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ABSTRACT

In fresh milk, plasminogen, the zymogen form of plas-
min (PL), is the predominant form. Therefore, plasmin-
ogen activators (PA) can contribute significantly to PL
activity in milk. Both tissue-type PA (tPA) and uroki-
nase-type PA (uPA) exist in milk; however, contradic-
tory findings have been reported for which type of PA
is most closely associated with the casein micelles. Lit-
tle is known about the factors that might lead to varia-
tions in the individual activities of the PA. The objective
of this work was therefore to investigate possible factors
that might affect the association of tPA and uPA with
the casein micelle and their activities thereafter. Plas-
minogen activators were isolated from milk samples
with different somatic cell counts following 2 different
isolation protocols. Determination of uPA, tPA, and PL
activities was carried out quantitatively following chro-
mogenic assays using 2 different substrates, and quali-
tatively using specialized sodium dodecyl sulfate-
PAGE. Different isolation methods and conditions led
to differences in uPA, tPA, and PL activities. Uroki-
nase-type PA activity was significantly higher in PA
fractions isolated from milk with high somatic cell
counts than from milk with low somatic cell counts.
Activity results indicated that in pasteurized milk uPA
could dissociate from the somatic cells and bind to ca-
sein. Moreover, a high level of PL in isolated PA frac-
tions contributed to significantly enhanced PA activi-
ties. Overall, results confirmed the association of both
uPA and tPA with the casein micelle; however, their
amounts, activities, and molecular weights varied
based on the nature of the milk and methods of separa-
tion, with uPA being the PA with greater potential to
affect plasminogen activation in milk.
Key words: plasmin system, plasminogen activator,
somatic cell count, casein micelle
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INTRODUCTION

Proteolysis in milk is known to be caused by native
proteases and proteases produced by psychrotrophic
microorganisms (Fairbairn and Law, 1986; Grufferty
and Fox, 1988). Proteolysis, caused by the principal
native proteinase plasmin (PL; EC 3.4.21.7), has at-
tracted great interest among researchers because of its
complexity and versatile effects on quality. Plasmin
activity is sometimes essential and desirable for flavor
development and texture changes during the ripening
of cheese, thus enhancing the product quality. Con-
versely, uncontrolled proteolysis can have a detrimen-
tal effect on the quality, such as poor curd formation
(Srinivasan and Lucey, 2002), gelation of stored UHT
milk (Kohlmann et al., 1991), and degradation of stored
CN intended to be used as functional enhancers in food
(Nielsen, 2002).

Plasmin is an alkaline serine proteinase, which hy-
drolyzes mostly αs1-CN, αs2-CN, and β-CN (Grufferty
and Fox, 1988; Bastian and Brown, 1996). Plasmin is
part of a complex system, commonly referred to as the
PL system, which includes its zymogen plasminogen
(PG), PG activators (PA), PA inhibitors (PAI), and PL
inhibitors (PI). Plasmin inhibitors and PAI are associ-
ated with milk serum (Precetti et al., 1997), whereas
PL, PG, and PA are associated with CN micelles (Politis
et al., 1992). The interactions among PG, PL, PA, PAI,
and PI, which characterize the PL system, have been
studied by several researchers, as elaborately discussed
in review articles by Grufferty and Fox (1988) and Bas-
tian and Brown (1996). Storage, heat treatment, and
pH are among the most important factors affecting the
PL system in milk and dairy products.

In fresh milk, PG is the predominant form, with a
concentration 2 to 20 times that of PL (Richardson and
Pearce, 1981; Bastian and Brown, 1996). Therefore, any
potential activation of PG could contribute significantly
to PL activity in milk. The conversion of PG into PL is
mediated by at least 2 types of PA, tissue-type (tPA;
EC 3.4.21.68) and urokinase-type (uPA; EC 3.4.21.73),
which also are serine proteinases (Bastian and Brown,
1996). Both tPA and uPA convert bovine PG to PL by
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hydrolyzing the Arg557–Ile558 bond while the milk is
in the mammary lumen prior to milking and during
milk storage (Driessen and Van Der Waals, 1978;
Schaar, 1985; Alichanidis et al., 1986). Compared with
other components of the PL system in bovine milk, little
work has been done on PA. Plasminogen activators are
thought to be even more heat stable than PL and PG (Lu
and Nielsen, 1993); thus, they survive pasteurization
when PAI do not (Richardson, 1983; Prado et al., 2006).
Therefore, understanding PA in milk is essential be-
cause they could have a significant effect on PL activity,
which in turn can cause either beneficial or detrimental
proteolysis in dairy foods.

