURE 4
Empirical Bayes Residuals by Industry
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TABLE 8
Trends Within Individual Brands and Industries

R2 Quadratic

R2 Trend (Sign of

Linear Squared Approximate

Industry N Trend Coefficient) Peak

Media and 
entertainment 144 .000 .04 (–) 1995

Soft drinks 124 .000 .05 (–) 1992
Electronics 109 .000 .04 (–) 1993
Automobiles 91 .001 .01 (–) 1995



results.) We used case ranking procedure to divide the data
set into the three groups (i.e., low, average, and high ter-
tiles). The average opening week figures (expressed in 2006
dollars) for the three groups were $2.6 million, $15.6 mil-
lion, and $44.3 million, respectively. Our top tertile is simi-
lar to the sample of Wiles and Danilova (2009), who report
average opening revenue of $44.8 million for their entire
sample (see Table 9).

Figure 5 presents the dynamics of the prices around the
movie release date separately for the three groups of movies.
The significant price increases for the high-grossing films
start 30 trading days before the release of the film, with
most of the CARs taking place before Day 4; then, a period
of insignificant price movements are followed by the down-
ward adjustment. The price reaction for the movies with
lower box office revenues starts later (right after the release
date) but takes less time to complete. Prices stabilize on the
new level within two weeks. The price pattern for the block-
buster films suggest that, while the investors’ reaction to the
placements in such movies reaches a higher magnitude than
the reaction to the lower-grossing films, some of the initial
reaction may be driven by uninformed trading and, to that
degree, is not indicative of the potential increase in compa-
nies’ future revenues. The earlier prerelease price run-up for
high-grossing movies is consistent with this explanation
because hype among the noise traders could be driven by the
intense prerelease advertising campaigns associated with
these high-grossing/high-budget films. Nevertheless, the
permanent price impact of the placement in high-grossing
movies does not seem to be different from that in low-
grossing movies.
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The combined results from this study and that of Wiles
and Danielova (2009) indicate that blockbuster films may
be associated with higher initial CARs to product place-
ments in films but also with a strong downward adjustment
that takes place when the movie opens. Blockbuster films
may generate more hype, encouraging noise trading. How-
ever, this increased hype does not lead to an additional sus-
tainable increase in the firm’s economic value.

Finally, we considered the possibility that longitudinal
changes in advertising spending at both film and brand level
could influence the relationship between time and place-
ment effectiveness. We performed this robustness check
with the 1994–2007 subsample by including advertising
expenditure across all media for brands and total advertis-
ing budget for films. (Our source, ACNielsen, began col-
lecting both types of data in 1994.) The quadratic curve pro-
duced similar estimates to the linear trend (also similar to
results for the full sample).7 The only difference was that
CARs fell more slowly than predicted by the original
model.

TABLE 9
Opening Weekend Gross Tertiles (Based on Rank Order of Cases)

95% Confidence Interval

Tertile M SE Lower Bound Upper Bound

Low (small) $2,572,293.41 $846,038.98 $911,914.92 $4,232,671.90
Medium (average) $15,597,485.26 $837,942.73 $13,952,995.92 $17,241,974.59
High (blockbuster) $44,282,374.72 $852,968.16 $42,608,397.48 $45,956,351.95

FIGURE 5
CARs for Three Opening-Week Gross Revenue Tertiles
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7Because the peak in the effectiveness of placements was
approximately 1988 (using the full sample), 1994–2007 corre-
sponds to the later part of the life cycle. There is a high degree of
collinearity between YEAR and YEAR2 variables during this time
period where there is an approximately linear negative relationship
between time and CARs. (We found a virtually identical negative
trend in the CARs during the same period when advertising
variables are excluded, so this is not related to their inclusion).
Thus, we estimated additional regressions that include only one of
the time variables. The results for the remaining variables were
qualitatively identical for each specification.



We also examined the curvilinear trend associated with
the effectiveness of tie-in campaigns for the subsample that
includes the data on advertising spending. The effectiveness
of tie-in campaigns peaked in 2000, so the 1994–2007 sub-
sample period captures both pre- and post-peak data for tie-
in campaigns. Consequently, we were able include both
YEAR and YEAR2 variables as predictors of tie-in effec-
tiveness (without collinearity issues), and we observed a
curvilinear effect even during this relatively short period of
time.

