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Direct Observation of Phase Transition Dynamics in 
Suspensions of Soft Colloidal Hydrogel Particles 

Jae Kyu Cho^, Zhiyong Meng^, L. Andrew Lyon^, and Victor Breedveld^ 

"School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 
Atlanta, Georgia 30332-0100, USA 

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA 

Abstract. Due to the tunability of their softness and volume as a function of temperature, poly(N-isopropylacrylamide) 
(pNIPAm) hydrogel particles have emerged as a model system for soft colloidal spheres. By introducing AAc as 
comonomer, one can also tune the particle volume via pH. We report on the phase behavior of these stimuli-responsive 
colloids as measured with a microdialysis cell. This device, which integrates microfluidics with Particle Tracking Video-
microscopy allows for simple and quick investigation of the phase behavior of suspensions the soft colloidal hydrogel as 
a function of pH as well as its packing density. In particular, we demonstrate the existence of an unusually broad 
liquid/crystal coexistence region as a function of effective particle volume fraction. Additionally, we reveal that non-
equilibrium jammed states can be created in the coexistence region upon sudden large changes of pH. The phase diagram 
is indicative of complex interparticle interactions with weakly attractive components. 

Keywords: Stimuli-responsive Hydrogel, Phase behavior. Particle Tracking Microscopy, Microfluidics. 
PACS: 47.57.J-, 83.80.Hj, 64.75.Xc, 87.64.M 

INTRODUCTION 

The phase behavior of colloidal dispersions has been studied over the past few decades, because they provide an 
excellent model system for atomic systems with time- and length-scales that are more readily accessible for 
experiments. Depending on effective particle volume fraction ((z)̂ )̂, the dispersions tend to phase transitions from a 

liquid state to crystal or glass state with increasing concentration\ While sterically stabilized poly(methyl 
methacrylate) (PMMA)\ and sihca^ have been widely used as hard-sphere model systems, recently hydrogels 
consisting of mesoscopic, covalently crosslinked polymer have attracted attention as useful soft-sphere model 
systems. The most popular colloidal hydrogel system is poly(N-isopropylacrylamide) (pNIPAm), which can be 
synthesized to form monodisperse, cross-linked colloidal particles. In aqueous media, pNIPAm undergoes a 
reversible and continuous volume phase transion^, which provides temperature-sensitive tunability to modulate 
(p^jj ^. By introducing acrylic acid (AAc) as comonomer, additional responsiveness of particle size to pH and ionic 

strength (I), can be acquired^. 
In this work, we fabricated poly(dimethylsiloxane, PDMS)-based microfluidic device, microdialysis cell*', and 

used this device to investigate the dynamics and phase behavior of suspensions of stimuh-responsive poly(N-
isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) ionic hydrogels. Particle Tracking Microscopy (PTM)' is 
used to directly observe dynamics of particles in concentrated suspensions of theses particles in real time in the 
microdialysis cell. 

EXPERIMENTAL 

Figure I (a) illustrates the schematic of the microdialysis cell. It consists of three main compartments; reservoir 
channel, membrane, and sample chamber. The experimental set-up can be mounted onto an inverted optical 
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microscope with xlOO emulsion oil objective for direct observation of the sample via Videomicroscopy (CCD 
camera at 30 frame/sec). The microdialysis cell is connected with two syringes and by controlling the fluid flow 
through the reservoir via a four-way valve, the solvent composition in the reservoir channel can be switched rapidly. 
Mass transfer between the sample chamber and the reservoir channel through the rigid membrane yields control over 
the solvent composition in the sample under investigation, in particular the sample pH. Since the size of the 
hydrogel particles is at least 50 times larger than the membrane pore size, the number density of colloids is kept 
constant. With PTM, we can extract the mean-squared displacement (MSD) of the colloids and from the Stokes-
Einstein equation, we can determine the hydrodynamic radius (RH) of the colloids in dilute suspensions. Figure 1 (b) 
shows RH of the pH-responsive pNIPAm-co-AAc as a function of pH for colloids with 10 wt.% AAc. The response 
curve can accurately be modeled by following equation: 

0 9072 
R„ = 0.9235 + ^^^^^^^^^^ (1) 

1-
PH X 

4.3543J 

(a) (b) 
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FIGURE 1. (a) Schematic of Microdialysis cell, (b) Normalized radius of pNIPAm-co-AAc as function of pH. Dotted line 
represents curve fitting. Measurements were carried out at 24°C in dilute suspensions with 1=15mM. 

