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We develop a neuronal theory of the choice process (NTCP), which
takes a subject from the moment in which two options are pre-
sented to the selection of one of the two. The theory is based on
an optimal signal detection, which generalizes the signal detection
theory by adding the choice of effort as optimal choice for a given
informational value of the signal for every effort level and a cost of
effort. NTCP predicts the choice made as a stochastic choice: That
is, as a probability distribution over two options in a set, the level
of effort provided, the error rate, and the time to respond. The
theory provides a unified account of behavioral evidence (choices
made, error rate, time to respond) as well as neural evidence (rep-
resented by the effort rate measured for example by the level of
brain activation). The theory also provides a unified explanation
of several facts discovered and interpreted in the last decades of
experimental economic analysis of choices, which we review.

signal detection | stochastic choice

T o date, the economic model of choice has not been informed
by the way the brain functions, although the literature con-

tains numerous papers on neuroeconomics. By economic model,
we mean one that disciplines the analysis of observations by an
assumption of optimization that presumes that the economic agent
has a mechanism for processing information (such as Bayes’ rule)
to arrive at choice based on a utility function. Observations include
not only the choice between options, per se, but also additional
data, including the length of time it takes to make choices, the
number of errors in choices, and psychophysical measurements
such as functional magnetic resonance imaging (fMRI). Includ-
ing more than just the observed choices allows the data to have
an additional disciplining effect on the theory. We extend this
assumption of optimal behavior to the analysis of the brain process
producing a choice. To do this, we assume that there is an unob-
servable choice that an agent makes, the consequences of which
are reflected in all the observable data that can be measured in the
choice process. That choice is the strength of effort devoted to pro-
cessing information in reaching a decision between the options.
As a conclusion, we propose a model that joins predictions of
traditional psychological observations (time to decide and error
rate) and predictions of relative brain activation (as measured by
fMRI) dependent on exogenous characteristics of the decision
environment.

Decision Processes and Economic Choice. The economic theory of
choice considers three different types of options: determinis-
tic, risky, and ambiguous [Gilboa and Schmeidler’s (1) theory
describes how ambiguous choices are made].

In formal constructions of choice, the decision maker behaves as
if making numerical calculations. Our model and subsequent tests
of human economic choice are informed by recent findings on the
processing of numerical magnitudes (2). Consider, for instance, a
simple number comparison task: A human subject is shown a num-
ber on a screen and is asked to press a left button to indicate that
the number is less than 55 and a right button to indicate that the
number is greater than 55. An interpretation of the process is as
follows: The human brain forms a spatial representation of numer-
ical magnitudes. When a comparison stimulus is presented on a
screen, stimuli are transferred stochastically to secondary areas
of the occipital cortex and finally to areas distinctly responsible

for making comparisons of spatial representations: the bilateral
horizontal segment of the intraparietal sulcus, the left angular
gyrus, and the bilateral posterior superior parietal lobe. Prior to
announcing whether the number is considered greater than or
less than 55, the subject in the experiment is accumulating noisy
information generated by the experimental stimulus.

Several of the main modeling results in economic choice in this
study are paralleled by results with numerical magnitudes. In stud-
ies of numerosity, there are reaction time and inconsistency effects
with respect to distance from the comparison stimulus. The closer
the number is to the comparison, the slower the reaction time and
the more inconsistency. The distance effect with numbers has been
replicated many times with humans and nonhuman primates. The
underlying explanation of such phenomena is that number sym-
bols, such as Arabic or Roman numerals or collections of dots (in
the case of monkeys), are transformed to associative cortex, and a
semantic representation is made downstream (see refs. 2 and 3).
Such representations are noisy. For example, monkeys trained to
match a sample will most frequently match three dots with three
previously shown dots; they will match two and four dots less fre-
quently and one and five dots rarely, if ever. The explanation for
human judgment is that humans also work with a noisy represen-
tation, even of certain amounts, and that they map directly from
the noisy representation to motor actions so that such actions are
noisy in response to experimental stimuli (see ref. 2).

