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Dynamic Behavior and Player Types in Majoritarian
Multi-Battle Contests

Alan Gelder and Dan Kovenock∗

Economic Science Institute, Chapman University, Orange, CA 92866, USA

Abstract

In a dynamic contest where it is costly to compete, a player who is behind must
decide whether to surrender or to keep fighting in the face of bleak odds. We
experimentally examine the game theoretic prediction of last stand behavior in a
multi-battle contest with a winning prize and losing penalty, as well as the contrast-
ing prediction of surrendering in the corresponding contest with no penalty. We find
varied evidence in support of these hypotheses in the aggregated data, but more
conclusive evidence when scrutinizing individual player behavior. Players’ realized
strategies tend to conform to one of several “types”. We develop a taxonomy to
classify player types and study how these types interact and how their incidence
varies across treatments. Contrary to the theoretical prediction, escalation is the
predominant behavior, but last stand and surrendering behaviors also arise at rates
responsive to the importance of losing penalties.
Keywords: Dynamic Contest, Multi-Battle Contest, Player Type, Experiment,
All-Pay Auction, Escalation, Last Stand, Maximin
JEL: C73, C92, D44, D72, D74

1. Introduction

Contests are commonly dynamic in nature. Sports competitions involve the cumu-
lative performance of a series of interactions over the course of a race, game, or
match. Businesses may spend weeks or months jockeying for a lucrative contract.
Political campaigns frequently span a year or more and major wars span several.

IAn earlier version of this paper circulated under the title Fight or Surrender: Experimental
Analysis of Last Stand Behavior.
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While the time horizon may vary, a unifying feature of many contests is that the
overall contest is often comprised of several smaller battles or component contests.
Moreover, as participants compete in these battles they have some awareness of how
they fare relative to their rivals—whether they are approaching victory or falling
behind. Competition typically requires participants to make costly outlays, such as
effort, money, or troops, so a chief strategic consideration is the amount and timing
of these expenditures. Because a participant’s proximity to victory or defeat may
determine the efficacy of these expenditures, allocations and outcomes in previous
battles may strongly influence behavior later in the contest.

A variety of strategies may ensue in contests that are fought over a sequence of
battles. Participants may fight intensely in each battle, especially when challenged,
essentially escalating the conflict. Or they may only fight aggressively at selective
key battles. A last stand, for instance, is classically characterized by fierce compe-
tition along the brink of an overall loss. Some participants may instead opt to forgo
the cost of competing by folding when the competition gets tough or even from
the get-go, virtually surrendering. In comparing and selecting among strategies in
dynamic multi-battle contests, participants may attempt to achieve favorable out-
comes by assessing the potential costs and rewards of the various combinations of
actions that they and their rivals can feasibly take, and by trying to anticipate rival
behavior. Standard tools in the formal analysis of optimal decision making in such
contests are the theory of dynamic games and laboratory experiments. The purpose
of this article is to examine a specific form of a multi-battle contest experimentally
in a laboratory setting, test the major game theoretic predictions of behavior in
that contest, and glean whatever insights into dynamic behavior that we can ex-
tract from the data.

The contest we examine is a two-player best-of-seven tournament under complete
information. The tournament is comprised of sequentially-played component con-
tests that are modeled as all-pay auctions. In an all-pay auction the high bidder
wins, but both players incur the cost of their own bid (see Hillman and Riley 1989;
and Baye et al. 1996). The first player to win four all-pay auctions is the tourna-
ment winner.1 The tournament winner receives a positive winning prize and the
loser pays a nonnegative losing penalty.

1This type of contest is a special case of what is known more generally as a two-player race,
a term that stems back to the patent race model of Harris and Vickers (1987). Instead of using
the all-pay auction, Harris and Vickers model the component contests with a logit-style lottery
contest success function where a player’s probability of winning is the ratio of the player’s own
bid to the sum of both players’ bids. Harris and Vickers additionally scale the cost of a player’s
bid by the sum of the bids.
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Konrad and Kovenock (2009) theoretically examine the set of subgame perfect equi-
libria in a class of contests that includes this type of contest under the assumptions
that the winner of the tournament receives a positive prize, the loser pays a zero
penalty, and there is no time discounting of the prize winnings or bid costs accrued
in the course of competing in the individual all-pay auctions.2 Konrad and Kovenock
find that, when symmetrically situated, players compete intensely, but that a player
who is behind will completely give up, unless there is a separate intermediate prize
for winning each of the individual battles.3

This work was extended by Gelder (2014) to include strictly positive loser penalties,
as well as the discounting of potential future earnings or losses over the component
contests. In the absence of a loser penalty, time discounting is innocuous; in the
unique subgame perfect equilibrium a player who is behind still completely gives up,
unless there are intermediate prizes for winning individual battles. However, Gelder
(2014) shows that, under certain conditions, the inclusion of loser penalties and time
discounting induces a player who is close to losing the tournament to exhibit last
stand behavior: the player bids more aggressively than his rival even though his
rival is much closer to winning the tournament. Last stand behavior arises because,
with discounting, if the penalty for losing the tournament is sufficiently large, the
value of delaying that penalty for at least one more period may outweigh the rival’s
gain from securing an immediate win. In contrast, if a player is behind in the tour-
nament by only one component contest, it is no longer simply a question of delaying
defeat but also of potentially overtaking the lead. Since this poses a serious threat
to the rival, the rival is predicted to bid much more aggressively in these states than
the player who is behind.

This article experimentally investigates the theoretical predictions of Konrad and
Kovenock (2009) and Gelder (2014). We examine best-of-seven tournaments under
three prize-penalty combinations: one in which there is no penalty, one with a prize
and penalty of equal magnitude, and a third in which the penalty is dramatically
larger than the prize. For each of these three cases, the net difference between the
prize and penalty is identical; so in a one-shot contest with risk neutral players,

2Konrad and Kovenock’s analysis covers a more general class of multi-battle contests that allows
for the number of all-pay auction victories needed to win the tournament to vary across players
and for players to accrue asymmetric prizes for winning the tournament and identical prizes for
individual battle victories.

3An early example of a dynamic contest where players slacken their effort or even give up
entirely if they fall behind is Fudenberg et al. (1983), who examine preemption in patent races by
firms who have a marginal lead over their competitors.
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equilibrium behavior would be the same in each case. These values were selected
to allow for a test of the prediction of last stand behavior in a multi-battle contest
with a winning prize and sufficiently large losing penalty, as well as the contrasting
prediction of the surrender of a player who falls behind in the corresponding contest
with no penalty.

The diverging predictions of surrendering versus making a last stand only come
into play in the dynamic setting. Because discounting is a central ingredient for
the last stand predictions of Gelder (2014), we implemented discounting within the
experiment via a probability that the tournament would suddenly end after each
component contest. If a tournament ended before either player had won four com-
ponent contests, then neither player would receive the winning prize or pay the
losing penalty, but both players would still be responsible for the payment of their
previous bids.4

Although previous experimental work has addressed best-of-three tournaments (see
Sheremeta 2010; Mago and Sheremeta 2012; Mago et al. 2013; and Irfanoglu et
al. 2014), the source of the contrasting dynamics of last stand and surrendering
behavior can only be realized with a larger number of battles. The best-of-seven
tournament provides a horizon that is long enough to capture the desired dynam-
ics, but short enough to keep the experiment simple. It is also a natural choice, as
it is used in many sports championship settings, such as Major League Baseball’s
World Series, the National Basketball Association’s Finals, and the National Hockey
League’s Stanley Cup Final.

Players appear to gravitate toward different strategies and repeatedly use those
strategies throughout the experiment. In this regard, we find that players can be
categorized according to one of several player types. Since a player’s full exten-
sive form strategy is not available in the experimental data, which only contain
the player’s history-contingent actions along the realized path of the tournament,5
we refer to these observable actions as a player’s realized strategy. We find that the
same core set of realized strategies independently appear time and time again across
the different experimental sessions. The most common is to engage in a bidding
war, a realized strategy which we refer to as escalate when challenged. Our hypoth-
esized surrendering behavior is reflected by two distinct realized strategies, maximin

4Under the assumption of risk neutrality, this adaptation of the tournament is theoretically
innocuous.

5Because of the complexity of the tournament’s extensive form, the strategy method (Selten
1967) appears difficult to implement without strong and unrealistic restrictions on the information
available to players at each stage of the game.
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and passive when challenged. We also observe a remarkably pronounced last stand
realized strategy. Defining a formal taxonomy, we classify the occurrence of each
realized strategy and find that the surrendering strategies are particularly promi-
nent in the treatment with no losing penalty. These same surrendering strategies
are conspicuously scarce in the other two treatments that do have losing penalties.
Conversely, the last stand realized strategy is a salient feature of the treatments
with losing penalties but is less common when a losing penalty is absent.

Winning margins in the overall tournament are naturally affected by the choice of
player strategies. Theory predicts that neck-and-neck outcomes are more likely to
be observed when the losing penalty is relatively large, while landslide victories are
more probable when the winning prize is dominant. We find evidence to support this
hypothesis. On the other hand, theory predicts that under all three prize-penalty
combinations a player who has a one battle lead over his rival in the tournament will
compete more aggressively than his opponent. The aggregate data do not support
this hypothesis.

Although the winning prize and losing penalty in each treatment are fixed, allowing
players to expend or conserve resources through the size of their bids makes these
tournaments non-constant-sum games—a fact which is further compounded by the
possibility that these tournaments may suddenly terminate after any component
contest with no winner and no loser. Given the strategic complexity of this en-
vironment, we examine two separate subject pools: one in which all subjects had
previously participated in some separate contest related experiment, and another
comprised of a mix of subjects with and without such prior experience. Although
there are a few noted exceptions, the two subject pools behave quite similarly.

Our paper fits within a small but emerging literature on dynamic contest exper-
iments, as well as within a broader literature on contests and tournaments (see
Dechenaux et al. 2014 for an extensive survey on experiments involving contests).
In terms of “best-of” experiments, we bridge the gap between the work on best-
of-three tournaments mentioned previously and the best-of-19 tournament in Zizzo
(2002), which was explicitly patterned after Harris and Vickers (1987) and used
a logit-style lottery contest success function. Our paper is also closely related to
the game of siege experiment by Deck and Sheremeta (2012). In their experiment,
players are positioned asymmetrically so that one player (the defender) needs to
win two successive battles to be victorious, while the attacker only needs to win
one (this is the dynamic counterpart of a weakest link contest). The asymmetric
starting point assumed by Deck and Sheremeta can be reached as an intermediate
stage in a best-of-three and a best-of-seven tournament.
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This paper also fits within the behavioral literature on heterogeneous player types
in experiments. It can be expected that subjects will approach experimental set-
tings from varying degrees of strategic sophistication, with the spectrum ranging
from mere guesses to deliberate best-responses. Level-k theory, for instance, has
been developed to classify and better understand this range of behavior.6 Other
experimental work seeks to induce player types by allowing subjects to potentially
be matched against a computer which is known to be programmed a certain way
(see Embrey et al. 2014). Here, instead of inducing player types or focusing on the
degree to which players are best-responding, we analyze the frequency and interac-
tion of a handful of player types that arise endogenously. We also provide a rough
ranking of these types in terms of average payoffs. To our knowledge, this is the
first dynamic contest experiment to examine multiple player types.