Little is known about the difference in activity be-
tween the 2 known types of PA (tPA and uPA). Re-
searchers have found that tPA activity is significantly
enhanced by fibrin (Rånby et al., 1982; Karlan et al.,
1987), and that both tPA and uPA activities are stimu-
lated by CN (Markus et al., 1993; Politis et al., 1995).
Furthermore, Heegaard et al. (1994) observed that ami-
loride inhibits uPA activity but has no effect on tPA. It
is commonly believed that PA are associated with CN;
however, conflicting results have been observed by sev-
eral researchers regarding which PA is predominantly
associated with the CN micelle (Lu and Nielsen, 1993;
Heegaard et al., 1994; White et al., 1995). Lu and Niel-
sen (1993) identified 5 proteins with PA-like activities
associated with the CN fraction. Heegaard et al. (1994)
reported that tPA was 100-fold more abundant than
uPA in the CN fraction. White et al. (1995) found that
50% of PA activity associated with CN is attributed to
tPA. Heegaard et al. (1994) and White et al. (1995)
confirmed the absence of PA from the whey fraction.
The association of uPA (Heegaard et al., 1994; White
et al., 1995) and tPA (Zachos et al., 1992) with somatic
cells has been observed. White et al. (1995) linked the
association of tPA with somatic cells to the presence of
CN remnants in the cell extracts, and thus concluded
that tPA is the main PA associated with the CN micelle
and that uPA is associated with the somatic cells. Obvi-
ously, tPA and uPA are both present in milk, and the
discrepancy in results could be attributed to many fac-
tors. Urokinase-plasminogen activators can dissociate
from the somatic cells and be picked up by CN and
physically bind to it. Therefore, the SCC in milk, the
time the somatic cells stay in milk, and the heat treat-
ment of milk could be factors affecting the dissociation
of uPA from the somatic cells. The presence of PL can
lead to the conversion of single-chain uPA and tPA into
2-chain proteins with significantly enhanced activities
(Ugwu et al., 1998); thus, the amount of PL in milk and
in the isolated PA solution will be another source of
variation affecting the results. Other factors leading to
conflicting results could be differences in methods of
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PA isolation from the CN micelle and the substrates
used in the chromogenic assays. Therefore, the purpose
of this study was to dissociate and isolate PA under
various conditions and test activities using different
substrates to better understand the activity and nature
of PA associated with the CN micelle.

MATERIALS AND METHODS

Source of Milk and Reagents

Fresh raw milk was collected from 5 mid lactation,
second-calving cows (Purdue University Dairy Re-
search Farm) on several occasions over a 2-wk period.
Samples of the collected milk were sent out for proxi-
mate analysis and SCC measurement (Universal Lab
Services, Lansing, MI). Only milk samples with widely
varied SCC were processed further for determination
of PA. The 2 chosen milk samples were subjected to
HTST pasteurization at 72°C for 15 s using a pilot-scale
plate heat exchanger (FT 74; Armfield, Jackson, NJ).

D-Valyl-L-leucyl-L-lysine 4-nitroanilide dihydrochlo-
ride (S-2251, product #V0882) and amiloride (product
#A7410) were purchased from Sigma Chemical Co. (St.
Louis, MO). H-D-Norleucyl-hexahydrotyrosol-lysine-p-
nitroanilide diacetate [Spectrozyme PL (SpecPL),
product #251L], bovine PG (product #416), urokinase
(product #124), 2-chain tPA (product #116), and cyano-
gen bromide fibrinogen digest (FIBGN; product #459)
were purchased from American Diagnostica (Green-
wich, CT). Bovine PL (product #602 370) was purchased
from Roche Diagnostics (Indianapolis, IN). All reagents
were diluted to appropriate concentrations in either
deionized distilled water or 0.05 modified Tris buffer
(MTB; 0.05 M Tris, 0.1 M NaCl, 0.01% Tween 80; pH
7.6) depending on the substrate protocol.

Casein-Hammerstein (CN-Hammerstein; product
#101289) was obtained from ICN Biomedicals, Inc. (Au-
rora, OH). Prestained broad-range SDS-PAGE stan-
dards (product #161-0318), 40% acrylamide-bis solution
(2.6% crosslinking), 10× Tris-Gly-SDS (product #161-
0732), and criterion cassettes (product #345-9981) were
obtained from BioRad Laboratories, Inc. (Hercules, CA)
for the specialized electrophoresis gels. A micro bicin-
choninic acid protein assay kit (Micro BCA, product
#23225; Pierce Chemical Co., Rockford, IL) was used
for protein determination following the manufactur-
er’s instructions.