Noise in economic choice has a rich history. Early findings in
studies of choice involve paired comparisons between determin-
istic outcomes. Thurstone (4) outlined a methodology in which a
person was asked to choose between 2-tuples at a time, for exam-
ple, (2 hats, 4 pairs of shoes) versus (4 hats, x pairs of shoes),
where x was varied. Using this approach creates an estimated cut-
off point z, such that for an x < z, 2 hats, 4 pairs of shoes will likely
be preferred to 4 hats, x pairs of shoes, and for an x > z, 4 hats,
x pairs of shoes will likely be preferred to 2 hats, 4 pairs of shoes.
Thurstone’s data revealed that subjects tend to reveal more noise
in choices relative to a cutoff when x is close to the cutoff point
(4, 5).

Mosteller and Nogee (6) measured reaction time in choosing
between risky gambles during choices and were able to determine
that the closer to indifference a subject was, the higher the reac-
tion time tended to be. The net result in these early studies is
that when distance comes into play between utilities, two things
are affected: consistency and reaction time. Some examples of
modeling noise in choice, such as Luce (7) and Tversky (8), give
no explicit modeling of what produces the noise. In these efforts,
scales can be found that represent the choices stochastically, but
no process has been specified that produces the error. In related
work, Loomes and Sugden (9) tested three competing models of
stochastic choice, none of which gave an explicit representation
of the stochastic choice process. What differs in our examination
of noise from these earlier processes is that we treat the level of
noise as an endogenous choice by the subject. Harrison (10) sug-
gested that error in choices is itself a choice. Errors arise when
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an alternative is close to the maximum so that the implicit cost of
making an error is low and the error is acceptable. The problem
with this line of reasoning is that the decision maker needs to know
the maximum value to assess if the judgment is close enough to
the optimal judgment.

Decision field theory (DFT) is a related literature on the psy-
chology of choice (11–13). In the paired-choice task, DFT pre-
sumes that the decision maker’s choices are governed by a statistic
that assesses the relative utility of the two options: In the dynamic
setting, this statistic is aggregated over a number of comparisons.
The statistic itself can lead to a match versus a nonmatch. Informa-
tion on matches is accumulated until a boundary (which represents
the required amount of information) is reached. DFT is a sto-
chastic theory of choice that also models reaction time, like the
neuronal theory of choice process (NTCP). The two theories dif-
fer in that in DFT the decision maker has no explicit control of
the information generated in the choice process.

Several different areas of the brain have been isolated establish-
ing a connection with NTCP. Arriving at internal representations
of elements of NTCP, such as priors and revised probabilities, has
been found to engage the limbic system and orbital frontal cortex
(14, 15). For example, Preuschoff et al. (14) discover that revised
assessments of both expected value and risk occur in the ventral
striatum, although at different moments. These assessments can
be viewed as inputs to NTCP. Response to reward in monkeys
implicates elements of the orbital frontal as well as the ventral
tegmental area (15, 16). These areas reflect a relationship with
the probability of rewards and may serve as inputs to either the
formation of priors or the updating process in NTCP.

Some studies have examined the relationship between brain
activation and types of stimuli such as certainty, ambiguity, and
risk. Hsu et al. (17) found evidence of ambiguous stimuli having
an impact on the striatum, although Hsu et. al. use three differ-
ent types of ambiguous stimuli, only one of which is like those
discussed here. Huettel et. al. (18) found the reaction time dif-
ference for ambiguous and risky stimuli, such as those posited
here, but did not find the same locus of activation for ambiguous
stimuli. The difference can potentially be explained because the
same type of representation of the ambiguous stimulus was not
use in the Huettel et al. study.

The unification of these theories suggests the possible unifica-
tion of what might be construed to be disparate findings of brain
behavior. By casting the framework of choice in an effort-based
selection and its related dependency on priors and updating sug-
gests the various findings engaging the limbic system and more
numerical systems are potentially interrelated.