We begin by giving a brief description of the theoretical framework in Section 2 and
then describe how we set up the experiment in Section 3. Our analysis is in two
parts. First, Section 4 provides a baseline analysis of our hypotheses within the ag-
gregate data. We then address the phenomenon of multiple player types in Section 5.

2. Theory and Hypotheses

The winner of a best-of-seven tournament is the first player to win four battles. To
track each player’s progress, we can model the state space as a pair (i, j) where i is
the number of battles that Player A still needs to win and j is the number of battles
that Player B still needs to win.7 Hence, the tournament begins at state (4, 4) and
proceeds until it reaches (0, j) for (i, 0) for i, j ∈ {1, 2, 3, 4}. This is depicted in
Figure 1. Once a player has won four battles, he receives a prize Z ≥ 0 and his
opponent incurs a penalty L ≤ 0. Each battle consists of players competing in an
all-pay auction with the winner of the auction advancing one state closer to victory.8

6A recent survey on level-k, cognitive hierarchy, and other related theories is Crawford et al.
(2013). Fragiadakis et al. (2013) assert that while strategic play can largely be captured by such
theories, more needs to be done in modeling play that is non-strategic but which follows replicable
rules-of-thumb.

7Tracking the absolute number of wins for each player requires a two dimensional state space.
An alternative model, known as the tug-of-war, tracks the relative number of wins with a unidi-
mensional state space. Within the tug-of-war setting, Konrad and Kovenock (2005) predict that
laggards surrender when there is no losing penalty, while Agastya and McAfee (2006) find that
last stand behavior is possible when there is a penalty.

8Although an arbitrary tie-breaking rule typically suffices, the equilibrium in Konrad and
Kovenock (2009) requires that ties be awarded to the player who is ahead in the tournament.
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B wins
0 (4, 0) (3, 0) (2, 0) (1, 0)

1 (4, 1) (3, 1) (2, 1) (1, 1) (0, 1)
A

w
ins
2 (4, 2) (3, 2) (2, 2) (1, 2) (0, 2)
3 (4, 3) (3, 3) (2, 3) (1, 3) (0, 3)
4 (4, 4) (3, 4) (2, 4) (1, 4) (0, 4)

4 3 2 1 0

Figure 1: Best-of-seven tournament

The unique equilibrium of the two-player all-pay auction is in mixed strategies with
players randomizing their bids between 0 and the smaller of the two players’ valua-
tion of the prize (Baye et al. 1996). While both players randomize over this interval,
the player with the lower valuation will bid 0 with positive probability. That is, if
ζH and ζL are the high and low valuations of the prize (ζH ≥ ζL > 0), then the
equilibrium bidding distributions are as follows:

FH(h) =
{
h/ζL if h ∈ [0, ζL]
1 if h > ζL

GL(`) =
{

(ζH − ζL + `) /ζH if ` ∈ [0, ζL]
1 if ` > ζL

(1)

Given these distributions, the expected payoffs are uH = ζH − ζL and uL = 0; the
winning probabilities are pH = 1 − ζL

2ζH
and pL = ζL

2ζH
; and the expected bids are

E[eH ] = ζL

2 and E[eL] = ζ2
L

2ζH
.

The bulk of the analysis in Konrad and Kovenock (2009), as well as in Gelder
(2014), is in extending the one-shot all-pay auction to a dynamic structure where
an actual prize is awarded only after a player has achieved a critical number of
wins. Hence, it becomes necessary to identify the prize valuations at each interior
state (i, j) where i, j > 0. These prize valuations are implicitly defined based on
the marginal benefit of winning at (i, j) and being one state closer to overall victory
versus losing and being one state closer to defeat. When losing is costless—as in
Konrad and Kovenock—a player who is behind has a prize valuation of zero, so

This assumption allows the frontrunner to coast to victory with a bid of zero when the laggard
surrenders. Since this is a rather technical requirement, we use a fair randomizing device to break
ties in the experiment.
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there is no incentive to compete.9 In Gelder’s framework on the other hand, when
there is a cost to losing and when players would prefer to win early and lose late,
the prize valuations are always strictly positive so that players actively compete at
every interior state.10 The magnitudes of the prize valuations do, however, vary
from state to state and across players. Gelder finds that there is a collection of
states where the player who is behind in the tournament actually has the higher
prize valuation and therefore tends to compete more aggressively. This heightened
degree of competition from the underdog is what Gelder terms the last stand.

With regard to incentives, the last stand represents the position in the tournament
where the underdog’s incentive to avoid losing is stronger than the frontrunner’s
incentive to win. A player who must avoid losing today, or else incur a sufficiently
large penalty, has a stronger motive to compete than the opposing player who may
secure the victory tomorrow if not today. The precise collection of states where a
last stand occurs depends on the ratio of the winning prize to the losing penalty,
as well as the discount factor. The larger the penalty, the closer to the end of the
tournament the last stand occurs. The likelihood of the underdog catching up after
an unsuccessful last stand is minimal at best. In addition to the last stand, Gelder
also finds that the frontrunner will defend his overall lead in the tournament if it
is threatened. The “defense of the lead” occurs when the frontrunner only has a
one-state lead in the tournament, and it entails a much higher expenditure from the
frontrunner than from the underdog in expectation. Thus the last stand acts as a
defensive push, while the defense of the lead acts as an offensive one.

Based on the theoretical predictions, there are five main hypotheses that we will
examine in this experiment. The first three address in turn the last stand, the
tendency to surrender, and the defense of the lead. The fourth examines winning
margins, a feature which is intimately connected with the conflicting behaviors of
making a last stand or surrendering. The final hypothesis addresses the role of the
initial battle as a predictor for the overall outcome of the tournament.

9Since the player who is behind receives zero from continuing to lose, and since the expected
payoff from winning a single state is also zero, then the prize valuation is zero as well. Konrad
and Kovenock also examine the case where there is an intermediate prize for winning each battle.
In that setting, the prize valuation for a player who is behind is solely based on the intermediate
prize.

10An example of when these assumptions may be satisfied is the US presidential primaries.
Candidates would typically prefer to secure their party’s nomination early in the election cycle
to have more time to prepare for the general election. On the losing side, the potential loss of
political capital is likely higher for candidates who unmistakably lose at an early stage and are
not able to demonstrate their viability for future campaigns.
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H1. Players on a losing trajectory will make a last stand if the penalty for losing
is large relative to the winning prize.

H2. If there is no losing penalty, then a player who is behind will surrender (or
cease to compete).

H3. Players with a one battle lead in the tournament will compete more aggressively
than their opponent in order to maintain their lead.

H4. The expected winning margin is increasing in the size of the winning prize
relative to the losing penalty.

H5. The winner of the initial battle will win the tournament the majority of the
time.

3. Methodology

We conducted 18 experimental sessions, each composed of 12 subjects. These ses-
sions were conducted at the Economic Science Institute, Chapman University, in
computer labs where the computers were separated by partitions for privacy. The
experiment began with subjects reading the instructions on their computer (a copy
of the instructions is provided in the appendix). After reading the instructions,
subjects were given a short quiz comprised of three possible scenarios for how a
best-of-seven tournament could unfold. Subjects were then asked to compute the
payoff for each scenario. The purpose of this short quiz was to ensure that subjects
had a basic level of comprehension about the structure of the game. The quiz was
immediately followed by a short risk preference lottery à la Holt and Laury (2002).
During the main portion of the experiment, subjects participated in 20 best-of-seven
tournaments. Subjects were randomly and blindly paired and re-paired for each of
these tournaments via the computer network. At the conclusion of the experiment,
subjects completed a demographics survey and were paid in cash based on their
performance in two randomly selected tournaments.

Each battle of a best-of-seven tournament was treated as an all-pay auction: subjects
placed bids simultaneously and the high bidder won (ties were broken randomly).
In the all-pay fashion, the sum of a player’s bids throughout a tournament was de-
ducted from his or her payoff for that tournament. Additionally, the winner of the
tournament received a prize and the loser incurred a penalty. Since time preferences
for winning or losing in Gelder (2014) were implemented through a discount factor,
and since discounting is difficult to replicate in a short laboratory experiment, we
followed a common practice from macroeconomic experiments by implementing dis-
counting via a continuation probability (see, for instance, Duffy 2008, and Noussair
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and Matheny 2000). Until a player had succeeded in winning four battles, there
was a 90% probability that the tournament would actually continue from one battle
to the next (or in terms of a discount factor, δ = 0.9). If a tournament ended
prematurely, neither player would receive a prize or a penalty, but players still had
to pay their bids. Our justification for this approach is that, under risk neutrality,
a continuation probability is equivalent to discounting in terms of expected payoffs.11

We conducted three separate payoff scenarios: the first with a substantial losing
penalty and meager winning prize (Win 15 Lose 285), the second with an equal
prize and penalty (Win 150 Lose 150), and the third with a sizable prize but no
penalty (Win 300 Lose 0).12 Prizes, penalties, as well as all bids, were denominated
in an experimental currency called rupees, where 50 rupees = 1 US dollar. In order
to make the stakes comparable across treatments, we fixed the difference between
the positive prize and the negative penalty at 300 rupees. The two treatments with
non-zero penalties coincide with the Gelder (2014) model, while the treatment with
no losing penalty fits the Konrad and Kovenock (2009) model. For each treatment,
we ran a total of six experimental sessions—three of which were open to all indi-
viduals in our subject pool, and three were specifically limited to subjects who had
previously participated in an experiment involving contests or contest theory. We
will refer to the first subject pool as mixed and to the second as experienced.13

A summary of the experimental sessions by treatment is shown in Table 1. Bid
observations in this table are limited to those during the last ten tournaments since
that will be the focus of our analysis.

11The random ending rule may also be thought of as the potential that some exogenous factor
suddenly disrupts the conflict (such as the cavalry coming to save the day). An alternative method
for implementing discounting is to make the size of the prize and the penalty contingent on the
winning margin. Since the winning margin is based on the number of rounds in which players
compete, this is a present value interpretation of discounting. A benefit of using the random
ending rule in an experimental setting is that the order of magnitude of expenditures early in the
tournament remains comparable to that of the prize and penalty at later stages of the tournament.
Noussair and Matheny (2000) compared both the random ending rule and the present value inter-
pretation of discounting in an experiment involving a single agent dynamic optimization problem.
They found similar results using each method.

12A player in the experiment who has won or lost four battles receives the prize or penalty with
certainty. In the theoretical model, however, there is still discounting between the states (i, 1) and
(i, 0) (as well as between (1, j) and (0, j)). Hence, the experimental parameters must be multiplied
by 1/δ to coincide with the theoretical parameters.

13The Economic Science Institute at Chapman University conducts a large volume of economic
experiments and keeps records of the different experiments subjects participate in. We made no
attempt to regulate the number of subjects in the mixed sessions who had previously enrolled in
a contest related experiment (the average was 6.4 with a minimum of three and a maximum of
eleven).
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Table 1: Sessions by Treatment

Sessions Subject Pool Prize Penalty Bid Observations

3 Experienced 15 285 1650
3 Experienced 150 150 1500
3 Experienced 300 0 1530
3 Mixed 15 285 1590
3 Mixed 150 150 1614
3 Mixed 300 0 1420

During a best-of-seven tournament, subjects could see both their own and their
opponent’s previous bids.14 They also could see how many rounds they had won or
lost, as well as the sum of their bids up to that point in the tournament. An exam-
ple of the bidding screen is shown in Figure 2. The bidding screen would also alert
subjects when a tournament had finished, either by a player winning four rounds or
by the computer ending the tournament early. After displaying the final outcome
and payoffs for the tournament, subjects would then be randomly re-matched to
begin a new tournament.