Dissociation and Isolation of PA
from the CN Micelle

To address contradictory results advanced in pre-
viously reported work, and to gain a better understand-
ing of the activity and nature of PA associated with the
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CN micelle, 2 milk samples with widely varied SCC
were subjected to different PA isolation conditions and
protocols. The PA isolation protocol and reagents used
were adopted from the work of DeHarveng and Nielsen
(1991) and White et al. (1995), in which each group of
researchers provided justifications for their proposed
procedures. Each pasteurized milk, having different
SCC, was randomly divided, in triplicate, into 4 (600-
mL) samples that were defatted by centrifuging (Avanti
J25I Centrifuge; Beckman, Fullerton, CA) at 4,000 × g
for 20 min at 4°C and randomly assigned to 1 of 4
treatments (PA isolation conditions and protocols). So-
matic cells were retained in one of the defatted milk
samples, and isolation of PA was carried out for that
sample as outlined by DeHarveng and Nielsen (1991),
without modifications, to produce a PA solution referred
to as supernatant 2 (Sup2; Figure 1). Somatic cells
were removed from the second defatted milk sample,
and isolation of PA was carried out as outlined by De-
Harveng and Nielsen (1991) without modifications. So-
matic cells were removed from the third defatted milk
sample, and isolation of PA was carried out as outlined
by White et al. (1995), without modifications, to produce
supernatant (White Sup) and CN (White CN) frac-
tions (Figure 2). Somatic cells were removed from the
fourth defatted milk sample, and isolation of PA was
carried out as outlined by DeHarveng and Nielsen
(1991) with one modification in the ultracentrifugation
step, which was increased from 70,000 to 100,000 × g
to obtain the same CN pellet as the one obtained follow-
ing the method used by White et al. (1995). All extrac-
tions were carried out in triplicate.

Chromogenic Assays

Chromogenic Coupled Assay to Measure uPA Ac-
tivity. The coupled assay used to measure uPA activity
was based on the method outlined by Lu and Nielsen
(1993) with some modifications. To determine uPA ac-
tivity, the sample was mixed with MTB, bovine PG,
and the chromogenic substrate, either SpecPL or S-
2251. A blank that consisted of MTB, bovine PG, and
substrate was prepared, as well as a control for every
treatment that consisted of sample, MTB, and sub-
strate. The volumes and concentrations of reagents
used are listed in Table 1. In triplicate, reaction mix-
tures were prepared to a total volume of 400 �L in
microcentrifuge tubes and were incubated for 2 h in a
water bath set at 37°C. After incubation, tubes were
microcentrifuged at 15,600 × g for 5 min and a100-�L
sample was pipetted into 3 wells of a 96-well microtiter
plate. Absorbance was measured at 405 and 490 nm
(subtracted to correct for added absorbance caused by
turbidity) using a Vmax kinetic microtiter plate reader
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(Molecular Devices, Sunnyvale, CA). Based on ab-
sorbance values, units of activity of uPA were calculated
per 1 mg of protein in the sample. One unit was defined
as the change of 0.1 nm in absorbance. Therefore, units
of activity of uPA were calculated as follows:

units of activity = (absorbance value
× dilution factor/0.1)/mg of protein

Chromogenic Coupled Assay to Measure tPA Ac-
tivity. The coupled assay used to measure tPA activity
also was based on the method outlined by Lu and Niel-
sen (1993) with some modifications. Amiloride, to in-
hibit uPA activity, and FIBGN, to stimulate tPA activ-
ity, were used to differentiate tPA activity from uPA
activity. The amiloride and FIBGN concentrations used
ensured inhibition of uPA and enhancement of tPA,
respectively. It was previously proven that amiloride
inhibits uPA but not tPA, and that FIBGN is required
for the detection of tPA activity chromogenically (Rånby
et al., 1982; Karlan et al., 1987; Heegaard et al., 1994;
White et al., 1995). Therefore, to determine tPA activ-
ity, the sample was mixed with MTB, bovine PG, ami-
loride, FIBGN, and the chromogenic substrate, either
SpecPL or S-2251. A blank was prepared that consisted
of MTB, bovine PG, amiloride, FIBGN, and substrate,
and a control was prepared for every treatment that
consisted of sample, MTB, amiloride, FIBGN, and sub-
strate. The volumes and concentrations of reagents
used are listed in Table 2. Thereafter, determination
of tPA activity was completed as outlined in the previ-
ous section.

Chromogenic PL and PG Activity Assays. Plas-
min and PG activities of the isolated fractions were
measured, in triplicate, following the chromogenic
assays outlined by Fajardo-Lira and Nielsen (1998),
with minor modifications in the volumes and concentra-
tions used. For PL determination, in a microcentrifuge
tube, sample (100 �L) was added to 300 �L of 1.6 mM
SpecPL and allowed to react for 1 h at 37°C in a water
bath. For PG determination, in a microcentrifuge tube,
sample (100 �L) was added to 100 �L of 3.2 mM SpecPL,
100 �L of human uPA (280 IU/mL), and 100 �L of MTB,
and the reaction mixture was allowed to react for 1 h at
37°C in a water bath. Proper blank and control mixtures
were prepared. Determination of PL and PG procedures
continued as described in the previous sections. Units
of activity also were calculated as described above.

