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Molecular mediators of metabolic processes, to increase energy expenditure, have become a focus for therapies of obesity. The
discovery of cytokines secreted from the skeletal muscle (SKM), termed “myokines,” has garnered attention due to their positive
effects on metabolic processes. Interleukin-15 (IL-15) is a myokine that has numerous positive metabolic effects and is linked to
the PPAR family of mitochondrial regulators. Here, we aimed to determine the importance of PPAR𝛼 and/or PPAR𝛿 as targets
of IL-15 signaling. C2C12 SKM cells were differentiated for 6 days and treated every other day with IL-15 (100 ng/mL), a PPAR𝛼
inhibitor (GW-6471), a PPAR𝛿 inhibitor (GSK-3787), or both IL-15 and the inhibitors. IL-15 increased mitochondrial activity and
induced PPAR𝛼, PPAR𝛿, PGC1𝛼, PGC1𝛽, UCP2, and Nrf1 expression. There was no effect of inhibiting PPAR𝛼, in combination
with IL-15, on the aforementionedmRNA levels except for PGC1𝛽 andNrf1. However, with PPAR𝛿 inhibition, IL-15 failed to induce
the expression levels of PGC1𝛼, PGC1𝛽, UCP2, and Nrf1. Further, inhibition of PPAR𝛿 abolished IL-15 induced increases in citrate
synthase activity, ATP production, and overall mitochondrial activity. IL-15 had no effects on mitochondrial biogenesis. Our data
indicates that PPAR𝛿 activity is required for the beneficial metabolic effects of IL-15 signaling in SKM.

1. Introduction

Obesity has become a modern epidemic and is growing in
both prevalence and severity throughout theworld.Obesity is
one of the leading causes of preventable death,withmore than
one-third of all Americans considered overweight or obese [1,
2]. Current treatments for obesity include a calorie restricted
diet and physical exercise, but sustaining long-term weight
loss has proven to be a challenge for many [3]. A mainstay
for treating obesity has been to increase metabolic rate,
particularly through induction of mitochondrial activity in
skeletalmuscle (SKM). SKM is considered the largest organ in
the body and acts to carry out bodilymovement through gen-
eration of ATP, primarily via mitochondrial respiration [4].

Recently, SKM has attracted attention due to its newly identi-
fied ability to release cytokines, termed “myokines,” into cir-
culation that act to increase overall energy expenditure [5–9].
Many myokines (FGF-21, Irisin, BDNF5, interleukin-6, and
interleukin-15, among others) increase in circulation follow-
ing physical exercise, owing to their potential to reduce adi-
posity [9–11]. However, the downstream effectors of myokine
signaling that positively influencemetabolism remain elusive.
In this regard, studies aimed at elucidatingmyokine signaling
pathways, for the potential treatment and/or prevention of
obesity, have come to the forefront of metabolic research.

Interleukin-15 (IL-15) is considered a myokine and is
confirmed to increase mitochondrial activity, resulting in a
decrease in overall adiposity [12–15]. Historically, IL-15 had
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been extensively studied as an activator of natural killer (NK)
cells with antitumorigenic potential and anti-inflammatory
properties [11, 16]. Interestingly, in human and rodent studies,
there is evidence that circulating levels of IL-15 increase
following exercise, although this notion is somewhat con-
troversial [17–21]. It is postulated that IL-15 acts to increase
glucose uptake, fatty acid oxidation, and mitochondrial
activity and lipolysis to reduce adiposity [14, 22–25].
Although the evidence is clear that IL-15 possesses positive
metabolic effects, its direct downstream signaling pathways
remain largely unknown. Many transcriptional regulators,
responsible for inducing mitochondrial dynamics, have been
linked to IL-15, such as peroxisome proliferator-activated
receptors (PPARs), peroxisome proliferator-activated recep-
tor gamma coactivator 1-alpha (PGC1𝛼), and silent mating
type information regulation 2 homolog (SIRT1) [26–29].