At the start of each tournament, subjects received an endowment of rupees from
which bids and the losing penalty could be deducted, and to which the winning
prize could be added. The final balance was the payoff for the tournament. At the
end of the experiment, subjects received cash payment for the average balance of
two randomly selected tournaments. Since losing penalties varied across treatments,
and since bids and losing penalties were both deducted from the same account, we
wanted to make the treatments comparable in terms of the underlying bidding bud-
get. We accomplished this by varying the initial endowment across treatments so
that it was composed of an effective bidding budget (700 rupees) plus the size of the
losing penalty. Thus, for penalties of 285, 150, and 0, the endowment was 985, 850,
and 700. Our choice of 700 for an effective bidding budget was an attempt to bal-
ance two opposing constraints: having the effective bidding budget be large enough
so that players would not feel budget constrained, especially in tournaments that
continued to the sixth or seventh battle; but also small enough so that the losing

14Since the unique subgame perfect equilibrium is also Markov perfect, equilibrium bids at the
current state are not affected by the knowledge of bid realizations at previous states. However,
in conducting the experiment we did not want to exogenously impose Markovian behavior on the
subjects. One implication of this methodological choice was that the strategy method pioneered
by Selten (1967) was not feasible due to the complexity of the game’s extensive form.
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Figure 2: Bidding screen during a best-of-seven tournament

penalties would have some bite.15 For each round of a best-of-seven tournament, we
allowed players to bid between 0 and 300 inclusive (with up to one decimal place).16

4. Initial Results

4.1. Summary Statistics

Before analyzing the main hypotheses, we briefly highlight the major summary
statistics. We specifically summarize bidding observations, winning probabilities,
and the distribution of bids by state and treatment. The fundamental level of ob-
servation is a player’s bid at a particular state (i, j) within tournament t. As a
whole, the data form a panel with twenty tournament observations per subject and
up to seven bid observations per tournament. Variance in the bidding observations

15Theoretical expected expenditures throughout the entire tournament are as follows: 131.3
(Win 15 Lose 285), 114.4 (Win 150 Lose 150), and 109.4 (Win 300 Lose 0). The effective bidding
budget of 700 is large enough to amply cover these amounts. However, in the theoretical model,
if a player happened to consistently bid at the top of the equilibrium bidding distribution along
the most expensive path of the tournament, then cumulative expenditures could be as high as
975.3 (Win 15 Lose 285), 1001.7 (Win 150 Lose 150), or 1031.7 (Win 300 Lose 0). Thus there are
contingencies of the tournament for which the effective bidding budget is theoretically binding.

16The maximum bid of 300 corresponds to the upper bound of the equilibrium bidding distri-
bution at state (1, 1). The equilibrium distributions at all other states have upper bounds which
are less than 300 (see Table 4).
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Table 2: Number of Bidding Observations by State (i, j) and by Treatment

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

0 39 31 32 22
1 54 56 58 44
2 95 91 78
3 169 122
4 360

34 31 30 15
55 63 45 30
95 72 44
157 92
360

54 27 22 15
66 47 40 30
102 67 60
170 96
360

M
ix

ed

0 40 32 25 22
1 66 54 51 44
2 101 71 70
3 166 98
4 360

47 37 20 27
77 61 51 54
118 67 56
163 70
360

51 32 22 9
59 41 33 18
91 68 56
156 90
360

P
oo

le
d

0 79 63 57 44
1 120 110 109 88
2 196 162 148
3 335 220
4 720

4 3 2 1

81 68 50 42
132 124 96 84
213 139 100
320 162
720
4 3 2 1

105 59 44 24
125 88 73 48
193 135 116
326 186
720
4 3 2 1

is considerably higher during the initial tournaments of the experiment since sub-
jects are learning the structure of the game. Therefore, the analysis in this paper
is solely based on the last ten tournaments.

Table 2 shows the number of bidding observations by treatment at state (i, j) where
i ≥ j. To reiterate, i is the number of battles that a player still needs to win in order
to win the tournament, while j is the number of battles that the player’s opponent
still needs to win. The i index (4, 3, 2, 1) is shown at the bottom of the table, and
the j index (4, 3, 2, 1, 0) is at the left. Due to the symmetry of the tournament,
whenever one player is at (i, j), their opponent is at (j, i), so the table only shows
states where a player is behind or the tournament is tied. The random ending rule
causes the total number of observations to decrease by roughly 10% after each of
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Table 3: Winning Percentages in State (i, j): Theoretical and Observed

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

T
he

or
y 1 56.4 52.4 5.2 50

2 52.9 5.6 50
3 5.6 50
4 50

26.3 26.3 2.6 50
27.8 2.8 50
2.9 50
50

0 0 0 50
0 0 50
0 50
50

E
xp

er
ie

nc
ed 1 27.8 44.6 44.8 50

2 36.8 45.1 50
3 40.2 50
4 50

38.2 50.8 33.3 50
35.8 33.3 50
34.4 50
50

18.2 42.6 45.0 50
22.5 46.3 50
31.8 50
50

M
ix

ed

1 39.4 40.7 51.0 50
2 29.7 52.1 50
3 34.9 50
4 50

39.0 39.3 60.8 50
30.5 44.8 50
22.1 50
50

13.6 22.0 33.3 50
29.7 42.6 50
32.7 50
50

P
oo

le
d

1 34.2 42.7 47.7 50
2 33.2 48.1 50
3 37.6 50
4 50

4 3 2 1

38.6 45.2 47.9 50
32.9 38.8 50
28.1 50
50
4 3 2 1

16.0 33.0 39.7 50
25.9 44.4 50
32.2 50
50
4 3 2 1

the first four battles.17 In successive states, the number of observations continues
to decrease through the random ending rule, but also decreases through players
winning or losing tournaments.

Theoretical and observed probabilities of winning a battle at each state are shown
in Table 3. Symmetry allows us to again focus on the states where a player is
behind or the tournament is tied. The major patterns of competition can be seen

17For instance, in the pooled data of the Win 300 Lose 0 treatment, there are a total of 720
observations in the first round at (4, 4). Of these, 90.6% persist to the second round—326 at (4, 3)
and an additional 326 at (3, 4).
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by examining the theoretical winning probabilities. For instance, the defense of the
lead (H3) is reflected by the remote winning probabilities at states (4, 3), (3, 2), and
(2, 1) in the Win 15 Lose 285 and the Win 150 Lose 150 treatments. The last stand
(H1) is evidenced by the underdog having the higher winning probability at states
(4, 2), (4, 1), and (3, 1) of the Win 15 Lose 285 treatment. Although not as strong,
the underdog is still expected to win roughly a quarter of the time at these three
states in the Win 150 Lose 150 treatment.18 Finally, the tendency to surrender (H2)
is depicted in the Win 300 Lose 0 treatment by the zero probability of winning a
battle when a player is behind in the tournament.

Although the observed probabilities from the laboratory fail to capture the defense
of the lead, the basic contrast between making a last stand and surrendering can
be seen. In the pooled data for instance, the winning probability at (4, 1) falls to
16% in the Win 300 Lose 0 treatment—less than half the corresponding values of
34.2% and 38.6% in the two treatments with a losing penalty. In the mixed group,
the Win 15 Lose 285 and Win 150 Lose 150 treatments actually have sizable jumps
in the winning probability from (4, 2) to (4, 1) of 8 to 10 percentage points. While
such a jump is absent in the experienced Win 15 Lose 285 treatment, it does boast
the highest winning probabilities at (4, 3) and (4, 2), indicating that players were
more likely to regain lost ground earlier in the tournament.

While the winning probabilities address the relative size of bids between (i, j) and
(j, i), it is also informative to have an absolute measure of bids at the different
states, both theoretically and in the experiment. The subgame perfect equilibrium
bidding distributions can be fully characterized with two sets of numbers: the size
of the mass point at zero and the upper bound of the bidding distribution (see
Equation 1; above the mass points, players uniformly randomize between zero and
the upper bound). These are both presented in Table 4 by treatment and state.
The mass points largely mirror the major features of the theoretical winning prob-
abilities.19 A prominent feature of the upper bounds is that bids at states where
the tournament is tied far and away exceed those at any other state—even when a
losing penalty is present. We can also see that bids along the main diagonal of the
tournament are increasing in the relative size of the winning prize, while competi-
tion off of the main diagonal is increasing in the size of the losing penalty.

18For the Win 150 Lose 150 treatment, a best-of-seven tournament is not large enough to include
the states where the player who is behind wins battles with more than one-half probability.

19In the Win 300 Lose 0 treatment, the fact that both players always bid zero when one player
is ahead is an artifact of the tie-breaking rule in Konrad and Kovenock (2009) that was mentioned
previously.
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Table 4: Theoretical Distributions: Mass Point at Zero (top row); Upper Bound (bottom row)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

1 0 0 0.90 0 0.47 0.47 0.95 0 1.0 1.0 1.0 0
2 0 0.89 0 0 0.44 0.94 0 0 1.0 1.0 0 1.0
3 0.89 0 0 0.05 0.94 0 0 0 1.0 0 1.0 1.0
4 0 0 0.06 0.13 0 0 0 0 0 1.0 1.0 1.0

1 25.9 27.2 28.5 300.0 15.0 15.0 15.0 300.0 0 0 0 300.0
2 22.0 24.4 244.4 28.5 13.5 13.5 256.5 15.0 0 0 270.0 0
3 19.8 197.9 24.4 27.2 12.2 218.7 13.5 15.0 0 243.0 0 0
4 160.3 19.8 22.0 25.9 185.9 12.2 13.5 15.0 218.7 0 0 0

4 3 2 1 4 3 2 1 4 3 2 1

As a rule, bids within the experimental data are much lower than predicted when
the tournament is tied, but can often be considerably higher than predicted at the
other states. Figure 3 shows the empirical bidding distributions at each state in
the pooled data; and for further detail, the 25th, 50th, and 75th percentile bids
for each state and treatment are shown in Table 5. A pattern that is present in
every experimental treatment, as well as in the theoretical distributions, is that bids
progressively increase as the tournament proceeds to the top-right. It is uncommon
for the median bid to be above ten in any treatment until both players have won at
least one battle. Thereafter the median bids quickly rise as the tournament becomes
more closely contended. By (1, 1), bids of 50 to 100 are commonplace. At states
along the left edge of the tournament, at least a quarter of the bids are zero. These
mass points are particularly conspicuous in the Win 300 Lose 0 treatment where the
median bid at (4, 2) is zero in the pooled data, and even the 75th percentile bid is
only 0.1 at (4, 1). Not only are these players surrendering at these states, but their
rivals are responding with progressively lower bids. By (1, 4) in the experienced
group, a mere bid of 1.0 marks the median. There is a different behavior in the
Win 15 Lose 285 treatment—the primary difference being what happens at the top
of the distribution. Now instead of 0.1, the 75th percentile bid at (4, 1) is 19 or 20.
The mixed treatment is particularly suggestive of last stand behavior since the 75th
percentile jumps from a bid of 10 at (4, 2) to a bid of 20 at (4, 1).