Specialized Gel Electrophoresis

Discontinuous SDS-PAGE and CN-PG SDS-PAGE
gels, each consisting of 15% acrylamide resolving gel
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Figure 1. Plasminogen activator isolated according to the method of DeHarveng and Nielsen (1991). DDW = deionized distilled water.

(15% T, and 2.6% C) and 4% acrylamide stacking gel,
were hand-casted following the formula outlined in Ta-
ble 3. The SDS-PAGE was carried out to observe and
identify PA proteins, whereas the CN-PG SDS-PAGE
was carried out to observe PG activation by PA as indi-
cated by zones of clearance (caused by hydrolysis of
embedded CN). The CN-PG SDS-PAGE gel was prerun
for 1.5 h at 200 V. For SDS-PAGE, standard solutions
of β-CN, PL, PG, high molecular weight uPA (52 kDa),
and 2-chain tPA (70 kDa) were prepared, with concen-
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trations of 0.25, 0.114, 0.25, 0.07, and 0.02 mg/mL, re-
spectively. For CN-PG SDS-PAGE, standard solutions
of PL, high molecular weight uPA, and 2-chain tPA
were prepared, with activities of 62.5 mU/mL, 3.1 IU/
mL, and 170 IU/mL, respectively. Standard solutions
and samples of PA solutions isolated under different
conditions were mixed 1:2 (vol/vol) with Laemmli buffer
under nonreducing conditions and held at room temper-
ature (22°C) for 30 min. The protein contents of isolated
PA solutions were close in value (0.2 to 0.5 mg/mL),
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Figure 2. Plasminogen activator isolated by the method of White et al. (1995). DDW = deionized distilled water.

Table 1. Volumes (�L) and concentrations of reagents used for assay
of urokinase-type plasminogen activator activity1

MTB, SpecPL
Reaction 0.05 M, PG, or S-2251,
mixture Sample pH 7.5 0.032 mg/mL 3.2 mM

Blank 0 200 100 100
Control 100 200 0 100
Sample 100 100 100 100

1MTB = modified Tris buffer; PG = plasminogen; SpecPL = Spectro-
zyme PL (H-D-norleucyl-hexahydrotyrosol-lysine-p-nitroanilide dia-
cetate; American Diagnostica, Greenwich, CT); S-2251 = D-valyl-L-
leucyl-L-lysine 4-nitroanilide dihydrochloride (Sigma Chemical Co.,
St. Louis, MO).

Journal of Dairy Science Vol. 89 No. 9, 2006

except for the CN fraction, which was isolated as out-
lined by White et al. (1995) and which, on average, was
1.7 mg protein/mL. Therefore, after mixing the samples
with the Laemmli buffer, 20 �L of each sample was
loaded on the gel (SDS-PAGE gel or CN-PG SDS-PAGE
gel), except for the White CN fraction, for which only
5 �L of aliquot was loaded. An aliquot (15 �L) of
prestained broad-range molecular weight standards
was loaded on both the SDS-PAGE and CN-PG SDS-
PAGE gels. Running conditions of both gels and the
incubation protocol for the CN-PG SDS-PAGE gel, as
well as the staining and destaining procedures, were
performed as outlined by Fajardo-Lira et al. (2000),
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Table 2. Volumes (�L) and concentrations of reagents used for assay of tissue-type plasminogen activator
activity1

MTB, PG, SpecPL
Reaction FIBGN, 0.05 M, 0.032 or S-2251, Amiloride,
mixture Sample 0.27 mg/mL pH 7.5 mg/mL 3.2 mM 10 mM

Blank 0 60 100 100 100 40
Control 100 60 100 0 100 40
Sample 100 60 0 100 100 40

1FIBGN = cyanogen bromide fibrinogen digest (American Diagnostica, Greenwich, CT); MTB = modified
Tris buffer; PG = plasminogen; SpecPL = Spectrozyme PL (H-D-norleucyl-hexahydrotyrosol-lysine-p-nitroani-
lide diacetate; American Diagnostica); S-2251 = D-valyl-L-leucyl-L-lysine 4-nitroanilide dihydrochloride
(Sigma Chemical Co., St. Louis, MO).

except for the incubation time of the CN-PG SDS-PAGE
gel, which was modified to 28 h.