PPARs are important transcriptional regulators linked to
numerous beneficial metabolic effects, such as induction of
mitochondrial biogenesis and fatty acid oxidation [30, 31].
Among the three isoforms, PPAR𝛼 is highly expressed in
oxidative tissues, such as liver, heart, and type I SKM fibers,
while PPAR𝛿 appears to be ubiquitously expressed and acts
to induce mitochondrial activity and lipid metabolism [30,
32, 33]. Both PPAR𝛼 and 𝛿 have been suggested to promote
induction of mitochondrial activity in many cell types and
have garnered attention as potential antiobesogenic factors
[30, 34–37]. PPAR𝛾 is most highly expressed in adipose
tissue, both brown and white, and it plays an integral part
in lipogenesis and adipogenesis [38]. The antidiabetic drug
class, thiazolidinediones, acts to bind to and activate PPAR𝛾
to clear circulating lipids for the restoration of insulin sensi-
tivity [39]. Much is known regarding the positive metabolic
effects of PPARs but it is not known if myokines, such as
IL-15, act to upregulate their transcriptional activity [30, 36].
Interestingly, PPAR𝛿 expression levels have been strongly
linked to IL-15 signaling in SKM [26, 28]. However, the
direct relationship between IL-15 and PPAR𝛿 transcriptional
activity, to modulate mitochondrial processes, has yet to be
firmly established. On the other hand, there are reports that
IL-15 acts to increase PPAR𝛼 expression levels in adipose
tissue [29], but little is known regarding an IL-15-PPAR𝛼 rela-
tionship in SKM. Taken together, it is clear that a relationship
between IL-15 and PPAR𝛼 and/or 𝛿 exits, but the depth of
these relationships to induce metabolism, thereby, reducing
adiposity is unknown.

Here we aimed to determine the necessity of PPAR𝛼
and/or 𝛿 as downstream mediators of the metabolically
beneficial effects of IL-15 action on mitochondrial activity
in SKM. Here, we show that PPAR𝛿 is required for IL-15
mediated induction of mitochondrial activity independent of
PPAR𝛼 in SKM cells.

2. Methods

2.1. Reagents. C2C12 cells were obtained from Sigma
(#91031101) along with Dulbecco’s Modified Eagle Medium
(DMEM; #D6429), fetal bovine serum (FBS; #F0926), horse
serum (#H1270), and insulin (#I9278). Recombinant IL-15
was from GenScript (#Z03309-50) and GW-6471 (#11697)

and GSK-3787 (#15219) were obtained from Cayman
Chemicals. Trizol (#15596), SYBR green (#A25742) and a
SuperScript VILO reverse transcription kit (#11754050) were
purchased fromThermoFisher. The mitochondrial dye, Mito
Red, was from Santa Cruz Biotechnology (SC-#301164). Male
C57BL6 mice were kept on a 12 : 12 light dark cycle and fed a
standard diet and water ad libitum. Gastrocnemius muscle
was obtained following euthanasia. All animal procedures
were approved by the Institutional Animal Care and Use
Committee at Chapman University.

2.2. C2C12 Cell Culture. The mouse immortalized SKM
fibroblast cell line, C2C12, was cultured in DMEM and
supplemented with 10% FBS, 1% penicillin-streptomycin
(10,000U/mL), and 0.1% amphotericin B. When the cells
reached 80% confluence, they were induced to differentiate
into mature myotubes by supplementing the DMEMwith 2%
horse serum and 1 𝜇M insulin for 6 days. Myotube formation
was confirmed by visualization using an invertedmicroscope.
Upon induction of differentiation, cells were treated every
other day, for 6 days, with either vehicle control (DMSO), IL-
15 (100 ng/mL), 10 𝜇Mof a PPAR𝛼 inhibitor (GW-6471), 1𝜇M
of a PPAR𝛿 inhibitor (GSK-3787), IL-15 + GW-6471, IL-15 +
GSK-3787, or IL-15 + GW-6471 + GSK-3787.