The shape of the bidding distributions is rather interesting in light of past experi-
mental results. In one-shot contest settings, the experimental bidding distribution
is frequently bifurcated with subjects submitting either high or low bids, but largely
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Figure 3: CDF of bids at each state by treatment in the pooled data

avoiding bids in the middle range.20 Ernst and Thöni (2013) have demonstrated that
prospect theory provides a possible explanation for this behavior.21 Here, however,
instead of bifurcated distributions that are concave over the lower bidding range
and convex over the upper range, bidding distributions at most states are concave
throughout. Even at states (2, 1), (1, 1), and (1, 2) where the shape of the distri-
bution appears to change a little, the curvature goes in the opposite direction with
more mass being placed on intermediate bids—slightly convex in the lower bidding
range and concave in the upper range.

20See, for instance, Potters et al. (1998), Gneezy and Smorodinsky (2006), and Ernst and Thöni
(2013).

21The prospect theory explanation has also been applied to Tullock contest experiments (see
Sheremeta 2013).
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Table 5: 25th, 50th, and 75th Percentiles of Bids at State (i, j)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0
4 3 2 1 4 3 2 1 4 3 2 1

E
xp

er
ie

nc
ed

0.0 0.0 40.3 50.0 0.0 3.8 15.0 39.2 0.0 1.0 25.2 49.2
1 1.0 28.0 67.5 98.0 3.0 20.0 26.0 50.0 0.0 15.0 46.0 66.0

19.2 60.0 100.0 137.8 12.5 30.0 35.0 60.8 0.1 47.5 65.2 95.0
0.0 15.0 30.0 38.2 0.0 7.0 7.8 15.0 0.0 5.0 14.0 29.0

2 5.0 38.1 51.5 77.4 5.0 14.1 20.0 30.0 0.0 20.0 30.0 52.8
20.0 60.0 70.0 89.0 10.0 25.0 30.4 40.0 5.0 40.0 54.8 70.8
0.0 8.3 18.0 14.2 0.0 7.0 10.0 11.0 0.0 6.0 10.0 11.5

3 6.0 25.5 35.0 40.0 5.0 11.0 16.0 16.0 1.0 16.0 20.0 26.0
20.0 42.0 58.5 70.0 10.0 21.0 25.5 30.9 11.8 27.2 35.5 53.5
0.1 5.0 5.0 1.0 0.1 5.0 2.0 1.8 0.0 2.0 1.0 1.0

4 5.5 13.0 15.0 8.0 5.0 7.0 5.3 7.0 3.0 7.0 5.0 1.0
15.0 25.0 30.0 20.8 10.0 13.0 15.0 15.0 9.0 17.5 16.0 10.0

M
ix

ed

0.0 1.9 27.1 52.8 0.0 7.0 28.8 50.0 0.0 1.0 15.0 49.2
1 1.1 30.0 50.5 71.5 0.1 25.0 45.0 61.0 0.0 15.0 45.0 75.5

20.0 60.2 77.5 100.0 10.0 30.0 61.1 87.3 0.1 33.0 60.0 99.0
0.0 6.9 20.0 35.5 0.0 7.9 18.0 24.5 0.0 14.5 24.5 33.0

2 1.0 18.7 38.5 50.0 0.2 20.0 34.0 40.2 0.1 30.0 40.5 60.0
10.0 38.0 54.5 77.5 10.0 39.4 50.0 53.5 19.5 42.2 50.2 70.0
0.0 5.0 8.0 8.2 0.0 7.6 10.8 10.0 0.0 9.4 18.5 20.0

3 2.0 10.0 18.9 25.0 0.5 17.0 20.0 25.6 5.0 21.0 30.5 40.0
10.0 35.0 35.0 54.0 9.8 31.4 34.5 35.1 16.0 29.5 44.0 60.0
0.1 2.0 2.0 1.0 0.2 5.0 4.0 1.0 0.1 5.0 5.0 1.0

4 2.0 5.2 8.0 10.0 5.0 10.0 7.5 5.0 5.0 11.6 10.0 5.0
15.0 25.0 15.0 17.8 15.0 23.0 20.0 11.0 15.0 21.6 27.4 20.0

P
oo

le
d

0.0 1.0 31.0 50.8 0.0 5.0 16.8 40.0 0.0 1.0 20.0 49.0
1 1.0 28.0 60.0 77.6 1.1 20.6 33.0 56.4 0.0 15.0 45.0 68.5

20.0 60.0 90.0 113.2 11.2 30.0 50.2 74.2 0.1 45.3 63.0 97.8
0.0 10.0 20.8 36.0 0.0 7.0 15.0 19.5 0.0 10.0 18.0 30.5

2 2.0 25.0 45.0 67.0 2.0 15.5 25.2 34.5 0.0 25.0 35.5 56.0
15.0 51.0 64.2 85.5 10.0 34.5 45.1 50.0 11.0 40.8 52.0 70.0
0.0 6.7 13.0 12.0 0.0 7.0 10.2 10.0 0.0 8.0 14.0 15.0

3 4.0 20.0 27.5 33.5 1.0 12.1 17.6 20.5 4.0 19.0 25.0 30.5
15.0 38.5 50.0 63.8 10.0 25.8 31.4 35.0 15.0 28.4 40.0 57.5
0.1 4.0 4.0 1.0 0.2 5.0 2.0 1.0 0.0 4.2 1.0 1.0

4 3.8 10.0 10.0 9.5 5.0 10.0 7.1 5.0 5.0 10.0 8.0 2.0
15.0 25.0 21.0 20.0 11.0 17.5 16.0 15.0 11.0 20.0 21.0 15.0
4 3 2 1 4 3 2 1 4 3 2 1
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4.2. Fight or Surrender
In analyzing bidding behavior, it is pertinent to identify whether the frontrunner
or the underdog is bidding more aggressively at each stage of the tournament—or
even if there is a difference. If the underdog is engaging in last stand behavior,
then we would expect his bids to increase relative to his opponent’s as he nears
an overall loss. We therefore want to compare the underdog’s bid at state (i, j)
with the frontrunner’s bid at the symmetric state (j, i). However, we also want to
account for the fact that some players are inherently more aggressive or passive and
will thus reach certain states with higher probabilities. To do this, we use a fixed
effects regression model with cluster robust standard errors (at the session level)
where the dependent variable is a player’s bid.

To account for the different states within the tournament, we include a set of di-
chotomous variables, equal to one if a bid is made from that particular state and
zero otherwise. Since we are interested in comparing bidding behavior at state (i, j)
with state (j, i), we take advantage of the fact that when a categorical variable
with N distinct values is represented by a set of N − 1 dichotomous variables, the
coefficients of the N − 1 dichotomous variables can be interpreted directly in refer-
ence to the omitted N th value. Thus, we are interested in the coefficient for state
(i, j) in a regression where (j, i) is the omitted state.22 Letting s(j, i) be the vector
of dichotomous state variables which omits state (j, i), we use the following fixed
effects model to predict player k’s bid at time t within the experiment:23

Model 1. b̂idk,t = β0 + s(j, i)′

k,tβs + fk + εk,t

Table 6 shows the Model 1 coefficients for bids made at (i, j) relative to (j, i) where
i > j. A common result that holds throughout most of the treatments is that play-
ers tend to bid more aggressively when they are behind, and they bid increasingly
more aggressively as they fall farther and farther behind. For instance, in the mixed
group of the Win 15 Lose 285 treatment, players tend to bid 5.61 more rupees at
(4, 3) than they would at (3, 4); this difference then increases until by (4, 1), players
are submitting bids that average 15.43 rupees higher than at (1, 4). Similar increases
can be seen in each treatment of the experienced group, although the magnitudes
are not quite as large. Given our last stand hypothesis (H1), we would expect to
see this type of behavior in the Win 15 Lose 285 treatment and to a lesser degree

22Alternatively, for two states that are not omitted, we could obtain the relative difference by
subtracting one of the coefficients from the other, taking care to compute the appropriate standard
error for the difference.

23There are two time components: the tournament number and the bids within each tournament.
Since the number of bids per tournament may vary between one and seven, we interpolate the
timing of each bid to be at one-seventh intervals between tournaments.
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Table 6: Bidding Behavior at State (i, j) Compared to (j, i): Model 1 (baseline)

Win 15 Lose 285 Win 150 Lose 150 Win 300 Lose 0

E
xp

er
ie

nc
ed

4 3 2
6.37 −4.27 −0.95

1 (3.00) (6.35) (3.77)
> 0∗∗

4.56 4.47
2 (1.73) (0.99)

> 0∗∗∗ > 0∗∗∗

1.32
3 (2.36)

4 3 2
5.63 4.01 −1.26
(2.15) (1.97) (4.11)
> 0∗∗∗ > 0∗∗

4.92 0.90
(1.79) (1.37)
> 0∗∗∗

2.02
(2.11)

4 3 2
10.31 −0.65 −0.53
(2.81) (2.17) (1.69)
> 0∗∗∗

6.28 5.12
(0.83) (2.88)
> 0∗∗∗ > 0∗∗

2.67
(0.13)
> 0∗∗∗

M
ix

ed

15.43 14.23 4.10
1 (1.15) (4.14) (4.15)

> 0∗∗∗ > 0∗∗∗

9.62 5.58
2 (1.84) (0.87)

> 0∗∗∗ > 0∗∗∗

5.61
3 (0.52)

> 0∗∗∗

4.31 3.47 5.38
(5.16) (4.36) (2.74)

> 0∗∗

0.66 0.55
(4.03) (2.21)

−3.80
(1.80)
< 0∗∗

1.73 −10.14 −13.99
(2.00) (3.41) (7.71)

< 0∗∗∗ < 0∗∗

5.01 −1.19
(0.96) (7.40)
> 0∗∗∗

2.55
(1.90)
> 0∗

P
oo

le
d

10.91 4.32 1.29
1 (2.43) (5.64) (2.60)

> 0∗∗∗

6.72 4.78
2 (1.55) (0.61)

> 0∗∗∗ > 0∗∗∗

3.19
3 (1.55)

> 0∗∗

4 3 2

5.06 3.82 2.24
(2.79) (2.19) (2.57)
> 0∗∗ > 0∗∗

2.69 0.74
(2.33) (1.11)

−0.82
(1.85)

4 3 2

6.33 −5.08 −6.69
(2.53) (2.66) (4.20)
> 0∗∗∗ < 0∗∗ < 0∗

5.73 1.94
(0.63) (3.76)
> 0∗∗∗

2.67
(0.80)
> 0∗∗∗

4 3 2

Significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%.
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in the Win 150 Lose 150 treatment. It is somewhat surprising, however, that the
regression for the Win 300 Lose 0 treatment produces similar results. In both the
mixed and experienced groups of the Win 300 Lose 0 treatment, players submit bids
at (4, 3) and (4, 2) that are significantly greater than the bids they would place at
(3, 4) and (2, 4). In the experienced group, the coefficient for bids at (4, 1) relative
to (1, 4) is a shockingly large and significantly positive 10.31. Given that the over-
whelming majority of bids at (4, 1) are at or near zero, and that the median bid
at (1, 4) is one, this coefficient is largely driven by outliers. The mixed treatment,
however, does appear to exhibit some of the surrendering behavior we would expect
to see when losing is costless (H2). At (3, 1) and (2, 1) players bid 10 to 14 rupees
less than they would at (1, 3) and (1, 2).