Statistical Analysis

Analysis of variance was carried out using SPSS 11.5
for Windows (Statistical Program for the Social Sci-
ences, 2002). Activity data of uPA and tPa, obtained
when using the 2 chromogenic substrates SpecPL and
S-2251, were analyzed using one-way ANOVA in a com-
pletely randomized design with isolation condition
(treatment) as the independent factor. Within each iso-
lation treatment, differences in each of the uPA and
tPA activities between milk samples with different SCC
were analyzed following the same statistical method.
Activity data of PL and PG of fractions isolated from
both milk samples were analyzed following the same
statistical method, with isolation treatment as the inde-
pendent factor. When the treatment factor effect was
significant, as indicated by a significant F-test (P ≤
0.05), differences between the respective means were
determined (P ≤ 0.05) using the Tukey–Kramer multi-
ple means comparison test.

Table 3. Casein-plasminogen (CN-PG) SDS-PAGE and SDS-PAGE gel formulations

CN-PG
SDS-PAGE SDS-PAGE Stacking

Ingredient1 15% resolving gel 15% resolving gel gel 4%

Deionized distilled water, mL 2.02 3 9
Lower buffer, mL 2 2
Upper buffer, mL 3.75
Acrylamide (40%), mL 2.4 2.4 1.35
Glycerol (87%), mL 0.6 0.6
CN, mL 0.8
Plasminogen, mL 0.18
TEMED, �L 5 5 9
APS, �L 30 30 53
Total volume, mL 8 8 14.1

1Lower buffer = 1.5 M Tris–HCl buffer, pH 8.8, 0.4% SDS; upper buffer = 0.5 M Tris–HCl buffer, pH 6.8,
0.4% SDS; APS = 40% acrylamide–bis solution (2.6% C); CN = 2% CN-Hammersten in lower buffer:deionized
distilled water (1:3, vol/vol); plasminogen = 1 mg/mL of modified Tris buffer; TEMED = N,N,N′,N′-tetrameth-
ylethylenediamine; APS = 10% ammonium persulfate, prepared fresh.
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RESULTS AND DISCUSSION

SCC and Proximate Analysis

The measurements for SCC and proximate analysis
of both raw whole milk samples were consistent for
normal and healthy milk (Table 4). The SCC for milk
sample 2 was 30 times lower than that of milk sample
1. The BCA results for protein content of isolated PA
fractions showed that the White CN fraction had the
highest level of protein (Table 5).

Activity as Measured Using Chromogenic Assays

Activities of PA. Activity results obtained from
assays using both chromogenic substrates, SpecPL
(Figure 3A) and S-2251 (Figure 3B), showed that White
Sup had by far the highest uPA and tPA activities of
all isolated fractions. The significant difference between
the White Sup and Sup2 fractions in activities of both
uPA and tPA could be attributed to the isolation
method. As explained by DeHarveng and Nielsen
(1991), the Sup2 isolation protocol involves more puri-
fication steps, which leads to a solution that mostly
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Figure 3. Units of activity of urokinase-type plasminogen activa-
tor (uPA) and tissue-type plasminogen activator (tPA) as measured
using the chromogenic substrate (A) SpecPL (Spectrozyme PL; H-D-
norleucyl-hexahydrotyrosol-lysine-p-nitroanilide diacetate; Ameri-
can Diagnostica, Greenwich, CT) or (B) S-2251 (D-valyl-L-leucyl-L-
lysine 4-nitroanilide dihydrochloride; Sigma Chemical Co., St. Louis,
MO), averaged from fractions extracted (in triplicate) from both milk
samples. Different uppercase letters above the bars indicate differ-
ences (P ≤ 0.05) between uPA and tPA activities within each isolated
fraction and not across (refer to Table 5 for a description of each
fraction). Different lowercase letters indicate differences (P ≤ 0.05)
between different fractions independently for each plasminogen acti-
vator type.

contains PA as compared with White Sup (White et al.,
1995). The uPA and tPA activities, obtained when using
both chromogenic substrates SpecPL and S-2251, were
not significantly different between the Sup2 fractions
prepared under different conditions. Although uPA was
found to be associated with the somatic cells (White et
al., 1995), the presence or absence of somatic cells did
not affect the results. In raw milk, White et al. (1995)

Table 4. Proximate analysis values and SCC of the two milk samples

Fat, Protein, Lactose, Solids, SCC,
Sample % % % % 1,000/mL

Milk sample 1 1.80 2.93 4.80 8.50 609
Milk sample 2 2.23 3.31 4.69 8.71 21
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showed that 50% of the PA activity associated with CN
was tPA. The authors attributed the presence of uPA
to its dissociation from the somatic cells and binding
to CN thereafter. The significantly higher activity of
uPA than tPA in our White Sup can be attributed to
pasteurization of the milk, through which heat could
have played a significant role in dissociating uPA from
the somatic cells. It is important to note here that the
previously reported data were obtained from raw milk
(Lu and Nielsen, 1993; Heegaard et al., 1994; White
et al., 1995). Ultracentrifugation at different speeds
(70,000 and 100,000 × g) to obtain the CN pellet (Figures
1 and 2) did not significantly affect the results. A com-
parison of uPA and tPA activities within each treatment
showed that uPA activity was significantly greater than
tPA activity only in the White Sup fraction, an observa-
tion that could again be attributed to the method of
separation having an effect on PL content, as will be
discussed later. Although relative uPA and tPA activity
values obtained from assays utilizing different sub-
strates showed a similar trend, they were significantly
lower (P ≤ 0.05), specifically for White Sup, when the
substrate used was S-2251. A similar observation was
made by Choi (2004), for whom the use of S-2251 led
to underestimating activity levels in certain cases. One
explanation could be that the PL produced on activation
of PG by PA might have different kinetic parameters
toward the 2 substrates.