Optimal Signal Detection. In this study, we construct a unified the-
ory of choice in that it recognizes that (i) subjects must make a
decision of effort regarding how they will process stimuli to arrive
at a decision and (ii) the various measurements, such as reaction
time, fMRI, choice, and error, are interrelated from the stand-
point of the theory. The theory disciplines the examination of
behavioral data comprising more than just choice, which leads to
a theory that is more extensive than traditional theories of choice.
The model accommodates error by considering the internal milieu
of the brain and moves beyond a static, stochastic theory of choice
and signal detection theory. The model builds on the theory of
static stochastic choice, interpreted as deriving from a single pref-
erence order, different from the random utility model of refs. 19
and 20. The choice set is a only a pair, as in refs. 21 and 22. Also,
the static choice is derived from a fully specified dynamic theory
of the decision process. The model develops the theory of random
walk of the decision process, but extends it from perceptual choice
to economic choice. The fundamental difference between the two
is that in our theory, the quantity perceived is subjective, whereas
in perception studies, it is an objective value—for example, the

number of particles that move to the right, instead of to the left,
or the probability of an event.

Model
Our model combines the main ideas from the theory of signal
detection and the random walk models of decision, as, for exam-
ple, in Ratcliff’s (23) model, and extends them to the realm of
economic decision. We introduce two major modifications to these
models. First, because we want to extend our analysis to study the
level of brain activity associated with a specified task, we introduce
a variable, the level of effort, that affects the quality of the signal
that the subject is observing; the signal can be of higher quality, but
a higher level of effort must be provided. Second, the discipline
imposed on the level of effort is that it must be the optimal level
for the given task. This assumption of the model requires that the
subject be familiar with the task and the environment and that
he or she has selected the appropriate level of effort. Because we
introduce this optimality requirement not only in the processing
of the signal (see ref. 24), but in the observation, we call this an
optimal signal detection model.

Our simple, one-period model has three parameters describing,
respectively, the effectiveness of the effort (π), the marginal cost
of information (γ), and the belief of the subjects (μ), which are
going to be discussed in detail in this rest of this section. The theory
will provide a link between these three parameters and observed
data.

The subject has to choose one action out of a set A. The sub-
ject’s payoff depends on the action and a state of nature that is
unknown, θ ∈ Θ ⊂ R2. Before his or her choice of action, the sub-
ject can observe a signal y ∈ Y , according to an experiment (i.e.,
a map from Θ to probabilities on Y ) that depends on the level of
effort, e ∈ E, the subject chooses, and the effectiveness parameter
π (see Signal Structure for a discussion of this parameter). The
probability of the signal y, given the true state θ and the effort e,
is denoted by Pθ(y|e, π).

In a task of choosing between two options, the subject has to
decide which option in the feasible set is optimal, so the set of
options is the subject’s set of actions. For example, the subject
may be choosing between two lotteries, the lottery on the left
and the lottery on the right, in which case we can describe the
action set as {x1, x2}. The subject is trying to evaluate which of
the two has a larger utility. He does not know the utility of the
two options, so the unknown state is the value of the two utilities,
θ = (u(x1), u(x2)) ≡ (θ1, θ2). If the value θ was known, then the
optimal choice would be clear: Choose the lottery with the largest
value. He does not know the value, however, so his choice has to
rely on a noisy signal on the comparative value of the two options.

Interpretation. To help in the interpretation of the problem, we
describe what the problem is in the standard word of a perfectly
rational agent. A decision maker has an expected utility function
u defined on the set of choices, a utility that he knows perfectly
well. He is told that he can choose one out of a set of two options,
D ≡ {xi : i = 1, 2}. He is not told what the options are, only that
they are drawn according to a probability measure known to him.
Each option is labeled by a number. He has to select one of the
options by communicating its number. Before he decides, he can
observe informative signals on the utility to him of the options.
He can affect the accuracy of the signal with a choice of effort
e. These signals are realizations on a space Y of a probability
Pθ(·|e) ∈ Δ(Y ). Effort is costly.

The remaining exposition of the theory focuses on how effort
(when it is assumed to be neuronal activity) interrelates with
observed choice, reaction time, and error in choice. The tasks
include stimuli that are certain, risky, and ambiguous. The choices
are binary and the subject virtually chooses the object to the left
or to the right.