There is little if any evidence from these regressions of players defending their lead
in the tournament (H3). Theoretically, this should happen when players are ahead
by one state. This may explain the significantly negative coefficient at (4, 3) in the
mixed Win 150 Lose 150 treatment, and it is also possible that the surrendering
behavior at (3, 1) and (2, 1) in the mixed Win 300 Lose 0 treatment is in fact a
defense of the lead. Finally, it is worth noting that the regression coefficients for
the pooled data are roughly an average of when the regressions are run separately
and that statistical significance carries over in most cases.

4.3. Winning Margins and Initial Leads

Our final two hypotheses address the implications of making a last stand versus
surrendering—specifically in terms of the size of the winning margin (H4), and also
in terms of the importance of winning the initial battle of the tournament (H5). A
natural consequence of last stand behavior is that the size of the winning margin
tends to decrease. Landslide victories, on the other hand, frequently occur when
players are prone to surrendering. Table 7 reports the distribution of winning mar-
gins for completed tournaments within each treatment.24 The most pronounced
differences in these distributions occur at the endpoints where the winning margin
is either one or four battles. In support of our hypothesis, landslide victories are
clearly more pronounced in the Win 300 Lose 0 treatment. There, landslide victories
account for over 40% of completed tournaments, while the number is between 27%
and 31% in the treatments with losing penalties. Neck-and-neck victories likewise
increase substantially from the Win 300 Lose 0 treatment to the Win 15 Lose 285
treatment—increasing by 5.5 percentage points in the experienced group and 12.3

24The counts underlying the percentages in Table 7 have been adjusted to account for attrition
with the random ending rule. That is, the observations for a winning margin of k have been
multiplied by 1/δ4−k.
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Table 7: Winning Margins by Treatment (in %)

Winning Margin

4 3 2 1

Experienced L285 27.2 24.1 27.6 21.1
L150 27.0 27.3 29.4 16.3
L0 41.0 22.8 20.6 15.6

Mixed L285 29.3 26.0 22.6 22.1
L150 31.4 27.4 16.5 24.7
L0 40.5 28.2 21.5 9.8

Pooled L285 28.2 25.0 25.2 21.6
L150 29.4 27.4 22.4 20.9
L0 40.7 25.4 21.1 12.8

percentage points in the mixed group.

The initial battle is often viewed as pivotal in deciding the ultimate outcome of a
dynamic contest.25 It is advantageous in Gelder (2014) but decisive in Konrad and
Kovenock (2009). In Gelder’s framework, the probability of an upset is increasing
in the relative size of the losing penalty (as is the strength of the last stand).
To a degree this is apparent in the data as well. The first thing that Table 8
illustrates is that winning the initial contest is a strong correlate of winning the
ultimate tournament—or at least being in the lead at the time the tournament
ends (whether by winning or through the random ending rule). Across the different
treatments, roughly 70% to 80% of all winners at state (4, 4) went on to win the
tournament. Second, the Win 15 Lose 285 treatment appears to have the highest
degree of upsets. This is clear in the experienced group where the Win 15 Lose 285
treatment is several percentage points below the other two treatments. The mixed
group is less clear since the Win 15 Lose 285 treatment is only lower than the other
two treatments when tournaments that ended early are factored in.

25For example, Klumpp and Polborn (2006) examine the disproportionately large amount of
attention that New Hampshire and Iowa receive as the first states to vote in the US presidential
primary elections.
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Table 8: Percent of Initial Battle Winners to Win the Tournament

Win Tournament End in Lead

Experienced L285 68.5 70.6
L150 78.2 78.3
L0 76.3 77.2

Mixed L285 79.0 75.0
L150 79.4 79.4
L0 78.9 79.4

Pooled L285 73.7 72.8
L150 78.8 78.9
L0 77.6 78.3

5. Individual Behavior and Player Types

The analysis thus far has taken an aggregative view of the experimental data. We
find, however, that many of the anomalies, as well as expected results at the aggre-
gate level, are illuminated by a careful study of individual player behavior. Although
we have insufficient information to determine the behavior strategies employed by
players in each tournament, we are able to examine each player’s realized strat-
egy—that is, the set of history-contingent actions taken by the player along the
realized path of play generated by the players’ behavior strategies. Players tend to
adopt behavior strategies that lead to one of several distinctive categories of realized
strategies, and a given player’s observed behavior will often conform to the same
category repeatedly. Furthermore, the same categories of realized strategies inde-
pendently arise in the different experimental sessions. The heterogeneity of realized
strategies and the implications for the response of one player’s behavior strategy to
another’s are key to understanding behavior in this experiment.

As an initial example, consider Figure 4 which illustrates bidding behavior along
the exterior states of Figure 1 where one player has either consistently won or lost.26

Several of the pervasive categories of realized strategies and their implied bidding
patterns can be identified in this figure. The top row plots cases where a losing
trajectory is followed and (4,1) is reached. Bids at (4,3) are shown on the abscissa

26A few outlying points have been omitted to focus these graphs on the area of greatest concen-
tration. The points have been slightly perturbed to reduce overlap.
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and the subsequent bids at (4,1) on the ordinate. The points are further coded (see
the key to the right of the figure) by whether the player’s bid at (4,2) increased,
decreased, or remained equal to the bid at (4,3). The bottom row of the figure
displays cases where a winning trajectory is followed and (1,4) is reached, similarly
plotting bids at (3,4) against those at (1,4).

A striking feature of the bids along the losing trajectory is the concentration of
points along the axes and at the origin, with relatively few bids in the interior of
the graph. There are four distinct categories of realized strategies represented here.
First, points on or near the y-axis represent a last-stand strategy entailing a token
bid at (4,3), frequently another at (4,2) (as indicated by the prevalence of black
triangles—see the key to the right), and then a sharp increase at (4,1) in the face
of a tournament loss. Note that the last stand strategy is much more prevalent in
the treatments with a losing penalty than in the Win 300 Lose 0 treatment. The
second realized strategy is one of becoming passive and ultimately giving up as
resistance mounts. It is represented by the points along the x-axis and away from
the origin, indicating that these players were actively competing at (4,3). A few
of these players rallied at (4,2) (as shown by the red squares), while several others
began to give way (the blue circles). By (4,1), however, they had all given up.
A third realized strategy, represented by the cluster of points at the origin, is to
give up from the beginning. This is the maximin strategy in the sense that, while
anticipating a tournament loss, players maximize their payoff by bidding zero. The
fourth strategy—escalation—is represented by the red squares in the interior of the
graphs. These are players who were actively competing and increasing their bids,
yet continued to be outbid.

Bidding patterns along the winning trajectory clearly interact with those along the
losing trajectory. Players either escalate, increasing their bids at (2,4) and (1,4) rel-
ative to (3,4); or they curtail their bids as they move toward victory. Since players
in the second case continue to win even as they reduce their bids, they are clearly
adapting to the strategy of a less aggressive rival. Although some rivals remain
passive to the end, the last stand strategy frequently takes advantage of players
who have been lulled into thinking they can win at (1, 4) with a minimal bid. Es-
calation, the other major behavior along the winning trajectory, likely occurs either
as a preemptive move or when faced with an aggressive competitor.

In order to further explore the realized strategies observed throughout the exper-
iment, and not just those along the two specific trajectories in Figure 4, we in-
dividually looked at each of the last ten tournaments for all 216 subjects in the
experiment. Examples of complete tournament data for six subjects are shown in
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Figure 4: Bids along the trajectories leading to (4,1) (top row) and (1,4) (bottom row)

25



Tables 9 through 14 (these tables will be described in detail later). Similar to the
results from Figure 4, we identified four major realized strategies that arose fre-
quently and repeatedly across the different experimental sessions: maximin, last
stand, escalate when challenged, and passive when challenged. There were, how-
ever, nuances to these strategies, the most prominent of which was the level of a
player’s bid at the initial state (4,4). The initial bid served as a signal to some
degree and most players varied it only slightly from tournament to tournament.27

A high initial bid typically signaled a fairly aggressive player; low initial bids, on the
other hand, carried less information as they were commonly used by both aggressive
and non-aggressive players. To capture this feature, we divided players not only by
the category of realized strategy they predominantly used, but also by whether their
initial bids tended to be low, moderate, or high.28

From a strictly game theoretic standpoint, we should note that our classification
of player types by realized strategies is necessarily limited, since it is based only
on behavior in subgames that actually appear in the data. Furthermore, we are
not able to distinguish between an action chosen deterministically or through ran-
domization. We do not observe the frequency of actions taken when a subject is
confronted with every conceivable history in every stage of the game. Rather, we
observe how players actually bid as they face opponent after opponent in one tour-
nament after another and with varying histories in each tournament. Given the rich
amount of variation that arises with 216 subjects in 18 experimental sessions, there
are some unmistakably consistent patterns of player behavior—consistent enough
that we believe the classification of player types is justifiable.

Developing a taxonomy of the different realized strategies was an iterative process.
We began by identifying the four recurring qualitative categories in a sample of the
data by poring over tables, such as those illustrated in Tables 9 through 14, showing
the bid of a given subject and his rival’s in each realized state of each tournament
in which the subject played. This process led to a loose definition of the recurring
strategies. Working independently, we then classified each player by their most
commonly used strategy (if that was at all clear). Differences in our independent
classifications led to more rigorous definitions of the strategies. The final taxonomy,

27For the last ten tournaments, the 25th, 50th, and 75th percentiles of the standard deviation
of initial bids by player are 0.04, 2.10, and 4.89. The consistency of initial bids is likely due, at
least in part, to the fact that players were matched at random for each tournament.

28We defined high bids as greater than 12 and low bids as less than 2. These cutoffs correspond
to the 75th and 39th percentiles of initial bids across all sessions. Some initial bids are fairly
common. For instance, 0, 1, 2, 5, and 10 account for 54% of all initial bids, with 0 alone counting
for 23%.
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presented here, is specific enough that a computer can apply these rules to classify
the category of realized strategy used by a player in each tournament.

Taxonomy. A player’s realized strategy in a single best-of-seven tournament is
classified as follows:

1. Escalate when Challenged: In at least two battles on the realized path of the
tournament the player submits a bid that is strictly greater than his own last
bid and weakly greater than his opponent’s last bid. The first occurrence may
not be at a state where the player has already accrued two or more losses and
the second occurrence may not be at (4, 1).29

2. Maximin: The realized path of the tournament reaches either (i, 1) or (1, j),
i,j ∈ {1, 2, 3, 4}, and the player does not in any battle place a bid that is both
strictly greater than his own last bid and weakly greater than his opponent’s
last bid. Moreover, all of the player’s bids must be strictly less than two.

3. Last Stand: The conditions for “escalate when challenged” are not satisfied,
but the following properties are satisfied along the realized path of the tourna-
ment: The player reaches some state in which he is both strictly behind in the
tournament and has two or more losses. In that state, the player places a bid
that is strictly greater than his own last bid and either (i) weakly greater than
his opponent’s last bid; or (ii) strictly greater than the midpoint between his
own last bid and his opponent’s last bid but not less than two.