2.3. Western Blotting. Western blotting was performed as
previously described [40]. Briefly, C2C12 cells were lysed
in a modified RIPA buffer supplemented with protease
inhibitors (Pierce). Approximately 20 𝜇g of protein from the
cell homogenate preparations was separated on a 4–12%
gradient gel (GenScript) via SDS-PAGE. Proteins were trans-
ferred onto Immobilon-P polyvinylidene difluoride (PVDF)
membranes and blocked with 5% BSA in Tween-TBS for
1 hour. The membranes were then incubated (4∘C) in 5%
BSA in Tween-TBS with antibodies (1 : 1000) against PPAR𝛼,
PPAR𝛿, or GAPDH (Sigma). Following overnight incuba-
tion, the membranes were then probed with a secondary
antibody (GenScript, 1 : 2000; or Thermo, 1 : 10,000). Blots
were then washed and subjected to enhanced chemilumines-
cence (Pierce).Membranes were stripped in 0.5MNaOHand
probed for total proteins and subsequently GAPDH (Sigma)
was used as a loading control.

2.4. RNA Extraction and Reverse Transcription. Standard
RNA isolation procedures were performed on the cells fol-
lowing the 6-day treatment protocol, as previously described
[41, 42]. Mouse gastrocnemiusmuscle was used to verify IL-2
receptor expression. Briefly, cells or muscle tissue was lysed
with Trizol reagent and chloroform was added to separate
the RNA from the DNA and protein fractions. RNA was
precipitated from the clear phase of the Trizol-chloroform
mixture, followed by centrifugation at 12,000×g at 4∘C, with
isopropanol. The RNA pellet was washed with 75% ethanol
and centrifuged at 7,500×g for 5 minutes, at 4∘C, and the pel-
lets were air-dried. Using RNAse-free water, the pellets were
resuspended and the RNA purity and concentration were
quantified using a NanoDrop spectrophotometer. Reverse
transcription of RNA to cDNA was performed on 2𝜇g of
RNA using SuperScript reverse transcriptase VILO kit.
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2.5. Mitochondrial DNA Assessments. Following the IL-15
treatment protocol, genomic DNA was isolated using a
miniprep DNA isolation kit (Sigma). Briefly, 5 × 106 of cells
in suspension, in lysis buffer, were mixed with RNase and
proteinase K and incubated at 70∘C for 10 minutes. Ethanol
was added and then homogenates were transferred to the
binding columns and subjected to a series of washes. The
columns were air-dried and the DNA was eluted. DNA
concentration and purity were assessed using a NanoDrop
spectrophotometer (Thermo). Real time qPCR was carried
out and a mitochondrial DNAmarker was compared relative
to a nuclear encoded marker (18S) and the corresponding
sequences are displayed in Table 1.

2.6. Real Time Quantitative PCR. Real time qPCR was per-
formed on the cDNA, using SYBR green in a 96-well plate.
The primers are displayed in Table 1. GAPDH was used as an
internal control and the ddCT method was used to calculate
gene expression levels.

2.7. Live Cell Mitochondrial Activation Assay. Following the
IL-15 treatment protocol, as described above, live cells were
stained using a dye that becomes sequestered in active
mitochondria [42]. The cells were then fixed with phosphate
buffered formalin and DAPI was used as a nuclear stain.
Fluorescence levels were assessed using an inverted Zeiss
microscope and images were captured using an Axiovision
camera. Relative and absolute fluorescence levels were calcu-
lated using Image J software. Measurements were corrected
for total cell fluorescence to account for the variation in
myotube size.

2.8. Citrate Synthase and ATP Assays. Citrate synthase (CS)
activity was measured using a previously described protocol
with some modifications [42–44]. To assess CS activity,
C2C12 cell lysates were added to a 96-well plate containing
100 𝜇M 5, 5󸀠-dithio-bis (2-nitrobenzoic acid) and 250 𝜇M
acetyl-CoA. To initiate the reaction, 500 𝜇Moxaloacetate was
added.The reaction wasmonitored in amicroplate reader for
5min at an ABS of 405. The specific activity was calculated
as the absorbance rate per minute divided by the mercaptide
extinction coefficient and expressed per 𝜇g of protein. ATP
was measured on cell lysates using a fluorometric kit in a 96-
well plate (Sigma) and normalized to total protein.