When comparing the results of isolated PA fractions
prepared from 2 milk samples with different SCC (Ta-
ble 4), we noted that all fractions isolated from the milk
with a greater SCC had a significantly higher (almost
2 times greater) uPA activity than fractions isolated
from the milk sample with a lower SCC (Figure 4A).
Significantly less tPA was observed in only 2 fractions
isolated from milk with low SCC (Figure 4B), and the
difference in activity was not as pronounced as the dif-
ference observed in uPA activity between the 2 milk
samples. These results confirm that uPA is indeed asso-
ciated with somatic cells; however, it can be dissociated
over time as well as with heat, and become physically
bound to CN.

Plasmin and PG Activities. Results obtained for
the PL and PG activities retained in Sup2, White Sup,
and White CN are not a reflection of the actual activities
in milk, because the fractions were not isolated follow-
ing a protocol that allowed maximal retention and mea-
surement of PL- and PG-derived activities; instead, it
was a protocol that specifically allowed retention of PA.
Plasmin and PG activities were significantly higher in
White Sup than in all other fractions (Figure 5). The
procedure used to produce the Sup2 fractions involves
more elaborate steps that result in a relatively pure PA
extract, leading to less PL and PG retention in Sup2
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Table 5. Average protein content, as determined by a protein assay kit,1 of the different isolated fractions from both milk samples

Protein,
Sample Description mg/mL

1 Supernatant 2 (Sup2) isolated from milk with somatic cells as outlined by DeHarveng and Nielsen (1991)2 0.26c

2 Supernatant 2 (Sup2) isolated from milk without somatic cells as outlined by DeHarveng and Nielsen (1991) 0.31c

3 Supernatant 2 (Sup2) isolated from milk without somatic cells as outlined by DeHarveng and Nielsen (1991), 0.32c

with ultracentrifugation at 100,000 × g instead of 70,000 × g
4 Supernatant (White Sup) isolated from milk without somatic cells as outlined by White et al. (1995)3 0.53b

5 Casein (White CN) isolated from milk without somatic cells as outlined by White et al. (1995) 1.66a

a–cMeans followed by the same letter do not differ according to the Tukey–Kramer multiple means comparison test (P ≤ 0.05).
1Micro bicinchoninic acid protein assay kit (Micro BCA; Pierce Chemical Co., Rockford, IL). Protein values are the average of the means

of 2 milk samples, in which each was the mean of 3 determinations.
2Refer to Figure 1 for a diagram of the Sup2 plasminogen activator isolation method.
3Refer to Figure 2 for a diagram of the White Sup plasminogen activator isolation method.

fractions as compared with White Sup. Plasmin can
convert single-chain uPA (Ugwu et al., 1998) and single-
chain tPA to 2-chain proteins with significantly higher
specific activities. Therefore, the high level of PL, as
well as PG, that can be converted to active PL by the
action of PA in the fractions is the most probable cause
of the high PA activities observed in White Sup as com-

Figure 4. Units of activity of (A) urokinase-type plasminogen
activator (uPA) and (B) tissue-type plasminogen activator (tPA) in
fractions isolated (in triplicate) from 2 milk samples, as measured
using the chromogenic substrate SpecPL (Spectrozyme PL; H-D-nor-
leucyl-hexahydrotyrosol-lysine-p-nitroanilide diacetate; American
Diagnostica, Greenwich, CT). Milk 1 = milk with SCC of 609,000/
mL; milk 2 = milk with SCC of 21,000/mL. Different uppercase letters
above the bars indicate differences (P ≤ 0.05) in activities between
the 2 milk samples, within each isolated fraction and not across (refer
to Table 5 for a description of each fraction).
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pared with the Sup2 fractions. More specifically, results
indicated that uPA activity seemed to be more greatly
enhanced than tPA activity in the presence of high PL
activity, whereas uPA activity was significantly differ-
ent from tPA activity only in the White Sup fraction
(Figure 3).