4. Passive when Challenged: The realized path of the tournament reaches ei-
ther (i, 1) or (1, j), for i,j ∈ {1, 2, 3, 4}; the conditions for “escalate when
challenged”, “last stand”, or “maximin” are not satisfied; and in any state in
which the player has already incurred at least one loss the player bids strictly
below his opponent’s previous bid.

A player is classified by one of these four categories of realized strategies if, in the
last ten tournaments of play, the player’s behavior conforms to that category at least
three times and in a strict majority of the tournaments for which one of the above
classifications applies. A player is further classified as a low, middle, or high initial
bidder if a strict majority of bids at (4, 4) are within the range of 0 − 1.9, 2 − 12,
or greater than 12, respectively.

29These exclusions are meant to distinguish escalation in the face of a challenge from last stand
behavior.
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Roughly 66% of the 2160 person-level tournament observations over the last ten
tournaments can be classified by one of these four categories of realized strategies.
The remaining 34% is largely composed of tournaments that ended before a real-
ized strategy could be distinguished.30 Of the 216 players, 201 can be classified by
their initial bid, 180 by a realized strategy, and 169 by both.31 Examples of players
who are classified by each of the four categories of realized strategies are shown in
Tables 9 through 14. These tables show bids at each state and the resulting tour-
nament paths for the last ten tournaments of play. To the left of each tournament
grid is the number (11–20) and outcome of the tournament (L: loss; W: win; E: end
early). Within the cells of the tournament grid, a player’s own bid is written on the
left and the rival’s on the right. Each of the players represented in these tables has
been selected from a different session.32

Table 9 is a classic maximin player who always bids zero, regardless of how low his
opponent might bid. Table 10 shows a player who is passive when challenged, a
behavior evident in tournaments 12, 16, 18, and 19. This table also illustrates the
significance of the term when challenged. There is no opposition in tournaments 11,
13, and 17, so the player resorts to placing minimal bids—a widespread behavior
that does not delineate a unique enough aspect of the player’s realized strategy
to be classified. Tournament 20 likewise cannot be classified because of its early

30A tournament needed to continue for a minimum of three battles before any classification could
be made, and in many cases four or more battles were needed. A total of 18% of the tournaments
ended after the first or second battle and are therefore unclassified; an additional 4% ended after
the third battle without being classified. Another large group of unclassified tournaments are those
in which players faced non-aggressive rivals and consequently did not clearly demonstrate one of
the categories of realized strategies. Specifically, 7% of the tournaments reached (0, 4) without
being classified.

31There are two prominent reasons for a player not being classified by a realized strategy. The
first is a lack of sufficient data due to either tournaments ending early, or players being paired
with non-aggressive rivals, in which case the characteristics of the different realized strategies are
unlikely to be observed. Of the 36 players who were not classified by a realized strategy, 14 had
five or more tournaments which could not be classified because the tournament either ended after
one of the first three battles, or because the player was paired with a non-aggressive rival. The
second common reason for remaining unclassified is having several tournaments under two or more
categories of realized strategies, resulting in no clear majority. For example, one player had five
tournaments classified under the last stand realized strategy and five classified under escalate when
challenged. Eight players had three or more tournaments classified under each of two different
realized strategies; nine players had two or more tournaments apiece under three different realized
strategies; and four players had at least one tournament classified under each of the four different
realized strategies.

32Sessions are labeled by their losing penalty (L285, L150, L0) and subject pool (E: experience;
M: mixed), as well as by a session letter (A, B, C). For instance, session C of the Win 150 Lose
150 mixed treatment is denoted L150 MC.

28



Table 9: Maximin Player from Session L150 MC

11 0 8 12 0 10
0 7 0 10
0 6 0 25

L 0 6 L 0 25

13 0 1 14 0 1
0 1 0 5
0 5 0 10

L 0 20 L 0 1

15 0 0.1 16 0 1
0 5 0 1
0 15 0 10

L 0 30 L 0 1

17 0 0.1 18 0 0 0 0
0 0.1 0 0 0 1
0 0.1 0 1

L 0 0.8 L 0 0

19 0 0.3 20 0 0.9
0 11 0 0.6
0 0.2 0 0.1

L 0 9 L 0 10

Table 10: Passive when Challenged Player from Session L0 EA

11 12 0 10
0 15
0 19

W 3 0 4 0 1 0 1 0 L 3 2 5 9

13 14

30 11
W 4 0 5 0 1 0 1 0 W 4 1 10 1 2 1 2 5

15 16 0 1
0 5
0 9

W 4 1 6 1 2 1 10 10 L 4 5

17 18 0 1
0 3
0 11

W 4 0 5 0 2 0 1 0 L 4 5

19 0 5 20
0 25
0 31

L 4 2 10 12 E 4 0 5 0
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Table 11: Last Stand Player from Session L150 MB

11 12

0 11
E 0 8 E 0 11

13 20 2 20 31 14 20 15.2 27 75
0 15 0 15
0 10 0 15

L 0 14 L 0 15

15 20 0.2 30 33 16 30 15 30 75
0 11 0 15
0 22 0 15

L 0 16 L 0 15

17 15 5 30 30 18
0 5
0 5

L 0 0 E 10 100

19 30 5 40 38 65 52 90 78 20 20 2 25 66
0 10 0 2
0 24 0 15

W 0 16 L 0 15

Table 12: Last Stand Player from Session L285 MC

11 41 2 61 51 100 86 12 41 2 43 50
1 4 1 11
1 2 1 25

E 0 5 L 0 19

13 1 9 14 21 2 61 45 101 100 41 126
1 3 1 15
1 24 1 2

L 0 25 L 0 25

15 16 6 5
0 2 0 5
0 15 0 5

E 0 25 E 0 5

17 3 1 45 5 0 7 18 61 101
0 1 21 26
0 1 0 9

L 0 44 L 0 0 0 2

19 1 41 20 21 11 100 51
1 11 0 20
0 6 0 36

L 0 0 E 0 26
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Table 13: Escalate when Challenged Player from Session L150 EC

11 12
22 20.1

50 25 50 50 64 51 12 4.9 14 15
W 20 20 21 30 W 20 5.1 10 0 2 10

13 14

10 5.1 13 14.8
E 12 6.1 10 0.1 2 6.1 E 12 5.1 3 0 2 5

15 16
12 10 16 15 22 20
6 8 6 5 11 15

W 12 0 2 0 1 5 W 12 5 10 0 2 10

17 48 39 18
24 28 42 0 16 0 24 0

8 7 12 9.9 14 18 19 37
W 12 0 4 5 W 12 11 13 26

19 20 34 0 40 40
16 20

14 15 8 10
E 12 11 18 0 5 0 2 10 L 12 1 6 0 2 5

Table 14: Escalate when Challenged Player from Session L0 MA

11 12 90 80 95 80
70 31 100 49 60 75

40 9 41 15 25 59 41 35 45 50
W 25 33 E 20 40

13 14
50 21

15 11 15 21
W 25 0 10 0 1 0 1 0 W 20 5 6 5 6 10

15 60 55 75 80 16 53 65
40 45 45 49

25 19 26 36 23 23 31 35
L 20 2 10 19 L 20 1 10 16

17 70 69.8 80 95.9 18
40 36.4 45 52

22 21.7 24 32.8 25 18.6 30 27.7 35 10.5
L 10 15 W 10 5.1 10 17.8

19 66 70 20 100 101.4
45 53 70 56.6 75 85

30 23 35 39 25 24.8 36 35 46 48.9
L 10 2 10 23 L 15 18
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termination. The remaining two tournaments, 14 and 15, meet the qualification of
escalating when challenged. Since the four passive when challenged tournaments
form a strict majority of the six classifiable tournaments, this player is designated
as passive when challenged.

In Tables 11 and 12, players repeatedly use the last stand realized strategy. Al-
though not required by definition, these two players nearly always begin with a bid
of zero. The player in Table 11 continues to bid zero, mimicking maximin play, but
suddenly springs into action at (4, 1). Evidently expecting this maximin play to
continue, the rivals in tournaments 13, 15, 19, and 20 dramatically reduced their
bids. The opponent in tournament 14 correctly anticipated the possibility of a last
stand and submitted a slightly higher bid. Having bid 15 the previous three times,
this opponent may have wanted to avoid being outdone by a bid of 15.1 and so bid
15.2. Even if a last stand is successful at (4, 1) it tends to be dramatically harder to
secure a victory at (3, 1) since the rivals have been stirred to action. The last stands
in Table 12 are quite similar, although it is worth noting that tournaments 13 and 19
do not meet the definition of a last stand but are rather maximin. A last stand bid
must have a credible chance of winning given the previous bids in the tournament.33

The escalate when challenged realized strategy is demonstrated in Tables 13 and
14. In eight of the tournaments, the player in Table 13 opens with a bid of 12—a
bid that is strong enough to consistently win at (4, 4) each time it is used. Gaining
the lead from the start, the player submits successively lower bids until a rival poses
a threat. Typically this occurs when the player loses a round, but in tournaments
11, 18, and 19, the rival’s bid at (4, 4) is close enough that it registers as a threat.
Once challenged, the player escalates. However, in escalating, this player is more
judicious than the player in Table 14. The difference comes in the rate of escalation.
The Table 13 player may have two or three rounds of escalation before hitting a bid
of twenty, while the Table 14 player can easily exceed a bid of twenty in the first bid
of a five or six round escalation. Ultimately, the Table 14 player expends more in
bids than the value of the prize-penalty spread in three of the tournaments (11, 12,
and 20) and comes close in another two (15 and 17). Part of the issue is that high
initial bids leave little room to backtrack in a bidding war. Another part is knowing
when to quit. Even if this player would have won the three tournaments that went
to (1, 1), consistently bidding zero would still have yielded a higher average payoff.

33For tournament 13 to meet the definition of a last stand, the player would have needed to bid
at least 12.6 at (4, 2) or at least 2.1 at (4, 1). There is no clear realized strategy in tournament 15
since both last stand and maximin remain possibilities since the tournament ended early.
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The distribution of player types within each session is summarized in Table 15. Here
we classify players both by initial bid and realized strategy. Several notable patterns
are present in this table. One that is immediately apparent is the widespread distri-
bution of player types across each session. At least two distinct realized strategies
are represented in every session, with escalate when challenged being the most com-
mon. Across the low, middle, or high initial bid ranges, escalate when challenged
accounts for at least six of the twelve players in all but two sessions. The remaining
three realized strategies jointly comprise about a quarter of the classifiable players
and a fifth of all players. The incidence of these remaining players across treat-
ments is particularly telling, however, in terms of the last stand and surrendering
hypotheses.

There is a relative abundance of maximin and passive when challenged players in
the Win 300 Lose 0 treatment, a fact which helps to substantiate our hypothesis
of players surrendering when losing is costless. While the Win 15 Lose 285 and
Win 150 Lose 150 treatments have one passive when challenged and three maximin
players apiece, the Win 300 Lose 0 treatment has three passive when challenged
and ten maximin players. The opposite holds true for last stand players. There are
only four last stand players in the Win 300 Lose 0 treatment but nine and eleven
respectively in the Win 150 Lose 150 and Win 15 Lose 285 treatments.34

Just as players are classified in Table 15 by a majoritarian use of a realized strategy,
we can also look at the actual number of times that they play a particular realized
strategy. Players who stick exclusively to one realized strategy throughout the last
ten tournaments of the experiment are in fact a minority with nearly 70% using
two or more of the classifiable realized strategies at least once.35 This practice of
shopping around for different strategies can be seen in Figure 5, which contains the
cumulative distribution of the number of times players use a given realized strategy
during the last ten tournaments. Regardless of treatment, more than one-half of all
players have experience using the last stand realized strategy. Usage rates for max-
imin and passive when challenged sit at around a quarter, and nearly everyone has
tried escalate when challenged. Notwithstanding this shopping around, the usage
rates of the different realized strategies are fairly delineated across treatments, and
the distributions can frequently be ranked in terms of stochastic dominance.