We consider this comparative value to be represented by a
function denoted by θ → A(θ1, θ2). This function is assumed to

22146 www.pnas.org / cgi / doi / 10.1073 / pnas.0912500106 Dickhaut et al.
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have two properties: It is strictly increasing in the first compo-
nent and strictly decreasing in the second, and for every θ1 and θ2:
A(θ2, θ1) = −A(θ1, θ2)). Examples of comparative value functions
are: A(θ1, θ2) ≡ θ1 − θ2; A(θ1, θ2) ≡ log( θ1

θ2
). In the following, we

focus on the first case.

Signal Structure. We assume that this probability on the signal
is only dependent on the comparative value A. The signal set is
Y = {−1, 1}. A signal equal to 1 denotes a match, and equal to −1
denotes a mismatch in Ratcliff’s (23) terminology. A match means
that the event “A greater than 0” is more likely than the comple-
ment; a mismatch means the opposite. This model is equivalent,
but more convenient, to the one in which two independent signals
are drawn, one for each of the the options, and which of the two
is larger is revealed.

We finally assume that the signal provided by the experiment
P is a location signal. Specifically, the probability of a match is
given by

Pθ(1; e) =
∫ +∞

0
πef (πe(y − A(θ))dy =

∫ +∞

−πeA(θ)
f (s))ds. [1]

The effectiveness of the effort is affected by a real valued para-
meter π ≥ 0: The higher its value, the more precise the signal.
The value of this parameter may depend on several features of
the decision problem. For example, the value may be a function of
the number of choices made by the subject (a measure of his or her
experience with the task). Also, it may depend on the information
quality of the signal: For example, if the choice is ambiguous, then
the quality of information available to the decision maker is lower,
and this may be modeled by a lower value of π.

The subjects has an initial belief on the states of nature, denoted
μ ∈ Δ(Θ), where Δ(Θ) is the set of probability measures on Θ.
We also denote

Pμ(y; e) ≡
∫

Θ

Pθ(y; e)μ(dθ) [2]

and by μ(dθ|y) the posterior probability of the subject on Θ given
the signal y. A belief concentrated around the diagonal represents
an environment where the decision maker expects little difference
in value between the two options.

The Density Function f . We make the following assumptions on
the function f . First, there is no differential treatment of options
on the right and on the left, that is, f (x) = f (−x). Second, the
probability decreases as we move away from 0: If x > y > 0 then
f (y) > f (x). For convenience, when we analyze the comparative
statics effects of the changes in the values of the parameter we
assume that f is differentiable. The properties of the comparison
function A and the density function f imply on the experiment P
that P(θ1,θ2)(1; e) = 1 − P(θ2,θ1)(1; e); P(θ1,θ2)(1; e) = P(θ2,θ1)(−1; e).
Also, if θ1 > θ2, then P(θ1,θ2)(1; e) > P(θ2,θ1)(1; e).

As the effort tends to infinity, the probability of a match tends
to 1 when A(θ) > 0—that is, θ1, the utility of option x1, is larger
than θ2, the utility of option x2. For example, if A(θ1, θ2) ≡ θ1 −θ2,
then a mismatch occurs for sure in the limit if and only if θ1 < θ2.
A natural assumption is that the prior belief μ is symmetric: If we
denote S(θ1, θ2) = (θ2, θ1), then for any set O ⊆ Θ,

μ(O) = μ(S(O)). [3]

This assumption only reflects the fact that the subject does not
expect higher utilities to be placed on the right rather than the left.

Cost of Effort. The provision of effort in the observation and pro-
cessing of the signal is costly. The cost depends directly on the
effort but may also be influenced by other factors like the experi-
ence in the task or the quality of information that he has available.

All these factors are summarized by a real parameter γ. Putting
these elements together, the cost is

C(e) = γc(e). [4]

We assume that the function c is convex. A convenient example
that we use in the Results section below is c(e) = e2

2 .

Results
The subject is choosing the optimal level of effort and, conditional
on the signal observed, the best action:

max
e∈E

[∫
Y

Pμ(y; e) max
a∈A

∫
Θ

dμ(θ|y)V (θ, a) − C(γ, e)
]

, [5]

where V is defined naturally by V ((θ1, θ2), ai) = θi. It is easy to see
that the optimal action is to choose x1 if y = 1, and otherwise to
choose x2.