RESULTS AND DISCUSSION 

For concentrated suspensions of the same particles, the phase behavior was investigated by gradually increasing 
^^ff{A^^^ <0.04) via the pH, using the dilute suspension data in Fig. 1(b) to relate ^^^ to pH. Because the sample 

chamber in the dialysis cell is thin, the mass transfer in the microfluidic device is rapid and enables quick transitions 
between phases. To ensure that our measurements represented the equilibrium state we waited about one hour after 
pH changes. More than 90% volume of the ionic microgel is water, so that difference in density and resulting gravity 
effects on_crystal growth in the sample chamber are neghgible. 
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FIGURE 2. Structural Evolution during liquid-crystal phase transition. In each figure, left and right cartoon represent particle 
trajectories andcontourplot of MSD, respectively. In set show Fourier Transform of original image. Each number in the contour 
plot represents ^^j^ and scale bar is 5 |xm. 
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Like hard-sphere suspensions, these ionic hydrogel suspensions display phase transitions from hquid to crystal 
(Figure 2). At low (p^j^, they show liquid-like diffusive motion, as (p^j^ increases, the suspension crystallizes after 

going through hquid/crystal coexistence region. The MSD contour plot visualizes transitions from fast motion (red 
color) to slow motion (green color) and direct Fourier Transforms of microscope images exhibit pronounced 
hexagonal peak evolution during crystal growth. 

Figure 3 shows the phase diagram of the ionic microgel suspension at 3 different concentrations (particle number 
densities). The most interesting feature is the broad hquid/crystal coexistence region; in contrast, for hard-spheres, 
this region ranges from (z)̂ ^between 0.49 and 0.54. Since the ionic hydrogels are deformable and compressible 

surface, the energy penalty for overlap is relatively small compared to hard-spheres, thus exhibiting unusual broad 
coexistence domain. More concentrated dispersion show a narrower coexistence window at lower values of (p^jj. 

When the experiments were conducted with large "abrupt" changes in effective volume fraction (Ajz)̂ ^ >0.2), an 

interesting non-equilibrium jammed state was formed in which the colloids are kinetically trapped. Surprisingly, the 
jammed state can be formed inside the liquid/crystal coexistence region and was found to be very stable (> 24 hr). 
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FIGURE 3. Phase diagram for various colloidal concentrations; effective volume fraction was changed by 
adjusting the sample pH and calculated from dilute suspension data (Fig. 1(b) and Eq. (1)). Blue letter and magenta 
letter represent equilibrium and non-equilibrium state, respectively. 

CONCLUSION 

In conclusion, we introduce a microfluidic device which allows us to control solvent composition reversibly in a 
controlled manner. By integrating the microfluidic device with Particle Tracking Microscopy, we are able to 
investigate the phase behavior of pH-responsive pNIPAm-co-AAc ionic hydrogel dispersions. Ionic hydrogel 
displays hquid/crystal phase transition like hard-sphere suspensions. However, we observe an extended 
liquid/crystal coexistence region which is dependent on particle swelling ratio and concentration due to soft and 
deformable surface. Moreover, we investigate a non-equilibrium jammed state, and found that the boundary 
between non-jammed and jammed states resides in hquid/crystal coexistence domain for equilibrium structures. 

ACKNOWLEDGMENTS 

The authors acknowledge financial support from an NSF-CAREER award (CTS-0547066) for this work. 

REFERENCES 

1. P.N. Pusey and W. van Megan, Nature 320, 340-342 (1986). 
2. J.W. Jansen, C.G. deKruif, and A.J. Vrij, J. Colloid Interface Sci. 114,471-480 (1986). 
3. H, Senff and W. Rhcitering, J. Chem. Phys. Ill, 1705-1711 (1999). 
4. J. Wu, B. Zhou, and Z. Hu, Phys. Rev. Lett 90, 048304 (2003). 
5. S.B. Debord and L. A. Lyon, J. Phys. Chem. B 107,2927-2932 (2003). 
6. J. Sato and V. Breedveld, J. Rheology 50, 1-19 (2006). 
7. J.C. Crocker and D.G. Grier, J. Colloid Interface Sci. 179,298-310 (1996). 

1158 




	Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles
	Recommended Citation

	514 - Abivin.pdf