2.9. Statistical Analysis. Data are presented as mean ± SEM
and all calculations were carried out using GraphPad Prism
6. A one-way ANOVA was calculated to determine multiple
comparisons with a Fisher’s post hoc analysis. For compar-
isons between two groups Student’s 𝑡-test was performed. A
𝑃 level of 0.05 was used to determine statistical significance.

3. Results

3.1. IL-15 Induces Mitochondrial Activity in Skeletal Muscle
Cells. To verify total mitochondrial activation via IL-15
signaling, a mitochondrial activity assay was performed to
analyze relative mitochondrial activity in live SKM cells, as

Table 1: Primer sequences used for qPCR analysis.

Gene Sequence
PPAR𝛼, F ATGGGGGTGATCGGAGGCTAATAG
PPAR𝛼, R GGGTGGCAGGAAGGGAACAGAC
PPAR𝛿, F ACAAGGCCTCAGGGTACCA
PPAR𝛿, R GCCGAAAGAAGCCCTTACAG
PGC1𝛼, F ACTGAGCTACCCTTGGGATG
PGC1𝛼, R TAAGGATTTCGGTGGTGACA
PGC1𝛽, F TCCTGTAAAAGCCCGGAGTAT
PGC1𝛽, R GCTCTGGTAGGGGCAGTGA
UCP2, F CCATTGCACGAGAGGAAGGGAT
UCP2, R GTCATGAGGTTGGCTTTCAGGAG
Nrf1, F TTGGAACAGCAGTGGCAAGA
Nrf1, R CTCACTTGCTGATGTATTTACTTCCAT
IL-2R𝛾, F TACCAGACATTTGTTGTCCAGC
IL-2R𝛾, R GCCCGTGGGATCACAAGATT
Tfam, F CAAGTCAGCTGATGGGTATGG
Tfam, R TTTCCCTGAGCCGAATCATCC
nucDNA, F TTGCGATAATTATAGTGGCT
nucDNA, R TACCTGGTTGATCCTGCCA
mtDNA, F GGCTTTGGAAACTGACTTGT
mtDNA, R TTGCGATAATTATAGTGGCT
Cox5b, F GGCGGAGAAGCCCTGAA
Cox5b, R GCTGCATCTGTGAAGAGGACAAC
Cox7a1, F CAGCTTGTAATGGGTTCCACAGT
Cox7a1, R CAGCGTCATGGTCAGTCTGT
Cox8b, F AGAAAACCGTGTGGCAGAGA
Cox8b, R GAACCATGAAGCCAACGACT
Gapdh, F AGGTCGGTGTGAACGGATTTG
Gapdh, R TGTAGACCATGTAGTTGAGGTCA

indicated by red staining (Figure 1(a)). According to quantifi-
cation of the fluorescence signal, IL-15 stimulated mitochon-
drial activity by 44% in the SKM cells (𝑃 < 0.05; Figure 1(b)).
IL-15 treatment stimulated increases in both PPAR𝛼 and
PPAR𝛿 protein expression levels (Figure 1(c)). To verify that
the IL-15 receptor, IL-2R𝛾 [45], was present in the C2C12 cells
mRNA levels in mouse gastrocnemius and C2C12 cells were
measured (Figure 1(d)). IL-15 induced mRNA expression
levels of PPAR𝛼 (4-fold) and PPAR𝛿 (2-fold), alongwith their
cofactors PGC1𝛼 (100%) and PGC1𝛽 (40%), when compared
to control cells (𝑃 < 0.05; Figure 2(a)). Owing to the
capability of IL-15 to induce mitochondrial activity, the mito-
chondrial uncoupling protein-2 (UCP2) mRNA expression
levels were increased by 50% (𝑃 < 0.05, Figure 2(b)).
An additional factor associated with transcriptional activity
of PPARs, nuclear respiratory factor 1 (Nrf1), and mRNA
level was increased (30%) with IL-15 treatment (𝑃 < 0.05;
Figure 2(b)). However, IL-15 failed to alter the expression
levels of SIRT1 in the SKM cells (𝑃 > 0.05; Figure 2(b)).
In order to determine whether IL-15 stimulated increases
in mitochondrial associated factors or activity was due to
increased biogenesis, we assessed mtDNA and Tfam mRNA
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Figure 1: Effect of IL-15 signaling on mitochondrial activity. (a) Representative images of mitochondrial activity assessment in live cells
using a fluorescent probe sequestered into active mitochondria; (b) quantifiable fluorescence corrected for myotube size; (c) western blot of
PPAR𝛼 and PPAR𝛿 protein expression; (d) mRNA expression of IL-2R𝛾. Assessments were carried out on differentiated C2C12 myotubes
following treatment with 100 ng/mL of IL-15 every other day for 6 days during the differentiation protocol. Image J was used to quantify cell
fluorescence. GAPDH was used as control for protein and mRNA expression assessments. All values are displayed as mean ± SEM, 𝑛 = 3–6
per group, ∗𝑃 < 0.05.