Given parameters (π, γ, μ)—describing, respectively, the effec-
tiveness of the effort, the cost of the effort, and the belief—an
optimal effort is determined, ê(π, γ, μ). We assume that the opti-
mal effort can be characterized by first-order conditions, but this
may not be the case, as in the example discussed below where
the density function f is the uniform distribution. In this case, a
different method is necessary, such as an explicit computation.

The solution of the first order condition obtained by differenti-
ating with respect to the effort is
∫

Θ

dμ(θ)f (πe(θ1 − θ2))π(θ1 − θ2)2 − Ce(γ, e) ≡ G(π, γ, μ) = 0,

[6]

or equivalently,

∫
R

dν(x)f (πex)πx2 − Ce(γ, e) = 0

where if A(θ1 − θ2) = θ1 − θ2, ν ≡ μA−1. [7]

Note that ν is symmetric around 0 because of the symmetry prop-
erty of μ (Eq. 3). The second term, Ce(γ, e), is the marginal cost
of effort. The first term is the marginal return of effort; that
is, the expected marginal gain in the probability of making the
right choice. Under our assumptions, the first order condition is
sufficient.

A few properties of the optimal effort are clear. First, if the
cost function is described by Eq. 4, effort is decreasing in the cost
parameter γ: If γ2 > γ1, then for every π and μ, ê(π, γ2, μ) ≤
ê(π, γ1, μ). Clearly, ê(0, γ, μ) = 0, because the probability of mak-
ing the right choice is independent of the effort, and effort is costly.
Also, limγ→0 ê(π, γ, μ) = +∞. Effort is strictly increasing in π for
small values of π: limπ→0

∂ ê(·,γ,μ)
dπ

> 0.

Effective Effort. To characterize how the optimal effort depends
on π, consider (for every γ and μ) the effective effort η:

η(π, γ, μ) ≡ πê(π, γ, μ).

Clearly, for every γ and μ, η(0, γ, μ) = 0. The effective effort
is increasing in π for every γ and μ: If π2 > π1, then
η(π2, γ, μ) > η(π1, γ, μ). Also, effective effort increases without
bounds: limπ→+∞ η(π, γ, μ) = +∞. Just as with effort, effective
effort is decreasing in the cost parameter γ.

Comparative Statics on Effort and Error Rate. The comparative sta-
tics study of the effect in the increase in the effectiveness para-
meter and in the dispersion of beliefs follows easily from the
implicit function theorem once one notes that the derivative of

Dickhaut et al. PNAS December 29, 2009 vol. 106 no. 52 22147



the first-order condition, with respect to effort, is always negative
because ∫

R
dν(x)f ′(x)x3 < 0. [8]

The effect on optimal effort of the effectiveness parameter π is
nonmonotonic. The sign of ∂ ê

∂π
is equal to the sign of

∂G
∂π

=
∫

Θ

dμ(θ)(θ1 − θ2)2(Df )(η(θ1 − θ2)), [9]

(see Eq. 6), where

Df (u) ≡ f (u) + f ′(u)u. [10]

Note that Df (0) = f (0) and Df is symmetric around 0, that is,
Df (u) = Df (−u). To understand how effort changes with the
effectiveness parameter π, note two key properties of Df for most
common densities f . For example, a normal density, 0 mean, and
unitary variance σ2 has Df (u) = f (u)( σ2−u2

σ2 ). For the Laplace den-
sity, f (u) = α

2 e−α|u|, Df (u) = f (u)(1 −α|u|). First, Df changes sign
only once on the positive real line; that is

there is a unique u0 > 0 such that Df (u)(u − u0) < 0,
if u > 0, u �= u0. [11]

Second, limu→∞ Df (u) = 0.
The effect of the effectiveness parameter π on optimal effort

is the net result of two contrasting forces. An increase in π makes
the return of effort higher, and this induces a higher effort. On the
other hand, higher π gives a larger effective effort for the same
effort, and cost can be saved (substitution effect). When the opti-
mal effort is already large, the substitution effect dominates, and
effort is reduced in response to an increase in π; the opposite
occurs when the optimal effort is small.