Including both advertising related variables (i.e., movie
and brand related advertising spending) did not affect the
inverted U-shaped trend or the timing of the peak in the
effectiveness of the tie-in campaigns. First-order conditions
indicated that the peak in effectiveness of the tie-in cam-
paigns took place in 2000 (as we found in the full data set
results). Although inclusion of advertising-related variables
did not affect the underlying time related trends, it enriches
our understanding of tie-in effectiveness. For example,
negative and significant interaction between the tie-ins and
brand-level advertising spending suggest that tie-ins are
more effective for brands with lower advertising intensity.

In summary, including both movie- and brand-level
advertising variables did not seem to affect the declining
trend in the CARs attributable to placements. As a side
note, previously significant DRAMA and marginally sig-
nificant (i.e., p < .10) BRAND TICKER MATCH variables
lost their significance during the subsample time period.
This finding is not related to advertising spending informa-
tion; these variables were not significant regardless of
whether the advertising spending data are included in the
subsample.

Implications for Managers
Our findings suggest that, just as products go through a life
cycle, so too do the instruments used to market them. When
a new technique shows promise, innovators and early
adopters expand its use and start perfecting its application,
which lead to growth and increased effectiveness. In the
case of product placement in the movies, it seems this hap-
pened before the 1990s. However, as a new marketing tech-
nique gains wider acceptance, lack of novelty may diminish
its effectiveness and consumers may start showing resis-
tance to persuasion. They turn to consumer advocacy
groups (e.g., Media Awareness Network, Commercial Alert)
and technologies that enable them to avoid exposure to
advertising (e.g., DVR) and even lobby for blanket legisla-
tion (e.g., do-not-call lists). Even in the absence of regula-
tory action, consumers seem to learn to tune out the mes-
sages, or they become savvy and impervious to the new
type of marketing media. It is also possible that the costs of
effective forms of marketing media increase, rendering
them less profitable. Regardless of the exact mechanism,
our findings indicate the presence of inverted U-shaped
relationship over time in the returns for a new marketing
practice and reinforce the need for the marketing industry to
reinvent itself as new tactics lose their luster. The inverted
U-shaped relationship holds true not only for product place-
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ments themselves but also for promotional tie-in campaigns
used to support them.

DeLorme, Reid, and Zimmer (1994) report negative
attitudes toward placements involving overexposed brands.
Our results suggest that overexposing the brand within the
same film (as measured by the number of appearances with
the main character) can be detrimental. Furthermore, we find
that tie-in campaigns are less effective for brands with larger
advertising budgets. Counterintuitively, lower-intensity,
fleeting placements can be more profitable than repetitive
and potentially more expensive marquee placements with
main characters. This finding is consistent with previous lit-
erature that suggests that “visual-only placements, typically
the lower-priced placements, are processed by viewers at a
low level of cognition and therefore may lead to stronger
emotional and purchase intent effects than more elaborate
placements that mention the product by name or show the
product in use” (Petty and Andrews 2008, p. 15; see also
Balasubramanian, Karrh, and Patwardhan 2006). Moreover,
romance movies in particular seem to be less suitable for
placements. This finding suggests that movies that require
deep emotional involvement do not necessarily make the
best platforms for placements, because they could be per-
ceived as disruptive.

Previous literature has suggested that too many brand
placements can result in less attention devoted to each indi-
vidual placement (Burke and Srull 1988; Kent and Allen
1993; Webb and Ray 1979) due to clutter (Webb and Ray
1979) and information overload (Malhotra, Jain, and
Lagakos 1982). Surprisingly, it seems that this insight from
traditional advertising research does not transfer to the
product placement arena. We do not find the overall number
of placements to be significant in explaining CARs. Perhaps
movies that are more suitable for placements attract more
placements, potentially masking the underlying relation-
ship. We considered other functional forms representing
various types of curvilinear relationships but failed to detect
any significant empirical regularity. Therefore, more prod-
uct placement in a movie does not necessarily affect the
value of a given placement in a negative way. Marketers
may actually benefit from aligning themselves with a movie
with other placements: Given the confirmed importance of
selecting the movie for placement, existing placement
agreements can signal suitability and serve as qualifiers.