expression levels. IL-15 had no effect on mtDNA content or
on Tfam expression levels (𝑃 > 0.05; Figures 3(a) and 3(b)).

3.2. The Involvement of PPARs in IL-15 Signaling. To verify
the efficiency of the PPAR𝛼 inhibitor, GW, we confirmed a
reduction in PPAR𝛼 mRNA expression levels by 57% when
compared to vehicle control cells (𝑃 < 0.05; Figure 4(a)).
PPAR𝛿 mRNA levels were assessed to determine the

specificity of GW and there were no reductions with PPAR𝛼
inhibition (𝑃 > 0.05; Figure 4(b)). Although PPAR𝛼 was
inhibited, the stimulatory effects of IL-15 on PGC1𝛼 and
UCP2 mRNA expression levels were maintained (𝑃 < 0.05;
Figure 4(c)). Conversely, the IL-15 induced increases in
PGC1𝛽 and Nrf1 mRNA levels were abolished with PPAR𝛼
inhibition when compared to vehicle control cells (𝑃 > 0.05;
Figure 4(c)). Next, PPAR𝛿 mRNA levels were confirmed
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Figure 2: Effects of IL-15 signaling on mitochondrial associated factors. (a) mRNA expression of PPAR𝛼, PPAR𝛿, PGC1𝛽, and PGC1𝛼; (b)
mRNA expression of UCP2, SIRT1, and Nrf1. Assessments were carried out on differentiated C2C12 myotubes following treatment with
100 ng/mL of IL-15 every other day for 6 days during the differentiation protocol. GAPDH was used as an internal control for qPCR analysis.
All values are displayed as means ± SEM, 𝑛 = 6–9 per group, ∗𝑃 < 0.05.
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Figure 3: Effects of IL-15 signaling on mitochondrial biogenesis. (a) mitochondrial DNA (mtDNA) assessments; (b) mRNA expression of
mitochondrial factor Tfam. Assessments were carried out on differentiated C2C12 myotubes following treatment with 100 ng/mL of IL-15
every other day for 6 days during the differentiation protocol. mtDNA was normalized to the total nuclearDNA (nucDNA) content. GAPDH
was used as an internal control for qPCR analysis. All values are displayed as means ± SEM, 𝑛 = 6.

to be reduced by 60%, when compared to vehicle control
cells, with its inhibitor (GSK) (𝑃 < 0.05; Figure 5(a)).
Conversely the PPAR𝛿 inhibitor had no effects on PPAR𝛼
mRNA levels, confirming the specificity of GSK (𝑃 > 0.05;
Figure 5(b)). Unlike the PPAR𝛼 experiments, inhibition of
PPAR𝛿 signaling resulted in a loss of IL-15 induced increases

in PGC1𝛼, PGC1𝛽, UCP2, and Nrf1 when compared to
vehicle control cells (𝑃 > 0.05, Figure 5(c)).