When the belief has only two points in the support, and the
condition in Eq. 11 is satisfied, then the effect of the effective-
ness parameter is, for the densities mentioned above, to increase
the effort when the value of π is small and to decrease it when
the value is large. This result follows from the two properties we
pointed out in the text following Eq. 10.

We model the change in the dispersion formally by introducing
a parameter D, where for every set O ⊂ Θ,

μD(O) ≡ μ(D−1O). [12]

For example, an individual at the moment of making a choice may
have an idea of the level of utility that is at stake and of the likely
difference in the value of the two options. As D increases, both
the expected value and the variance of the difference between the
value of the two options increase. This increase is clear if we con-
sider how the induced probability ν (introduced in Eq. 7) on the
difference between θ1 and θ2 changes; that is, for every interval I,
νD(I) = ν(D−1I). From our assumptions on μ, the measure ν is
symmetric around zero. The effect of the increase in the dispersion
of the belief is similar to that of the increase in the effectiveness
parameter. The sign of ∂ ê

∂D is the same as the sign of the

Df (u) ≡ 2f (u) + f ′(u)u. [13]

Probability of Error. The mean probability of error is equal to
2

∫
{θ1>θ2} dμ(θ)P(−1|θ); that is

mean probability of error = 2
∫

{θ1>θ2}
dμ(θ)

∫ −πe(θ1−θ2)

−∞
f (u)du.

[14]

Because the effective effort is decreasing in γ and increasing in
π, the mean error is increasing in γ and decreasing in π.

When D increases, the error rate is determined by the behavior
of the product of effort and D itself. In fact, the mean error rate
as a function of D is∫ +∞

0
dν(x)

∫ −πeDx

−∞
f (u)du.

As D tends to infinity, and the density f is such that f (u) > 0 for
every u, then the product eD tends to infinity, and therefore the
mean error rate tends to 0. The example in A Simple Example (for
a uniform density) shows that the condition that f is positive is
necessary: The mean error rate is first decreasing in D, and then,
for large values of D it is constant.

A Simple Example. Let us consider a simple illustration. The den-
sity function f is the uniform distribution on the interval [− 1

2 , 1
2 ].

This density function is not differentiable, but we will verify that
our comparative statics results hold by direct verification. The cost
function is quadratic C(e) = γ e2

2 . Finally, the belief of the subject
is a simple measure with two points in the support, both with equal
probability: (B(1+ r), B(1− r)) and (B(1− r), B(1+ r)). The para-
meter B can be interpreted as a measure of the value at stake in
the choice, and r can be interpreted as a measure of the spread of
the belief. The induced measure ν has equal probability of D and
−D, with D = 2Br.

In this case, the optimal level of effort is

ê(π, γ, μ) = min
(

1
4πBr

,
4π(Br)2

γ

)
. [15]

This example illustrates well the main properties of the optimal
effort function. First, the optimal effort is decreasing on the cost
parameter γ. Second, the optimal effort is first increasing and then
decreasing in the effectiveness parameter π. Finally, the measure
of value B and of spread r effort have the same effect: The optimal
effort is first increasing and then decreasing in their product. The
intuitive reason for this latter result is the same we have seen for
the effectiveness parameter π: When Br is large and effort is large,
the substitution effect dominates.

The effective effort

η(π, γ, μ) = min
(

1
4Br

,
4π2(Br)2

γ

)
, [16]

is increasing in π, decreasing in γ, and first increasing and then
decreasing in the product Br. The mean probability of error at
the optimal effort behaves like the effective effort in all the
parameters.

Predictions of the Theory. The theory provides predictions linking
the three parameters [effectiveness of the effort (π), the marginal
cost of information (γ), and the belief of the subjects (μ)] to effort
choice of the subject, as well as the effective effort (that is, the
product of effort and effectiveness), and the error rate.∗ So the the-
ory provides a link between the behavioral evidence (choice, error
rate, response time) and neural evidence (the effort rate, as mea-
sured by the brain activation). We list below the predictions that
are independent of the specific form of the density function. For
specific cases, more precise results can be obtained, as indicated
in the text.