Future Research Directions and
Limitations

It is an ongoing challenge for marketers to constantly
develop, identify, experiment with, and adopt novel media
and techniques to reach and persuade their audiences.
Meanwhile, marketers must gauge, decrease, and abandon
less effective media activity just to remain competitive. Is it
inevitable that all marketing media ultimately succumb to a
life cycle (introduction, growth, maturity, and decline), just
as products do? To our knowledge, this study represents a
first attempt to investigate the longitudinal effectiveness of
a successful marketing medium through its life cycle and
could be viewed as a building block toward a theory of mar-
keting medium life cycle. We advocate the longitudinal



examination of the economic worth of both traditional and
emerging media.

Extant literature has primarily concentrated on product
placements in the movies consistent with Gupta and
Gould’s (1997) definition. However, product placements
have found several additional outlets, such as traditional
television shows, reality shows, newscasts, video games,
music videos, lyrics, catalogs, comic strips, novels, live
broadcasts, Internet casting, and even magazine editorials.
There is a need to develop an integrated definition that
incorporates the variety of current and emerging product
placement domains and forms. It would be of interest to
examine the extent to which such alternative placement
media registers abnormal returns and whether they are also
subject to a curvilinear relationship (i.e., life cycle). If so,
what would be the expected trajectory of their effectiveness
over time? Future studies would also benefit from incorpo-
rating various placement-related factors that have been
shown to have an impact on advertising effectiveness, such
as brand/ plot/ genre congruity, execution-related factors, and
attitude toward sponsor, which we did not explore in this
study. These factors may explain how some companies man-
age to achieve success through placements despite life-
cycle considerations.

Although the data set we used in this study represents a
great resource for product placement researchers, it is not
without limitations. For example, because the data collec-
tion was led by film scholars, critically acclaimed and
mature content movies were overrepresented in the data
set.8 Although most differences are relatively mild, the high
critical acclaim of the movies included in the Brand Hype
data set may have led to more conservative estimates of the
economic worth of product placements because Wiles and
Danielova’s (2009) and our findings suggest that the place-
ments in such films are associated with lower CARs.

Despite the tremendous growth and volume of product
placements in recent years, Balasubramanian, Karrh, and
Patwardhan (2006) note that only 29% of these placements
are paid. It seems to be important to examine the antecedents
and consequences of barter, gratis, and hybrid forms of
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product placements to improve the return on investment of
this marketing medium and to determine best practices. An
interesting caveat is that the Federal Communication Com-
mission currently requires the disclosure of paid product
placements but does not penalize the omission of such dis-
closures unless there is a deliberate nonobjective claim or
deception related to the product (Petty and Andrews 2008).
This means creative room for the interpretation of regula-
tion regarding barter and gratis placements. It is likely that
nonpaid product placements (which do not have to be dis-
closed) not only offer greater return on investment but also
can be more effective. Still, nonpaid placements can come at
a cost: It is not uncommon for a marketer to pay six-figure
fees to product placement agencies for annual service con-
tracts (Wasko 2003). It would be worthwhile to distinguish
between paid and nonpaid forms of product placements in
further research.

Our focus in this study was on assessing the effect of
product placement in the movies on the value of the compa-
nies that owned the advertised brands. An interesting
research question is the flip side of this issue: What is the
impact of product placements on the movie’s success? In
the context of print advertising, it has been shown that too
much advertising relative to editorial content can be detri-
mental to consumers’ perceptions of editorial quality and
can have a negative impact on circulation (Ha and Litman
1997). Mandese (2006, p. 3) cites industry sources who
argue that in the television context, “when consumers grow
wary of product placement … they may not simply react
negatively about the brands involved but may actually turn
the shows off.” Consistent with the literature on distrust,
Wei, Fischer, and Main (2008) find that audience members
who recognized a paid placement not only lowered their
evaluations of the placed brand but also lowered their
evaluations of the hosts, show, and radio station. We did not
find any evidence of such a relationship in our sample.9
Organically integrated brands in a movie may actually
enhance a film’s artistic qualities by creating a more realis-
tic setting and providing a connection between the story and
the “real world” (DeLorme and Reid 1999; Hirschman and
Thompson 1997; Spillman 1989). A more detailed investi-
gation that considers endogeneity between movie quality,
placement volume, and placement quality is warranted.