Qualitative Determination of PA Activities Using
Specialized Gel Electrophoresis

The SDS-PAGE gel (Figure 6) showed that the Sup2
fractions (lanes 7, 8, and 9) had fewer protein bands
than the White Sup (lane 10) and White CN (lane 11)
fractions. As with the activity assays results, we ob-
served little difference in the lanes of the Sup2 frac-
tions. The White Sup fraction had a visible amount
of PG, as compared with the Sup2 fractions, which is
consistent with findings of the activity assays. No obvi-
ous bands for PL (a little greater than 54 kDa) and uPA

Figure 5. Units of activity of plasmin (PL) and plasminogen (PG)
as measured using the chromogenic substrate SpecPL (Spectrozyme
PL; H-D-norleucyl-hexahydrotyrosol-lysine-p-nitroanilide diacetate;
American Diagnostica, Greenwich, CT), averaged from fractions ex-
tracted (in triplicate) from both milk samples. Note that the concen-
tration of SpecPL used for the PL assay was 1.6 mM, whereas that
for the PG assay was 3.2 mM. Different lowercase letters indicate
significant differences (P ≤ 0.05) between different fractions indepen-
dently for PL and PG (refer to Table 5 for a description of each
fraction).
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Figure 6. Sodium dodecyl sulfate-polyacrylamide gel electropho-
retic visualization of the different proteins present in the isolated
plasminogen activator fractions. Lane 1, molecular weight standards;
lane 2, β-CN; lane 3, bovine plasmin; lane 4, bovine plasminogen;
lane 5, urokinase-type plasminogen activator; lane 6, tissue-type plas-
minogen activator; lanes 7 to 9, Sup2 fractions (1 to 3, where Sup2
is the plasminogen activator supernatant isolated according to the
method of DeHarveng and Nielsen, 1991); lane 10, White Sup (where
White Sup is the plasminogen activator supernatant isolated ac-
cording to the method of White et al., 1995); Lane 11, white casein.
The gel presented is one replicate of 3.

(52 kDa) were seen in any of the fractions. Interestingly,
each of the Sup2 fractions had a tPA (70 kDa) band that
was more intense than the respective band observed in
the White Sup sample. The White Sup fraction, and
more so the White CN fraction, had a significant
amount of CN, whereas none was observed in the Sup2
fractions. This observation further proved that the
Sup2 isolation protocol leads to a purer extract of PA.

The CN-PG SDS-PAGE gel revealed interesting find-
ings, which were somewhat complementary with the
results of the activity assays. Running a 2-chain uPA
standard showed a very intense zone of clearance at
around 52 kDa and a less intense clearance zone at
around 32 to 33 kDa. The product sheet of the purchased
uPA indicated the contamination of low molecular
weight uPA (32 kDa). Because both high molecular
weight uPA and low molecular weight uPA have high
specific activities per milligram of protein, 90,000 and
160,000 IU/mg, respectively, zones of clearance can be
distinctly observed, whereas a clear protein band on
SDS-PAGE cannot be seen. A 2-chain tPA standard
showed a very intense zone of clearance that started
at about 70 kDa, and a faint clearance zone at around
40 kDa. The product sheet of the purchased tPA (70
kDa), indicated that 95% of the product was a 2-chain
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Figure 7. Casein–plasminogen SDS-PAGE visualization of plas-
min and plasminogen activator activities present in the isolated plas-
minogen activator fractions. Lane 1, molecular weight standards;
lane 2, bovine plasmin; lane 3, urokinase-type plasminogen activator;
lane 4, tissue-type plasminogen activator; lane 5, White Sup (where
White Sup is the plasminogen activator supernatant isolated ac-
cording to the method of White et al., 1995); lane 6, White CN (where
White CN is the CN pellet isolated according to the method of White
et al., 1995); lanes 7 to 9, Sup2 fractions (1 to 3; where Sup2 is the
plasminogen activator supernatant isolated according to the method
of DeHarveng and Nielsen, 1991). Arrows numbered 1 to 6 refer to
zones of clearance in each lane. The gel presented is one replicate of 3.

protein (30 + 40 kDa) and 5% was a single-chain tPA (68
kDa). Thus, it was assumed that the zone of clearance at
40 kDa in the tPA standard might be due to a contami-
nation of the 40-kDa protein, which retained the active
site and did not chain to the 30-kDa protein to form
the 2-chain protein.