1. A decrease in the marginal cost induces an increase of effort
and effective effort provided and therefore a reduction of the
error rate.

∗The study most consistent with the theory presented here is Dickhaut J et al., Experi-
mental Analysis of the Choice Process, mimeo, which explicitly assess the relationship
between the nature of the choice stimuli and choice consistency, reaction time and
neuronal activation.
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2. An increase in the effectiveness of the effort induces an increase
in the effective effort; hence, a reduction of the error rate. This
increase initially produces an increase in the level of optimal
effort and then, for higher values of π, a decrease.

3. An increase in the spread and value of the belief initially pro-
duces an increase and then a decrease in the level of optimal
effort, and therefore of the level of effective effort. It induces
a decrease in the error rate in the limit.

Random Walk Model. The general case in which the subject can
make several observations allows predictions on the time to
respond. Note that this is the prediction made for fixed beliefs
and effort cost; we are comparing the effect of different realiza-
tions of the true utility with the subject. These predictions can be
obtained by the analysis of the random walk model induced by
the optimal solution. The subject can observe not one but several
signals. We denote p = Pθ(1|e), and q = 1 − p. As in Ratcliff, the
decision is taken when the sum of the values of the signals reaches
a preassigned boundary. As in the simple model, p > 1/2 is the
probability of a correct match.

This model can offer predictions on both the error rate (just
like the simple model presented in the previous section) and the
response time. The expected value of these two variables is well
known from the analysis of the gambler’s ruin problem (25). The
random walk is defined on a subset of the nonnegative integers,
and it transits from z to z + 1 with probability p, and to z − 1 with
probability 1 − p. The walk ends when either the upper barrier
a > 0 or the lower barrier (ruin) is equal to 0. We consider the
symmetric case in which a is even and the process starts in the
midpoint z = a/2. The two relevant formulas are the one for
the probability of a mismatch (corresponding in the Gambler’s
ruin problem to the ruin of the gambler) and the expected dura-

tion of the game. The first is qz = (q/p)2z−(q/p)z

(q/p)2z−1
, and the second

is Dz = z
q−p − 2z

q−p
1−(q/p)z

1−(q/p)2z . These formulas can be used to sim-
ulate the error rate and response time for experimental data. A
complete discussion of the multiperiod case is in Rustichini (26),
where the boundaries are set endogenously in the optimization
problem, rather than fixed (a considerable complication to the
model). Rustichini shows that the response time is nonmonotonic
in the effectiveness of the effort.

Discussion
In this study, we constructed a unified theory of choice that recog-
nizes that (i) subjects must make a decision of effort regarding how
they will process stimuli to arrive at a decision and (ii) the various
measurements, such as reaction time, fMRI, choice, and error, are
interrelated from the standpoint of the theory. Several important
features of the theory, as evidenced previously, are as follows: (i)
the basic elements of the theory are still choices between alterna-
tives, whether certain, risky, or ambiguous; (ii) the evaluation of
these choices proceeds as an approximate mathematical process;
(iii) there is an understanding that choices are made with error (or
alternatively, that there is noise in choice); (iv) the level of noise is
endogenous (i.e., to some extent under the control of the subject);
and finally, (v) choice can be reexamined as rational behavior.

A Stand on Rationality. This paper has a rich history. Herbert
Simon (27) remarked that “there is a complete lack of evidence
that, in actual human choice situations of any complexity, . . .
[rational] computations can be, or are in fact, performed . . . but
we cannot, of course, rule out the possibility that the uncon-
scious is a better decision maker than the conscious” (p. 104).
We model the decision process under uncertainty as a prob-
lem in maximization governed by mental processes, the traces
of which have observable neural correlates in brain imaging.
The current model breathes meaning into unconscious compu-
tational processes associated with decision under uncertainty, its

inherent error properties, and its observational content. More-
over, it offers a substantial extension to the interpretation that
“if subjects implicitly take account of the effort cost of decision,
then of course the subject’s unconscious decisions are indeed
better-superrational-than the conscious rational decision analysis
predictions of the theorist/experimentalist” (28).