34Including three last stand players that cannot be classified by initial bid, there are five last
stand players in the Win 300 Lose 0 treatment and eleven in each treatment with a losing penalty.

35Of the 216 players, 65 used only one realized strategy in the tournaments that can be classified;
101 used two, 45 used three, and 5 subjects managed to use each of the four realized strategies.
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Table 15: Distribution of Player Types by Session

Low Mid High
MM LS Esc LS Esc Pass LS Esc Pass Other

L285 Mix A 1 2 6 2 1
Mix B 2 4 3 1 2
Mix C 2 2 7 1
Exp A 1 2 6 1 2
Exp B 1 1 5 5
Exp C 1 1 3 1 1 2 3

L150 Mix A 2 1 6 2 1
Mix B 1 2 5 4
Mix C 2 1 1 2 6
Exp A 1 2 1 5 1 2
Exp B 2 4 2 1 2 1
Exp C 2 1 5 1 3

L0 Mix A 1 4 3 1 3
Mix B 3 6 3
Mix C 1 1 3 1 3 3
Exp A 2 1 5 2 2
Exp B 2 2 1 4 1 2
Exp C 1 1 1 4 5

Total L285 3 7 16 3 12 1 17 1 12
L150 3 9 8 21 1 13 17
L0 10 4 5 21 2 11 1 18

11 players can be classified by realized strategy but not by initial bid. Escalate: L285MB, L285EA,
L285EB, L150MB (×2), L150MC, L0EC (×2); Last Stand: L150MB, L150MC, L0MC.
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Figure 5: CDF of number of times players use a strategy during last ten tournaments

For maximin and passive when challenged, the Win 300 Lose 0 treatment comes
close to first-order stochastically dominating the other treatments. Although the
ranking is less clear near the top of the distributions (where the Win 150 Lose 150
treatment actually pulls ahead of the Win 300 Lose 0 treatment for playing maximin
eight times), the Win 300 Lose 0 treatment has a pronounced lead earlier on. In the
two treatments with losing penalties, only a few players use maximin more than two
times, and hardly any use passive when challenged more than once. This seems to
indicate that players in the Win 15 Lose 285 and Win 150 Lose 150 treatments are
simply trying out these realized strategies rather than committing to them. Even
in the Win 300 Lose 0 treatment, players never have more than four tournaments
that can be classified as passive when challenged. This lack of observations is likely
due to two definitional factors which are out of the player’s control: first, that his
rival is aggressive; and second, that the tournament continues long enough for him
to demonstrate that he is adequately passive.
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There is an interesting wrinkle in the ranking of the distributions for the last stand
realized strategy. While the Win 300 Lose 0 treatment is unmistakably in third
place, the ranking of the other two treatments switches midway. The likelihood
of ever using the last stand realized strategy is highest in the Win 150 Lose 150
treatment, however, much of this likelihood is concentrated on using it only once
or twice. By three times, there is no difference in the usage rate between the
Win 150 Lose 150 and the Win 15 Lose 285 treatments. The lead belongs to the
Win 15 Lose 285 treatment thereafter. It is fitting that the last stand strategy is
employed with greater frequency in the treatment with the larger penalty for losing.

Use of the escalate when challenged strategy is crisply ordered across the three
treatments over nearly the entire distribution. The Win 15 Lose 285 treatment has
the highest occurrence at nearly every level, followed by the Win 150 Lose 150 treat-
ment, and then the Win 300 Lose 0 treatment. It is not entirely clear why such a
clear ordering should exist, although there are several potential explanations. First,
even though the prize-penalty spread remains the same across treatments, it may
be that players feel that there is more at stake when there is more to lose (as is the
case in prospect theory) and therefore behave more aggressively. This may lead to
more escalation.

Another possible explanation is that the reduced incidence of escalation in the Win
300 Lose 0 treatment may simply be an artifact of potential observations being
censored due to the definition of the escalate when challenged type. To meet the
definition, a player must bid weakly greater than his opponent’s last bid and strictly
greater than his own last bid in two separate battles. Consequently, if a player em-
ploys a behavioral strategy of responding to any challenge with an increased bid,
but otherwise maintains or lowers his bid, then if the player does not face any chal-
lenges from his opponent, the player’s realized strategy for that tournament will
not be categorized under escalation. Since the incidence of maximin and passive
when challenged are highest in the Win 300 Lose 0 treatment, it is likely that such
censoring is more problematic because there is a higher probability of facing a player
who would not challenge. Although this explanation seems reasonable, it does not
appear to account for the ranking of treatments within the data.36

36As a conservative test, we constructed a distribution similar to those in Figure 5 for the number
of times a player’s realized strategy was either classified as escalate when challenged or remained
unclassified in a tournament that did not end after the first or second battle (no tournaments within
our taxonomy can be classified prior to the third battle). In essence, by grouping the unclassified
tournaments with the escalation types, we are treating the unclassified tournaments as if they were
escalation types. We find that there is still a distinct ranking between the Win 15 Lose 285 and the
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We now turn to the question of how well each of these strategies performs. Figure 6
shows the average tournament payoff over the last ten tournaments of play for every
player that can be classified by both a realized strategy and an initial bid. Here,
players are coded by realized strategy, and the escalate when challenged players are
also coded by initial bid. Each row denotes a separate session of the experiment,
and the sessions are sorted from top to bottom based on the median payoff of the
session. The maximin players serve as a baseline for comparison since every player
could have guaranteed themselves this payoff. Factoring in the probability of a tour-
nament ending early, consistently bidding zero leads to an average payoff of −207.8
in the Win 15 Lose 285 treatment, −109.4 in the Win 150 Lose 150 treatment,
and 0 in the Win 300 Lose 0 treatment. Depending on the actual realization of
the number of tournaments that ended early, the maximin payoffs tend to cluster
around these points.37

More than any other realized strategy, escalate when challenged with a high initial
bid frequently fares worse than maximin. This was the case with the player in
Table 14 who received the lowest average payoff in the Win 300 Lose 0 treatment.
Sessions where multiple players adopted this strategy had an especially hard time
since it led to routine high-stakes bidding wars. These sessions have the lowest
median payoffs within each treatment.

It is conceivable that the poor performance of escalating player types with high
initial bids might result from the same censoring problem noted earlier. A player
with a high initial bid might immediately deter any potential challenge, preclud-
ing the need to raise bids at least twice as required by the definition of escalate
when challenged. In such a tournament, even though the player employs a behavior
strategy that escalates in subgames involving a challenge, his realized strategy does
not involve escalation. Moreover, because the player deters his rival, the player is
likely to have a high tournament payoff, offsetting potential losses that arise in other

Win 300 Lose 0 treatments. The overall ranking of the Win 150 Lose 150 treatment throughout
the distribution is less clear, although it does tend to the middle. Another factor which likely
effects the incidence of escalation across treatments in Figure 5 is the realization of the random
termination of tournaments. The Win 300 Lose 0 treatment had more than expected, with 148
tournaments ending after the first or second battle; the Win 150 Lose 150 had 132; and the Win
15 Lose 285 had only 108.

37The occasional maximin player would win a tournament—frequently by deviating from the
maximin realized strategy when winning looked feasible. There are a few scattered instances where
a tournament was actually won with a cumulative bid of zero. Interestingly, there is only one such
case where both the winner and the loser were classified as maximin players.
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tournaments where escalation actually occurs.

It turns out that this effect does not appear to drive the results. First, the poor per-
formance of escalating types with high initial bids appears to be as much a feature
of the treatments with a high losing penalty as the treatment with no penalty. Since
the probability of facing surrendering behavior is not as large in the high penalty
treatments, it does not seem to be a factor in the payoff rankings. More to the
point, Figure 6 illustrates player types and not the incidence of individual realized
strategies. For a player to be categorized as an escalating type with a high initial
bid, he must be categorized as playing an escalating strategy at least three times
and in a strict majority of all categorized tournaments. He must also place a high
initial bid in a strict majority of the tournaments. An escalating player placing a
high initial bid who sometimes succeeds in preempting may still meet this require-
ment over the course of the last ten tournaments. When he does not, it would likely
mean that preemption occurs sufficiently often that the player is not categorized by
type and hence appears among players listed as “other” (see Table 15). A careful
examination of the realized strategies of all subjects listed as “other” yields little
evidence that this censoring is an issue affecting the payoff rankings.

Although escalation can be a harmful strategy if used too aggressively, it can also be
profitable if used with an appropriate amount of moderation. Players who escalate
with initial bids in the middle range often surface to the top of the payoff distribu-
tions. A mid-range initial bid provides an affordable starting point for bidding wars,
and it also frequently results in an early lead in the tournament. Low-range initial
bids, on the other hand, frequently forfeit the early lead. This is likely why players
who escalate from a low initial bid have lower payoffs than those who escalate from
the mid-range.

Last stand players, overall, do marginally better than the maximin players. Instead
of simply swallowing the losing penalty, the last stand strategy seeks to buy the
player time so that the tournament may end early. A last stand is profitable rel-
ative to maximin if the bidding cost from successfully delaying the tournament is
less than the penalty for losing. Due to the lack of observations, it is difficult to
assess the passive when challenged realized strategy. However, it appears to do very
well in the Win 300 Lose 0 treatment where two of the players using it rank first in
their sessions. These players are vested enough in the tournament to win against
easy competitors, but they are also quick to avoid costly confrontation.

We also examined performance across all tournaments ranked solely on the classi-
fication of the magnitude of a player’s initial bid at (4,4). It turns out that this
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ranking is consistent with our ranking of performance by player types above. In the
Win 300 Lose 0 treatment players placing an initial bid in the high range earned
a mean payoff of 15 rupees, versus a mean payoff of 22 rupees for players initially
bidding low, and 34 rupees for those initially bidding in the middle range. Although
high initial bidders in the Win 150 Lose 150 treatment performed better than low
initial bidders (a mean payoff of −75 rupees versus −81 rupees ), they fared worse
than players with initial bids in the middle range (a mean payoff of −60 rupees).
Finally, high initial bidders fared even worse in the Win 15 Lose 285 treatment,
where they earned a mean payoff of −238, versus −185 for low initial bidders, and
−181 for players bidding in the middle range. The main conclusion from this ex-
ercise appears to be that, regardless of whether a player’s behavior conforms to a
realized type or not, placing an initial bid in the middle range yields the highest
payoff, while placing an initial bid in the high range is relatively unprofitable.