Several zones of clearance were observed in the iso-
lated fractions lanes (5 to 9), mainly at 6 different molec-
ular weight points, numbered 1 to 6 in Figure 7. The
White Sup sample had 5 distinctive zones of clearance
at 70, 54, 52, 40, and 29 kDa. Zone 1 was attributable
to tPA and was more intense than any of the other
isolated fractions, which confirms the results of the ac-
tivity assays. Zone 2 was attributable to PL (as con-
firmed on the CN-PG SDS-PAGE gel; gel not shown)
and was more intense than any of the other isolated
fractions, which again confirms the results of the activ-
ity assays. The tPA band of White Sup observed in the
SDS-PAGE visualization (Figure 6, lane 10) was less
intense than the tPA bands in the Sup2 fractions (Fig-
ure 6, lanes 7 to 9); however, the activity zone was
higher. The Sup2 procedure obviously led to a more
concentrated solution of tPA; however, the single-chain
tPA was significantly less active than the 2-chain tPA.
The presence of significantly higher PL activity in
White Sup led to the conversion of the single-chain tPA
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into a 2-chain tPA. Therefore, although less tPA protein
was present, the activity observed was more intense.
A similar explanation can be given to activity zone 3
(caused by uPA), which was more intense in the White
Sup (Figure 7, lane 5) than in the Sup2 fractions (Figure
7, lanes 7 to 9). Compared with the standards, zone 4
in the White Sup and all Sup2 fractions was assumed
to be caused by low molecular weight tPA (40 kDa).
Considering the activity assay results, which showed
higher uPA than tPA activity, zone 6 (29 to 30 kDa),
which was found only in White Sup, was assumed to
be caused by uPA. White et al. (1995) detected a protein
with similar molecular weight (30 kDa) and identified
it as uPA. The White Sup was not a pure PA extract,
and the PA might have undergone several breakdown
reactions, resulting in PA with multiple molecular
weights and varied activities. As seen with the activity
assays results, no apparent differences were found in
the Sup2 fractions (Figure 7, lanes 7 to 9), all of which
showed 5 very similar zones of clearance (Figure 7,
zones 1 to 5). Zone 5 was not seen in White Sup or
White CN, and compared with the standards, it was
assumed to be caused by low molecular weight single-
chain uPA (32 kDa). Although the activity assays
showed minimal PL, PG, uPA, and tPA activities in
White CN, obvious activities attributable to tPA, PL,
and uPA were seen (zones 1, 2, and 3). The high amount
of CN present in this fraction might have interfered
with the chromogenic substrates during incubation,
thus leading to underestimated activity values.

Lu and Nielsen (1993) identified 5 proteins with PA-
like activities, with molecular weights of 93, 57, 42, 35,
and 27 kDa. The differences between that study and
the results reported here regarding the molecular
weights and activity levels of uPA vs. tPA could be
attributed to several factors, including the source of
milk at the time (bulk tank vs. 5 midlactation second-
calving cows, and SCC), the method of determination,
and the heat treatment applied in this study. Research-
ers have shown that, as lactation progresses toward
involution, the PA levels increase (Strange et al. 1992;
Baldi et al., 1996; Politis, 1996), most probably because
of the increase in SCC, which will cause an increase
specifically in uPA. Also, starting with milk that has
a high PL content, PA activity is enhanced through
converting single-chain to 2-chain PA, and PA with
varied molecular weights would be obtained. Moreover,
under different conditions, results indicated that uPA
and tPA can vary in activity regardless of the protein
amount. The protein bands and zones of clearance ob-
served indicated that uPA activity per milligram of pro-
tein was much higher than the tPA activity per milli-
gram of protein. Therefore, a slight increase in the
amount of uPA, because of a certain heat treatment or
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source of milk, could lead to a significantly enhanced
PG activation.

CONCLUSIONS

Many researchers have indicated that PL and PG
can exist within a wide range of molecular weights. In
this respect, PA did not seem to be any different. Results
of this work confirmed the presence of both uPA and
tPA in milk, where their activities and molecular
weights can vary considerably based on the nature of
milk, methods of separation, and heat treatment. How-
ever, results indicated that a very small amount of uPA
(as was observed on SDS-PAGE) can cause more PG
conversions than can a larger amount of tPA, especially
in a sample that has more PL. Results therefore high-
lighted the complexity of the PL system and the interac-
tions among its components that will affect the overall
proteolysis by PL. More PL in milk will lead to more
greatly enhanced PA activity, more so that of uPA,
which in turn will lead to greater conversion of PG to
PL. A complementary follow-up to this finding would
be to investigate further the effect of PL levels on the
activities of each the uPA and tPA. In this study, pas-
teurization might have affected the dissociation of uPA
from CS; however, more specific work is needed to study
the effect of various heat treatments on PA activity,
which might reveal further differences between uPA
and tPA. Studying PA activity under pasteurized condi-
tions is highly relevant to real-life applications. Al-
though both uPA and tPA can be found in milk, our
work indicated that the amount and activity of each
PA can differ under various conditions, with uPA being
the PA with the greater potential to affect PG activation
in milk. A complete understanding of the PA activities
will result in better control of the PL system by control-
ling the activation reaction of PG.
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Rånby, M., B. Norrman, and P. Wallĕn. 1982. A sensitive assay for
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