This article draws generalizations regarding the effec-
tiveness of product placements over time. However, other
areas of longitudinal exploration remain to be addressed.
For example, is there a value in lasting relationships
between movie stars and brands? For example, Will Smith

8More than 16% of the movies received a lead actor/actress
nomination, and roughly 17% had won at least one Oscar. Approx-
imately one quarter of the movies in our sample had a star or a
director who won at least one Academy Award in previous years,
compared with just less than 15% reported in the sample Basuroy,
Chatterjee, and Ravid (2003) use. Similarly, our sample contains
movies with relatively high critical scores (65.7). In comparison,
the average critics’ rating for Wiles and Danielova (2009) was 55.9
on a 100-point scale. Approximately one half of the movies in the
sample are rated R, which is consistent with the sample De Vany
and Walls (2002) examine; however, it includes more PG-13-rated
movies (44% compared with 25% industry average) and fewer
PG-rated movies (8% versus 20%). The sample does not include
any G-rated movies, which traditionally comprise about 3% of all
films (De Vany and Walls 2002). Therefore, our sample contains a
lower proportion of films geared toward families and children and
relatively more movies with mature content. We also note that the
average production budget of the movies in our sample is roughly
$45 million (expressed in 2007 dollars), whereas the average bud-
gets in other studies are somewhat lower (e.g., $36.9 million;
Elberse and Eliashberg 2003).

9We explored whether the number of placements influences the
drop-off rates for individual films. To this end, we fitted an expo-
nential decay function to movies’ weekly revenue streams. The
function was specified as follows: Revenue(t) = Revenueopen ekt,
where the negative k coefficient signifies the speed of revenue
decay. The higher (less negative) the coefficient, the slower is the
decay. Correlation analysis indicates that although the staying
power is significantly positively related to IMDb user rating, criti-
cal scores, and the number of weeks the movie stayed in the the-
aters (correlation coefficients of .46, .48, and .58, respectively, p <
.01), there is no relationship between the number of placements in
the film and any of the variables indicative of films’ success.



seems to have a long-standing relationship with Ray-Ban
(e.g., Men in Black [1997]; Men in Black II [2002]; Bad
Boys II [2003]; Hancock [2008]). Do these continuous rela-
tionships benefit advertisers by allowing the brand to adhere
to the star’s persona and capitalize on celebrity appeal,
thereby enhancing the realism of the placement? Similar
questions could be asked about the enduring relationships
between the brands and movie franchises. For example, the
James Bond franchise has had a long engagement with the
Rolex brand since the 1960s; however, starting with Golden
Eye (1995), the franchise switched to Omega. Whether the
effective formation and management of such relationships
can result in tangible benefits to firms’ bottom lines remains
to be explored.

Appendix
Mixed Model

CARijk = q0 + q1(BRAND–TICKER MATCH)ijk

+ q2(TIE-IN CAMPAIGN)ijk

+ q3(NUMBER OF OTHER BRANDS FROM 

THE SAME FIRM)ijk

+ q4(NUMBER OF APPEARANCES WITH MAIN 

CHARACTER)ijk + q5(TURNOVER)ijk

+ q6(NYSE)ijk + q7(NASDAQ)ijk
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+ q8ln(MARKET CAPITALIZATION)ijk

+ q9(BRAND CLUSTERING)ijk

+ q10(OVERALL CLUSTERING)ijk

+ q11(BRAND FAMILIARITY)ijk

+ q12(PLACEMENT INTENSITY)ijk

+ g01(YEAR)j + g02(YEAR2)j

+ g03(IMDB USER RATING)j

+ g04(TOTAL PLACEMENTS)j + g05(COMEDY)j

+ g06(CRIME)j + g07(ROMANCE)j + g08(DRAMA)j

+ g09(ACTION)j + g010(HORROR)j + g011(SCIFI)j

+ g012(THRILLER)j + g013(R-RATING)j

+ g014(ECONOMIC CONTRACTION)j

+ g015(STAR_NEXT)j + g016(CRITICS)j

+ g017ln(ADJUSTED BUDGET)j

+ g018ln(ADJUSTED FIRST-WEEK GROSS)j

+ g21(YEAR)j(TIE-IN CAMPAIGN)ij

+ g22(YEAR2)j(TIE-IN CAMPAIGN)ij

+ g23(STAR_NEXT)j(TIE-IN CAMPAIGN)ij

+ b00j + c00k + eij.
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