3.3. PPAR𝛿 Is Required for IL-15 Mediated Increases in
Mitochondrial Activity. In the SKM cells, IL-15 stimulated
increases in CS activity by 43%, when compared to vehicle
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Figure 4: Effects of PPAR𝛼 inhibition on IL-15 mediated alterations of mitochondrial associated factors. (a) mRNA expression of PPAR𝛼
following inhibition with GW-6471 (GW); (b) mRNA expression of PPAR𝛿 following exposure to GW; (c) mRNA expression of PGC1𝛼,
PGC1𝛽, UCP2, and Nrf1 with IL-15 treatment in combination with GW. Throughout differentiation, cells were treated every other day, for 6
days, with either vehicle control (DMSO), IL-15 (100 ng/mL), 10𝜇Mof the PPAR𝛼 inhibitor (GW-6471), or IL-15 + GW-6471 (I + G). GAPDH
was used as an internal control for qPCR analysis. All values are displayed as means ± SEM, 𝑛 = 6–9 per group, ∗different from vehicle and
GW groups; #different from all groups; 𝑃 < 0.05.

cells, (𝑃 < 0.05) and these stimulatory effects were eliminated
with PPAR𝛿 inhibition (𝑃 > 0.05; Figure 6(a)). Likewise, ATP
content was elevated (30%) with IL-15 treatment and PPAR𝛿
inhibition abolished these effects (𝑃 < 0.05; Figure 6(b)). IL-
15 induced increases inmRNA levels of cytochromeCoxidase
(Cox) isoforms 5b, 7a1, and 8b were dependent on PPAR𝛿
activity (𝑃 < 0.05; Figure 6(c)). Mitochondrial activity was
assessed directly in live SKM cells and the IL-15 induced
increases in mitochondrial activity remained elevated (53%),
when compared to vehicle control cells, with PPAR𝛼 inhibi-
tion (𝑃 < 0.05; Figures 7(a) and 7(b)). However, inhibition
of PPAR𝛿 prevented the effects of IL-15 induced increases in
mitochondrial activity (𝑃 > 0.05; Figures 7(a) and 7(b)). To

further solidify the PPAR𝛿-dependent-PPAR𝛼-independent
IL-15 mediated signaling, mitochondrial activity was abol-
ished with IL-15 stimulation in the presence of both PPAR𝛼
and PPAR𝛿 inhibitors (𝑃 > 0.05; Figures 7(a) and 7(b)).

4. Discussion

Data from this study solidify the notion that IL-15 is directly
involved in mediating mitochondrial activity in SKM cells.
Importantly, our data indicate that PPAR𝛿 activation is
required for IL-15 signaling to carry out its stimulatory
effects on mitochondrial activity. Further, based on our
findings, we have ruled out PPAR𝛼 as a potential modulator
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Figure 5: Effects of PPAR𝛿 inhibition on IL-15 mediated alterations of mitochondrial associated factors. (a) mRNA expression of PPAR𝛿
following inhibition with GSK-3787 (GSK); (b) mRNA expression of PPAR𝛼 following exposure to GSK; (c) mRNA expression of PGC1𝛼,
PGC1𝛽, UCP2, and Nrf1 with IL-15 treatment in combination with GSK.Throughout differentiation, cells were treated every other day, for 6
days, with either vehicle control (DMSO), IL-15 (100 ng/mL), 1𝜇Mof the PPAR𝛿 inhibitor (GSK-3787), or IL-15 + GSK-3787 (I + G). GAPDH
was used as an internal control for qPCR analysis. All values are displayed as means ± SEM, 𝑛 = 6–9 per group, ∗different from all groups;
𝑃 < 0.05.

of IL-15 induced mitochondrial activity. However, we have
evidence for a role of an IL-15-PPAR𝛼 signaling relationship
in mediating PGC1𝛽 and Nrf1 expression levels. Altogether it
is clear that PPAR𝛿 is required for IL-15 induced expression
of mitochondrial regulators and activity in SKM cells.