In further development of his thoughts on human decision,
Simon (29) noted that

the necessity for careful distinctions between subjec-
tive rationality (. . . given the perceptual and evaluation
premises of the subject), and objective rationality (. . . as
viewed by the experimenter) . . . in the explanation of
observed behavior . . . to predict how economic man will
behave we need to know not only that he is rational, but
how he perceives the world—what alternatives he sees,
and what consequences he attaches to them. . . . We should
not jump to the conclusion, however, that we can therefore
get along without the concept of rationality.

Our model does not jump to any such conclusion and explicitly
builds on both subjective and objective elements in decisions, and
derives the observational implications of varying the parameters of
those elements. Models of subjective effort-costly decisions imply
the nonexistence of any coherent concept of objective ration-
ality for individual decisions, alike for all. But “there is no denial
of human rationality; the issue is in what senses are individuals
rational and how far can we go with abstract objective principles
of how ‘rational’ people ‘should’ act” (30).

Siegel (31, 32) acknowledged the key influence of Simon’s (27)
paper in leading him to model a hypothesized tradeoff between
the subjective cost of executing a decision task (“boredom”) and
monetary rewards in the particular context of predicting Bernoulli
trials.

When theory fails experimental tests, a common reaction is to
suppose that the rewards for decisions must not have been large
enough to matter. This view has intuitive appeal, but it is devoid of
empirical (predictive) content, in the absence of building on the
intuition to reformulate standard theory. Also, it implies that eco-
nomics is only about decisions in which rewards are large enough
to matter and therefore does not address most of the day-to-day
economic decisions of life.

Experimentalists have argued that this phenomenon may be
a natural consequence of other motivations, besides monetary
reward, that are arguments in individual utility functions. Thus
Smith (33) suggested that the use of monetary rewards to induce
pre-specified a value on decisions may be compromised by sev-
eral considerations, one being the presence of transactions effort,
generalizing Siegel (31, 32), who systematically varied reward lev-
els to measure the effect on subjective decision cost in his model
of binary choice prediction. The “failure to optimize” (i.e., objec-
tively) can be related to what von Winderfelt and Edwards (34)
called the problem of flat maxima, that is, a consequence of the low
opportunity cost for deviations from the “optimal” outcome, as
emphasized by Harrison (10, 35). This intuition led to the interpre-
tation that because standard theory predicts that decision makers
will make optimal decisions, despite how gently rounded the pay-
off function is, the theory is misspecified and needs modification.
When the theory is properly specified, there should be nothing
left to say about opportunity cost or flat maxima (i.e., when the
benefit margin is weighed against decision cost, there should be
nothing left to forgo).

What keeps this statement from being tautological is that it leads
to predictions that are testable. Although one can look backward
to the preceding (not exhaustive) literature review on decision
cost, there are significant gaps in the previous work, which fails to
provide a comprehensive formal treatment that predicts choices,
response times, error rates, and brain activation in a decision
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maker. For example, Smith and Walker (30) showed that increas-
ing the reward to choice (or decreasing decision cost) (i) increases
effort, where effort is a postulated, unobserved intermediate vari-
able, and (ii) increases the variance of decision error, which is
their only observational prediction. By further postulating that
increased experience lowers decision cost, they are able to con-
clude that increased experience will lower the variance of decision
error, but there is no formal parametric treatment of experience.
For example, Smith and Walker (36) reported first-price auctions
in which reward levels and experience were systematically varied
and found that the error variance declined both with increased
reward and with increased experience.

This paper has provided a simple and testable setup for a theory
of the decision process. It suggests a new direction of research in
the investigation of the behavioral and neural foundation of the
difference between the effects that operate through an improve-
ment in the signal and those operating through a reduction of the
cost of information processing. The interest of this distinction is
clear from our results: A decrease in the marginal cost increases
optimal effort, whereas the increase in the effectiveness of the
effort has a nonmonotonic effect, through the combined effect of
the complement and substitution effect.
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