In ending, there are a few noteworthy connections between demographics and the
realized strategies that players adopt. Females have a much higher propensity to
be classified as using the escalate when challenged strategy than males (75% of
females compared to 49% of males). Combined with initial bidding levels, the
gender difference vanishes among low initial bidders but is most pronounced for
those placing high initial bids. Thus, here, as in other contest experiments, women
tend to bid more aggressively than men (see Dechenaux et al. 2014). Men, on
the other hand, were much more likely to use the last stand or maximin strategies.
Politically, the usage rate of escalate when challenged peaked on each extreme of
the political spectrum and fell to a trough in the middle. The last stand was a more
politically centrist strategy. Risk aversion also played a role with more risk averse
subjects tending toward escalation slightly more than their counterparts, while the
last stand had its highest frequency of use among those with the greatest tolerance
for risk.

6. Conclusion

Using a controlled laboratory experiment, we examine how aggressively players
compete at different stages of a best-of-seven tournament in which each component
contest is an all-pay auction. We find that bidding behavior differs considerably
based on whether or not players face a substantial penalty for losing the tourna-
ment.

When the cost of losing is high, players who have fallen behind frequently submit
fairly large bids in an effort to avoid a tournament loss. This is consistent with the
theoretical predictions of Gelder (2014) and embodies the notion of a last stand.
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Within our experiment we specifically identify several players whose realized strate-
gies routinely conform to last stand behavior. Moreover, the incidence of last stand
behavior is much more prevalent in the treatments with losing penalties. Conversely,
we find that subjects are more prone to surrender in tournaments that have no los-
ing penalty. Many subjects even employ a maximin realized strategy of consistently
bidding at or near zero—in essence, surrendering from the start. Although forfeit-
ing the tournament prize by refusing to compete, these players also avoid undue
expenditure. A second type of surrendering behavior found in the data, albeit with
lower incidence, consists of actively competing until a player faces strong resistance,
at which point the player surrenders.

The most prevalent player type we identify is to escalate the conflict through a bid-
ding war. In fact, players employing this strategy are among the most successful and
unsuccessful players that we observe. Players who are overly aggressive, starting
with a high bid and then continuing to escalate, tend to perform the worst in terms
of average payoffs, while moderately aggressive players who start at intermediate
bids and then escalate often do the best.

Equilibrium behavior dictates that a player will defend his lead in the overall tour-
nament by bidding more aggressively than his opponent whenever his opponent is
trailing behind by a single battle victory. We find little evidence to support this
hypothesis. However, we do find that the theoretical predictions for winning mar-
gins are substantiated. Neck-and-neck tournaments are more likely when the losing
penalty is relatively high, and landslide victories occur more frequently when the
winning prize is large relative to the losing penalty. Finally, tournament upsets are
fairly uncommon, with the winner of the initial battle going on to win the entire
tournament roughly three-quarters of the time.

There is a natural challenge in designing an experiment which exposes subjects to
a loss that is in some sense meaningful, yet minor enough to comply with standard
institutional review board guidelines. We suggest, therefore, that any evidence of
last stand behavior in our low stakes experiment would be magnified in situations
that involve more substantive losses. It is also instructive that escalation is nearly
the default behavior in our experiment. Although this behavior may be socially
desirable in settings such as sporting events, it may be highly undesirable in other
environments such as legal disputes.

The player types we identify arise through an examination of the realized paths of
play across experimental sessions, as opposed to being induced through the presence
of a player with a known behavioral strategy (see Embrey et al. 2014). Method-
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ologically, the analysis of realized strategies and player types presented here can be
extended to a host of other experiments involving dynamic games—especially those
with rich action spaces in which it is difficult to ascertain (or even completely de-
scribe) a subject’s full extensive form strategy. Studying individual subjects in this
way can reveal numerous patterns that are easily lost in the aggregated data. Al-
though it is clearly beneficial to conduct experiments which attempt to solicit a more
complete picture of players’ extensive form strategies, we believe that the exami-
nation of the types generated by realized play is a useful tool for future experiments.

Appendix A. Experiment Instructions

Thank you for your willingness to participate in this experiment. You will have the
opportunity to earn some money as part of this experiment—the exact amount you
earn will be based on both your choices and the choices of the other participants.
Funding has been provided by the Economic Science Institute. You will be paid
privately at the conclusion of the experiment.

In order to preserve the experimental setting, we ask that you DO NOT talk with
the other participants, make loud noises, or otherwise disturb those around you.
You will be asked to leave and will not be paid if you violate this rule. Please raise
your hand if you have any questions.

There are two parts to this experiment.

Part 1

In the first part of the experiment, you will be given a set of 15 choices. You will
be asked to choose between receiving $1 for sure (Option A) and receiving $3 with
some probability and nothing otherwise (Option B). The probability of winning $3
in Option B varies across the 15 choices. You will receive payment for one of your
choices. The computer will draw a number between 1 and 15 at random, and you
will be paid for your choice corresponding to that number. If you chose Option A,
you will receive $1. If you selected Option B, the computer will randomly draw an-
other number between 1 and 20, and the result of that draw will determine whether
you are paid $3 or $0.

Are there any questions?
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Part 2

The second part of the experiment consists of 20 best-of-7 tournaments. In each
tournament, you will be paired at random on the computer with another participant.
The winner of each tournament will receive a prize and the loser will incur a penalty.

The currency for this part of the experiment is rupees, and the exchange rate is 50
rupees = 1 US dollar. As part of this experiment you have received an account with
850 rupees (equivalent to $17.00). This account is in addition to the $7.00 show up
fee. The prize for winning a tournament is 150 rupees, and the penalty for losing is
150 rupees.

In order to win a tournament you must be the first player to win 4 contests. A
contest consists of entering a bid on the computer screen. The computer will allow
bids that are either whole numbers or have up to one decimal point that are between
0 and 300 inclusive. You win a contest if your bid is higher than your opponent’s (in
case a tie occurs, the computer will decide the winner randomly, giving each player
a 50% chance of winning). Once both players have entered their bids, the computer
will display the two bids and indicate which player is the winner. The computer
will also display past bids and the total number of contests that each player has
won so far in the tournament.

After each contest, there is a 10% chance that the tournament will suddenly end.

The computer will randomly determine whether or not to end the tournament by
selecting an integer between 1 and 10 (each number is equally likely to be drawn).
If a 1, 2, 3,. . ., 9 is drawn, then the tournament will continue, and you will return
to the bidding screen to bid in another contest. However, if the computer draws
a 10, then the tournament will end early. Numbers that the computer has drawn
previously may be drawn again. Given that no player has won 4 contests, there
is always a 90% chance of continuing to the next round of the tournament. The
following table shows the percent of all tournaments that are expected to reach a
given round provided that no player has won 4 contests by that round.

Round 1 2 3 4 5 6 7
% of Tournaments 100% 90% 81% 73% 66% 59% 53%

Earnings
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Your earnings for each tournament are based on your bids and whether you win or
lose the tournament. All of your bids throughout the tournament will be subtracted
from your earnings. Please note that each of your bids will be subtracted regardless
of whether you win or lose each contest.

The prize of 150 rupees will be added to your earnings if you win the tournament,
and the penalty of 150 will be subtracted from your earnings if you lose.

Here are some examples to illustrate how your earnings for a tournament are cal-
culated. If you win a tournament in six rounds, then your earnings are as follows:

150 − (Round 1 bid) − (Round 2 bid) − (Round 3 bid)
− (Round 4 bid) − (Round 5 bid) − (Round 6 bid)

Similarly, your earnings for losing a tournament in five rounds are given below:

−150 − (Round 1 bid) − (Round 2 bid) − (Round 3 bid)
− (Round 4 bid) − (Round 5 bid)

If the computer does end the tournament before one of the players has won 4
contests, then neither player receives a prize or incurs a penalty. However, your
bids will still be subtracted from your earnings. For example, if the computer stops
the tournament after three rounds, you earn the following:

− (Round 1 bid) − (Round 2 bid) − (Round 3 bid)

When a tournament ends, either by a player winning 4 contests or by the computer
ending it early, the computer will display your earnings for that tournament. You
will then be paired at random with another participant for the next tournament.

We ask for your patience as there may be a short pause between tournaments. This
may happen, for example, if your tournament ended early, but your next randomly
selected partner is still competing in a tournament.

Payment

At the end of the experiment, 2 of the 20 best-of-seven tournaments will be selected
at random. Your payment will be based on the average of your earnings in those
2 tournaments. The average will be added to your 850 rupee account and then
converted from rupees to dollars (50 rupees = 1 US dollar). Positive earnings will
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increase the balance in your account, while negative earnings will decrease it. You
will be paid the balance of your account.

Quiz #1

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.

Contest 1: Your bid: 45 Your opponent’s bid: 73
Contest 2: Your bid: 92 Your opponent’s bid: 100
Contest 3: Your bid: 21 Your opponent’s bid: 21

Tournament randomly terminated after 3rd contest.

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?

Quiz #2

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.

Contest 1: Your bid: 295 Your opponent’s bid: 23
Contest 2: Your bid: 70 Your opponent’s bid: 150
Contest 3: Your bid: 51 Your opponent’s bid: 40
Contest 4: Your bid: 80 Your opponent’s bid: 20
Contest 5: Your bid: 72 Your opponent’s bid: 80
Contest 6: Your bid: 51 Your opponent’s bid: 70
Contest 7: Your bid: 200 Your opponent’s bid: 175

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?

Quiz #3

Your account initially has 850 rupees. The winning prize is 150, and the losing
penalty is −150.
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Contest 1: Your bid: 27 Your opponent’s bid: 295
Contest 2: Your bid: 41 Your opponent’s bid: 150
Contest 3: Your bid: 200 Your opponent’s bid: 40
Contest 4: Your bid: 20 Your opponent’s bid: 78
Contest 5: Your bid: 31 Your opponent’s bid: 83

How many rupees would you receive from this portion of the experiment if this
tournament was selected for payment?

This is the end of the instructions. If you have any questions, please raise your hand
and a monitor will come by to answer them. If you are finished with the instruc-
tions, please click the Start button. The instructions will remain on your screen
until the experiment begins. We need everyone to click the Start button before we
can begin the experiment.

At the conclusion of the experiment, subjects were given the following demographics
survey.

1. What is your age? [Numeric Answer]

2. What is your major? [Free Response]

3. What is your gender? [(A) Male; (B) Female]

4. Have you previously participated in an economics experiment? [(A) Yes; (B)
No]

5. On average, how many hours per week are you employed at a job? [(A) 31+
hrs/week; (B) 21–30 hrs/week; (C) 11–20 hrs/week; (D) 6–10 hrs/week; (E)
0–5 hrs/week]

6. How many hours per week do you spend studying outside of class? [(A) 31+
hrs/week; (B) 21–30 hrs/week; (C) 11–20 hrs/week; (D) 6–10 hrs/week; (E)
0–5 hrs/week]

7. Do you participate in club or intercollegiate athletics? [(A) Yes; (B) No]

8. How much time do you typically spend in student organizations or other ex-
tracurricular activities? [(A) 31+ hrs/week; (B) 21–30 hrs/week; (C) 11–20
hrs/week; (D) 6–10 hrs/week; (E) 0–5 hrs/week]

9. How regularly do you participate in a religious worship service? [(A) 1 or
more times/week; (B) 1–3 times/month; (C) 1–3 times/semester; (D) 1–3
times/year; (E) Never]
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10. Politically, do you consider yourself to be: [(A) Very liberal; (B) Somewhat
liberal; (C) Neutral; (D) Somewhat conservative; (E) Very conservative]
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