In line with other reports in adipose tissue [25], treatment
with IL-15 increased mitochondrial associated processes in
SKM cells, as indicated by increased activity of CS and ATP
production. Our data confirm other reports showing that IL-
15 has the ability to induce activity of the key Krebs Cycle
factor, CS, in SKM from mice [25]. It has been postulated
that one route that IL-15 acts to reduce adiposity is through
its ability to increase lipolysis and mitochondrial activity
in adipocytes [25]. Additionally, IL-15 has been shown to

increase the activity of mitochondrial processes, such as fatty
acid oxidation [24, 46]. Here we show, for the first time, that
IL-15 acts to directly increase overallmitochondrial activity in
live SKM cells. On the other hand, it does not appear that IL-
15 induces increases in mitochondrial biogenesis as indicated
by the mtDNA and Tfam assessments in the C2C12 cells.
Likewise, in the current study, activity of CS,ATPproduction,
and Cox isoform expression were fully dependent on PPAR𝛿
activity with IL-15 stimulation in the SKMcells. Further, it has
previously been established that IL-15 increases expression
levels of key factors that function to increase mitochondrial
activity and biogenesis in both white and brown adipose
tissue as well as in SKM [22, 26, 27, 29, 47]. Our results
are in line with those findings, as PPAR𝛼, PPAR𝛿, PGC1𝛼,
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Figure 6: Involvement of PPAR𝛿 in IL-15 mediated mitochondrial activity. (a) Citrate synthase (CS) activity; (b) total intracellular ATP
content; (c) mRNA expression of cytochrome C oxidase isoforms Cox5b, Cox7a1, and Cox8b. Assessments were carried out on total cell
lysates from C2C12 SKM cells following treatment every other day, for 6 days, with either vehicle control (DMSO), IL-15 (100 ng/mL), 1𝜇M
of the PPAR𝛿 inhibitor (GSK-3787), or IL-15 + GSK-3787 (I + G). All values are displayed as means ± SEM, 𝑛 = 6 per group, ∗different from
vehicle control group; 𝑃 < 0.05; ∗∗different from all groups, 𝑃 < 0.01; ∗∗∗different from IL-15 group, 𝑃 < 0.001; ∗∗∗∗GSK different from IL-15
group, 𝑃 < 0.001.

PGC1𝛽, UCP2, and Nrf1 expression levels were all elevated
with IL-15 stimulation. Conversely, our data do not support
the notion that IL-15 stimulates mitochondrial biogenesis,
which is in agreementwith previously reported data inmouse
SKM [48]. Unlike other studies, our treatment with IL-15
failed to increase SIRT1 expression levels [27, 28]. Here we
employed an in vitro model to study the effects of IL-15 on
SKM cells and the other reports linking IL-15 to SIRT1 were
carried out in a transgenicmousemodel overexpressing IL-15
[27, 28]. Therefore, it is a possibility that IL-15 induced SIRT1
expression levels are secondary to direct activation of the IL-
15 signaling pathway in SKM. On the other hand, it cannot be
ruled out that SIRT1 activity is regulated by IL-15, as we have

only assessed mRNA expression levels. Taken together, it is
clear that PPAR𝛿 is required for the IL-15 induced effects on
mitochondrial associated factors and activity.

Here, our data point to a strong link between IL-15 and
PPAR𝛿 in SKM cells, but PPAR𝛼 activity involvement had
not been fully assessed in SKM [24, 26–28]. PPAR𝛼 has been
associated with IL-15 signaling in adipose tissue and, with
this in mind, we attempted to elucidate a potential IL-15-
PPAR𝛼 relationship in C2C12 cells [29]. Interestingly, IL-15
induced PPAR𝛼 expression levels nearly 4-fold, while PPAR𝛿
expression was induced only 2-fold, suggesting that PPAR𝛼
may be a more direct target of IL-15 signaling. However, with
inhibition of PPAR𝛼, PGC1𝛼 and UCP2 mRNA expression



PPAR Research 9

0

0.5

1

2
×105 ∗

M
ito

ch
on

dr
ia

l a
ct

iv
ity

 (c
or

re
ct

ed
 ce

ll 
flu

or
es

ce
nc

e)

IL-15 IL + GW IL + GSK I + G + GV

(a)

Vehicle IL-15

DAPI-mitotracker

IL + GW IL + GSK IL + G + G

(b)

Figure 7: Involvement of PPAR𝛼 and PPAR𝛿 in IL-15 mediated mitochondrial activity in live cells. (a) Quantifiable fluorescence corrected
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levels weremaintainedwith IL-15 treatment. Conversely, Nrf1
mRNA expression levels were equivocal to the vehicle control
cells with IL-15 treatment when PPAR𝛼 was inhibited. Nrf1
has been shown to be directly regulated by PPAR𝛼, with a
greater affinity than PPAR𝛿, whichmay explain the reduction
in its expression levels with IL-15 treatment and PPAR𝛼
inhibition [49]. Furthermore, PGC1𝛽 expression levels were
not statistically different from vehicle control cells with both
IL-15 and PPAR𝛼 inhibitor. On the other hand, with PPAR𝛼
inhibition, the stimulatory effect of IL-15 on mitochondrial
activity was maintained. Although we show a potential
connection between IL-15-PPAR𝛼 mediated increases in
some mitochondrial associated factors, these relationships
do not appear to translate to functional assays, such as
mitochondrial activity. It should be noted that addition of the

vehicle control (DMSO) in the inhibitor studies yielded alter-
ations in baseline mRNA expression levels when compared
to mRNA levels in the absence of DMSO. Further, our data is
dependent on pharmacological inhibitors of PPARs. Genetic
knockdown studies would provide additional support for our
data. However, the functionality of IL-15 induced increases in
mitochondrial activity is relevant in mature fully differenti-
ated SKM cells.Therefore, methodological constraints do not
allow for genetic knockdown studies on fully differentiated
cells with repeated treatments.

Even though our data indicate that PPAR𝛼 activity is
not required for IL-15 mediated mitochondrial activity in
SKM cells, we definitively show that PPAR𝛿 activity is a
requirement. Indeed, the master mitochondrial regulators,
PGC1𝛼 and PGC1𝛽, mRNA expression levels were both
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reduced with PPAR𝛿 inhibition in combination with IL-15
stimulation. Both PGC1𝛼 and PGC1𝛽 are responsible for
the numerous beneficial effects of exercise on mitochondrial
processes and biogenesis and signal in concert with PPARs
[50, 51]. Additionally, PGC1𝛼 is responsible for regulating
mitochondrial uncoupling, via UCP2, and our data are in
support of this pathway, as indicated by the reductions
of UCP2 expression with inhibition of PPAR𝛿 with IL-15
treatment [52]. The importance of IL-15 induced PPAR𝛿
activation for the regulation of mitochondrial activity is
further supported by the reduction of Nrf1 mRNA expression
levels with PPAR𝛿 inhibition and IL-15 treatment. In this
regard, not only does IL-15 signal directly through PPAR𝛿 but
also its effects initiate a master metabolic regulation pathway,
including UCP2 and Nrf1 as downstream targets.

5. Conclusions

It is widely accepted that PPARs play an important role in
mediating mitochondrial processes to prevent and/or treat
metabolic disorders [30, 32, 34, 53, 54]. We provide evidence
for the requirement of PPAR𝛿 as a direct target of IL-
15 signaling to carry out mitochondrial processes in SKM.
Additionally, our data indicate that PPAR𝛼 is not necessary
for the beneficial effects of IL-15 signaling on mitochondrial
activation in SKM. Although we have shown the importance
of PPAR𝛿 in IL-15 signaling, the signals directly downstream
the IL-2 receptor remain unknown in SKM.Therefore, exam-
ining the effects of IL-15 on IL-2R targets such as Akt and the
Jak/STAT pathway is required in SKM. In order to define the
complex relationship of IL-15 signaling and PPARs further in
vivo studies arewarranted.Overall, understanding the players
involved in IL-15 signaling will give rise to potential therapies
for obesity and its associated disorders.
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